JPH05281612A - Optical device for illumination - Google Patents

Optical device for illumination

Info

Publication number
JPH05281612A
JPH05281612A JP4081988A JP8198892A JPH05281612A JP H05281612 A JPH05281612 A JP H05281612A JP 4081988 A JP4081988 A JP 4081988A JP 8198892 A JP8198892 A JP 8198892A JP H05281612 A JPH05281612 A JP H05281612A
Authority
JP
Japan
Prior art keywords
mirror
light source
light
illumination
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4081988A
Other languages
Japanese (ja)
Inventor
Kenjiro Hamanaka
賢二郎 浜中
Takashi Kishimoto
隆 岸本
Koichi Nishizawa
紘一 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP4081988A priority Critical patent/JPH05281612A/en
Priority to US08/039,838 priority patent/US5446639A/en
Publication of JPH05281612A publication Critical patent/JPH05281612A/en
Priority to US08/423,701 priority patent/US5613767A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the illumination device which is useful for a slide projector, liquid crystal video projector, etc., is extremely high in the efficiency of utilizing light and produces luminous fluxes having good parallelism. CONSTITUTION:A ligh5 source 1 is placed in the first focal position of a spheroid mirror 2 and a spherical surface mirror 3 is arranged in such a manner that this mirror faces the mirror 2 and that its reflection surfaces come onto the second focus of the spheroid. An opening window 4 for emission of the luminous fluxes is provided near the second focal position of the spherical surface mirror 3 and further, a condenser lens 5 is arranged in front (illumination side) thereof. The size of the opening window 4, designated as W and the focal length of the lens 5, designated a Fc, are so determined as to satisfy the relation 1 deg.<=tan<-1>(W/2Fc)<=6 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスライドプロジェクタ、
液晶ビデオプロジェクタ、OHPシートプロジェクタ等
に有用な照明装置に関する。
The present invention relates to a slide projector,
The present invention relates to a lighting device useful for liquid crystal video projectors, OHP sheet projectors, and the like.

【0002】[0002]

【従来の技術】従来、この種の装置としては、ハロゲン
ランプ、キセノンランプ、メタルハライドランプ等の光
源と、回転放物面ミラーや回転楕円面ミラーと、コンデ
ンサーレンズを組み合わせた照明装置が用いられていた
(例えば、トリケップス社出版「プロジェクションテレ
ビの設計」第3章第1節参照)。
2. Description of the Related Art Hitherto, as this type of device, an illumination device has been used which is a combination of a light source such as a halogen lamp, a xenon lamp, a metal halide lamp, a parabolic mirror or a spheroidal mirror, and a condenser lens. (See, for example, “Design of Projection Television”, Chapter 3, Section 1 published by Trikeps Corporation).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来技
術ではいずれの場合においても、回転放物面ミラーや回
転楕円面ミラーの方向以外に発光する光源からの射出光
が、照明光として有効に使われず、光源の全発光量に対
する照明光の利用効率が低いという問題点があった。
However, in any case in the prior art, the light emitted from the light source which emits light in a direction other than the direction of the paraboloidal mirror or spheroidal mirror is not effectively used as the illumination light. However, there is a problem that the utilization efficiency of the illumination light is low with respect to the total amount of light emitted from the light source.

【0004】[0004]

【課題を解決するための手段】半径が概略10mm以下
の球領域の範囲内から、立体角が概略2π以上の広い方
向に対して光を射出する光源と、この光源の背後に配置
した回転楕円体ミラーと、光源の前方に配置した球面ミ
ラー及びレンズとで照明光学系を構成し、これら部品の
相互関係及び諸元を以下のように設定する。すなわち、
光源は楕円ミラーの第1の焦点近傍でかつ球面ミラーの
曲率中心の近傍に位置させ、光源より射出した光線の大
部分が楕円ミラーの第2の焦点近傍に集光するようにす
る。また、球面ミラーの半径を楕円ミラーの第1、第2
焦点間距離にほぼ等しくし、その中央付近に大きさW
(円形のとき直径、矩形のとき1辺長)の開口を設け
る。そして、レンズの焦点距離をFcとするとき、W及
びFcが 1度≦tanー1(W/2Fc)≦6度 なる関係を満たすようにする。
A light source that emits light in a wide range with a solid angle of approximately 2π or more from a range of a spherical region having a radius of approximately 10 mm or less, and a spheroid disposed behind the light source. An illumination optical system is configured by a body mirror, a spherical mirror and a lens arranged in front of the light source, and mutual relations and specifications of these parts are set as follows. That is,
The light source is located near the first focus of the elliptical mirror and near the center of curvature of the spherical mirror so that most of the light rays emitted from the light source are focused near the second focus of the elliptical mirror. Also, the radius of the spherical mirror is set to the first and second of the elliptical mirror.
The distance between the focal points is made almost equal, and the size W near the center
An opening of (diameter when circular, length of one side when rectangular) is provided. When the focal length of the lens is Fc, W and Fc are set to satisfy the relationship of 1 degree ≦ tan −1 (W / 2Fc) ≦ 6 degrees.

