JPH05281402A - Optical device - Google Patents

Optical device

Info

Publication number
JPH05281402A
JPH05281402A JP4077197A JP7719792A JPH05281402A JP H05281402 A JPH05281402 A JP