【0005】[0005]

【作用】本発明によれば、光源と回転楕円面ミラーとで
構成される照明光学系に加え、その前面に曲率中心が光
源位置であるような球面鏡を設けたため、回転楕円面ミ
ラーと異なる方向に射出した光束は、球面鏡によって反
射して再び光源位置に戻り、光源をそのまま通過したあ
と、回転楕円面ミラーで反射することになる。
According to the present invention, in addition to the illumination optical system including the light source and the spheroidal mirror, a spherical mirror whose center of curvature is located at the light source position is provided on the front surface of the illuminating optical system. The luminous flux emitted to is reflected by the spherical mirror, returns to the light source position again, passes through the light source as it is, and then is reflected by the spheroidal mirror.

【0006】従って、このような元々は回転楕円面ミラ
ーの方向と異なる方向に射出した光束は球面鏡で反射さ
れた後、元々回転楕円面ミラーの方向に射出した光と同
一の光路を進むことになり、これらすべての光束が、球
面鏡の一部に設けられた開口窓を介して取り出せるた
め、その位置にレンズ(コンデンサレンズ)を置くこと
により、スライドプロジェクタや液晶プロジェクタ等に
適したコリメート照明光、あるいは若干収束した照明光
を極めて高い照明利用効率をもって得ることができる。
Therefore, such a light beam originally emitted in a direction different from the direction of the spheroidal mirror is reflected by the spherical mirror and then travels in the same optical path as the light originally emitted in the direction of the spheroidal mirror. Since all of these light fluxes can be taken out through an opening window provided in a part of the spherical mirror, by placing a lens (condenser lens) at that position, collimated illumination light suitable for slide projectors, liquid crystal projectors, etc. Alternatively, slightly converged illumination light can be obtained with extremely high illumination utilization efficiency.

【0007】さらに、球面ミラー開口部の大きさWと、
コンデンサレンズの焦点距離Fcとの関係を、 1度≦tanー1(W/2Fc)≦6度 とすることにより、照明光の利用効率が高くかつ平行度
の高い高輝度照明光を得ることができる。
Further, the size W of the spherical mirror opening,
By setting the relationship with the focal length Fc of the condenser lens as 1 degree ≦ tan -1 (W / 2Fc) ≦ 6 degrees, it is possible to obtain high-brightness illumination light with high utilization efficiency of illumination light and high parallelism. it can.

【0008】[0008]

【実施例】図1に本発明の一実施例を示す。図において
1は光源であり、発光部が直径数ミリメートルから十数
ミリメートル程度の球状領域内にあるような、ハロゲン
ランプ、キセノンランプ、メタルハライドランプ等を用
いる。この光源1は回転楕円ミラー2の第1の焦点位置
21に配置されていて、光源1から後方(照明光が最終
的に進行する方向を前方、その反対側を後方と呼ぶこと
にする)及び横方向に射出した光線10、11は、この
回転楕円面ミラー2によって反射された後、回転楕円面
ミラー2の第2焦点位置22に向かって進む。
FIG. 1 shows an embodiment of the present invention. In the figure, reference numeral 1 denotes a light source, and a halogen lamp, a xenon lamp, a metal halide lamp, or the like having a light emitting portion within a spherical region having a diameter of several millimeters to several tens of millimeters is used. The light source 1 is disposed at the first focus position 21 of the spheroidal mirror 2, and is located behind the light source 1 (the direction in which the illumination light finally travels is called the front, and the opposite side is called the rear). The light rays 10 and 11 emitted in the lateral direction are reflected by the spheroidal mirror 2, and then travel toward the second focal position 22 of the spheroidal mirror 2.

【0009】また、光源1の前方を囲むように球面ミラ
ー3が配置されている。この球面ミラー3はその曲率中
心が光源1と一致するように配置されている。従って、
光源1から前方に射出した光線12、13は、球面ミラ
ー3で反射したあと光源1の方向に戻り、光源位置を通
過した後、あたかも光源1から後方へ発光したかの如く
進み、回転楕円面ミラー2で反射した後、回転楕円面ミ
ラー2の第2焦点位置22に向かって進むことになる。
A spherical mirror 3 is arranged so as to surround the front of the light source 1. The spherical mirror 3 is arranged so that its center of curvature coincides with that of the light source 1. Therefore,
Light rays 12 and 13 emitted forward from the light source 1 return to the direction of the light source 1 after being reflected by the spherical mirror 3 and, after passing through the light source position, proceed as if emitted from the light source 1 to the rear, and have a spheroidal surface. After being reflected by the mirror 2, the spheroidal mirror 2 advances toward the second focal position 22.

【0010】球面ミラー3の球面の位置は、ちょうど回
転楕円面ミラー2の第2焦点位置22がその球面上に来
るような位置に置かれている。さらに、球面ミラー3上
であって回転楕円面の第2焦点位置22の近傍には、開
口窓4が設けられている。この開口窓の大きさは、上記
第2焦点22の方向に進む光線の大部分が通過できる程
度の大きさとし、一般的には、光源1の実効的な大きさ
と同程度、又は光源1が楕円ミラーの第2焦点位置22
の近傍で形成する像の実効的な大きさと同程度である。
The position of the spherical surface of the spherical mirror 3 is set so that the second focal position 22 of the spheroidal mirror 2 is on the spherical surface. Further, an opening window 4 is provided on the spherical mirror 3 in the vicinity of the second focus position 22 on the spheroid. The size of this opening window is set so that most of the light rays traveling in the direction of the second focal point 22 can pass therethrough, and is generally the same size as the effective size of the light source 1, or the light source 1 is an ellipse. Second focus position 22 of the mirror
Is approximately the same as the effective size of the image formed in the vicinity of.

【0011】上記装置において、光源1から射出した光
線、後方に射出して回転楕円面ミラー2で反射された光
線群10、11・・・、及び前方に射出して一度球面ミ
ラー3で反射されたあと回転楕円面ミラー2で反射され
た光線群12、13・・・は全て第2焦点位置22に設
けられた開口窓4を通過して進むことになる。
In the above apparatus, the light beams emitted from the light source 1, the light beam groups 10, 11 ... Which are emitted rearward and are reflected by the spheroidal mirror 2, and the light beams which are emitted forward and are once reflected by the spherical mirror 3. After that, all the light ray groups 12, 13 ... Reflected by the spheroidal mirror 2 pass through the aperture window 4 provided at the second focal position 22 and proceed.

【0012】従って、これら光源1、回転楕円面ミラー
2、及び球面ミラー3による上記装置は、あたかも開口
窓4が二次光源であるかのように振る舞い、その前方に
置かれたレンズ5によって、指向性の高いコリメート照
明、或いは若干収束した照明となる。なお、図中6は投
影するためのスライドである。
Therefore, the above-mentioned device including the light source 1, the spheroidal mirror 2, and the spherical mirror 3 behaves as if the aperture window 4 is a secondary light source, and the lens 5 placed in front of the window 5 causes Collimated illumination with high directivity or slightly converged illumination. Incidentally, reference numeral 6 in the figure is a slide for projection.

【0013】ここで、開口窓4を直径Wの円形開口と
し、コンデンサレンズ5の焦点距離をFcとするとき、
照明光の平行度αは、
When the aperture window 4 is a circular aperture having a diameter W and the focal length of the condenser lens 5 is Fc,
The parallelism α of the illumination light is

【数1】α=tan-1[W/2Fc] (1) で表される。 照明光学系を液晶プロジェクタやスライドプロジェクタ
のような投射光学系に用いる場合、照明光の平行度が低
い(αが大きい)と、より大きな口径の投影レンズが必
要になるなどの不都合があり、照明光の平行度をおよそ
α≦6度程度にする必要がある。
## EQU1 ## α = tan -1 [W / 2Fc] It is represented by (1). When the illumination optical system is used in a projection optical system such as a liquid crystal projector or a slide projector, if the parallelism of the illumination light is low (α is large), there is a disadvantage that a projection lens with a larger aperture is needed, and the like. It is necessary to set the parallelism of light to about α ≦ 6 degrees.

【0014】一方、光源1は実際には点光源ではなく有
限の大きさを持っているため、あまり開口窓4を小さく
すると、光が窓部でケラレてしまい、光の利用効率が低
下する。従って上記αの値は、必要以上に小さくするこ
とは得策ではなく、必要十分な大きさにし、なるべく開
口を大きくして照明光の利用効率を上げる必要がある。
このような意味から、αをおよそ1度ないし6度の範囲
内に設定することにより、平行度と光の利用効率の両面
から好条件の照明光学系が実現できる。即ち、
On the other hand, the light source 1 is not a point light source in fact, but has a finite size. Therefore, if the opening window 4 is made too small, light is eclipsed at the window portion, and the light utilization efficiency decreases. Therefore, it is not a good idea to make the value of α smaller than necessary, and it is necessary to make it large enough to increase the utilization efficiency of illumination light.
From this point of view, by setting α within the range of approximately 1 to 6 degrees, it is possible to realize an illumination optical system that is in good conditions in terms of both parallelism and light utilization efficiency. That is,

【数2】 1度≦tanー1(W/2Fc)≦6度 (2) が適正条件であるといえる。## EQU00002 ## It can be said that 1 degree.ltoreq.tan -1 (W / 2Fc) .ltoreq.6 degrees (2) is a proper condition.

【0015】代表的な数値例としては、図1において回
転楕円面ミラー2の深さDs=35.4mm、同ミラー
の半径Rm=50mm、球面ミラーの半径Rms=50
mm(=楕円の二焦点間距離Df)、開口窓4の直径W
=5.2mm、コンデンサレンズ5の焦点距離Fc=5
0mmとして、平行度α=3度の、極めて光利用効率の
高い照明光学系が実現できた。
As a typical numerical example, in FIG. 1, the depth Ds of the spheroidal mirror 2 is 35.4 mm, the radius of the mirror Rm is 50 mm, and the radius of the spherical mirror is Rms = 50.
mm (= distance between two focal points of the ellipse Df), diameter W of the opening window 4
= 5.2 mm, the focal length Fc of the condenser lens 5 = 5
With 0 mm, a parallelism α = 3 degrees and an illumination optical system with extremely high light utilization efficiency could be realized.

【0016】なお、図1においてスライド6は、液晶プ
ロジェクタの場合なら液晶パネルとなる。また実用的に
は、回転楕円面ミラー2と球面ミラー3の間の部分に空
気流通の孔を開け、ファンを用いて空冷することによ
り、本発明照明装置の温度上昇を抑えることができる。
In FIG. 1, the slide 6 is a liquid crystal panel in the case of a liquid crystal projector. Further, practically, by raising a hole for air circulation in a portion between the spheroidal mirror 2 and the spherical mirror 3 and air-cooling with a fan, it is possible to suppress the temperature rise of the lighting device of the present invention.

【0017】[0017]

【発明の効果】本発明によれば、従来照明装置として利
用することが不可能であった、光源から前方へ射出する
光束(図1で12’、13’等)の大部分が照明光とし
て利用可能になり、極めて明るい、光源からの発光の利
用効率の高い照明装置が得られる。
According to the present invention, most of the luminous flux (12 ', 13', etc. in FIG. 1) emitted from the light source to the front, which cannot be used as a conventional illumination device, is used as illumination light. It is possible to obtain an illuminating device that can be used and is extremely bright and has high utilization efficiency of light emitted from a light source.

【0018】またこの時、開口窓4の大きさとコンデン
サレンズ5の焦点距離の間の関係を本発明で規定するよ
うに設定することにより、光の利用効率が高く、かつ平
行度の良い照明装置が実現できる。
Further, at this time, by setting the relationship between the size of the opening window 4 and the focal length of the condenser lens 5 as specified in the present invention, a lighting device having high light utilization efficiency and good parallelism. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す断面図FIG. 1 is a sectional view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 回転楕円面ミラー 3 球面ミラー 4 開口窓 5 レンズ 6 スライド(液晶パネル) 10、11 光源から後方又は横方向へ射出する光線 12、13 光源から前方へ射出する光線 12’、13’従来装置で利用されていなかった光線 21 回転楕円面の第1焦点 22 回転楕円面の第2焦点 DESCRIPTION OF SYMBOLS 1 light source 2 spheroidal mirror 3 spherical mirror 4 aperture window 5 lens 6 slide (liquid crystal panel) 10, 11 light beam emitted backward or laterally from light source 12, 13 light beam emitted forward from light source 12 ', 13' conventional Rays not used by the device 21 First focus of spheroid 22 Second focus of spheroid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半径が概略10mm以下の球領域の範囲
内から、立体角が概略2π以上の広い方向に対して光を
射出する光源と、この光源の背後に配置した回転楕円体
ミラーと、前記光源の前方に配置した球面ミラー及びレ
ンズとで構成される照明光学系であって、前記光源は前
記楕円ミラーの第1の焦点近傍でかつ前記球面ミラーの
曲率中心の近傍に位置し、前記光源より射出した光線の
大部分が前記楕円ミラーの第2の焦点近傍に集光し、前
記球面ミラーの半径は前記楕円ミラーの第1、第2焦点
間距離にほぼ等しく、その中央付近に大きさW(円形の
とき直径、矩形のとき1辺長)の開口を備え、前記レン
ズの焦点距離をFcとするとき、W及びFcが 1度≦tanー1(W/2Fc)≦6度 なる関係を満たすことを特徴とする照明光学装置。
1. A light source that emits light in a wide range with a solid angle of approximately 2π or more within a range of a spherical region having a radius of approximately 10 mm or less, and a spheroidal mirror disposed behind the light source. An illumination optical system comprising a spherical mirror and a lens arranged in front of the light source, wherein the light source is located near the first focus of the elliptical mirror and near the center of curvature of the spherical mirror, Most of the light rays emitted from the light source are condensed near the second focus of the elliptical mirror, and the radius of the spherical mirror is substantially equal to the first and second focal lengths of the elliptical mirror, and is large near the center thereof. With an opening of size W (diameter in the case of a circle, length of one side in the case of a rectangle), and when the focal length of the lens is Fc, W and Fc are 1 degree ≦ tan -1 (W / 2Fc) ≦ 6 degrees. Illumination optics characterized by satisfying relationships apparatus.
JP4081988A 1992-04-03 1992-04-03 Optical device for illumination Pending JPH05281612A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4081988A JPH05281612A (en) 1992-04-03 1992-04-03 Optical device for illumination
US08/039,838 US5446639A (en) 1992-04-03 1993-03-30 Illuminating apparatus
US08/423,701 US5613767A (en) 1992-04-03 1995-04-18 Illuminating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4081988A JPH05281612A (en) 1992-04-03 1992-04-03 Optical device for illumination

Publications (1)

Publication Number Publication Date
JPH05281612A true JPH05281612A (en) 1993-10-29

Family

ID=13761859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4081988A Pending JPH05281612A (en) 1992-04-03 1992-04-03 Optical device for illumination

Country Status (1)

Country Link
JP (1) JPH05281612A (en)

Similar Documents

Publication Publication Date Title
JP4792486B2 (en) Optical system for Fresnel lens light, especially spotlight or floodlight
US20060061894A1 (en) Coupling of light from a light source to a target using dual ellipsoidal reflectors
US5607229A (en) Illumination system including an asymmetrical projection reflector
US7513630B2 (en) Compact dual ellipsoidal reflector (DER) system having two molded ellipsoidal modules such that a radiation receiving module reflects a portion of rays to an opening in the other module
JP2004119364A (en) Reflection structure and condenser for light source
JP3058251B2 (en) Illumination optics
JP4722312B2 (en) Lamp, condensing optical system, and image display device
US6908218B2 (en) Light source unit and projector type display device using the light source unit
US3494693A (en) Radiant energy projection
US6381415B1 (en) Flash apparatus and camera using the same
JPH0572628A (en) Light source device
JPH0540223A (en) Lighting device
JPH05281612A (en) Optical device for illumination
JPH05281613A (en) Optical system for illumination
JPH03168629A (en) Illuminating device
JPH05107643A (en) Illuminator
JPH05281614A (en) Illumination device
JP2821691B2 (en) Light source device for projector
JP2938224B2 (en) Reflector for discharge lamp
JPH0547201A (en) Projection illuminating device
JPH03196134A (en) Illuminating device
JPH03168628A (en) Illumination optical device
KR0118688Y1 (en) Projector lighting system
JPH03196133A (en) Illumination light source device
US2319207A (en) Combination mercury mazda spotlight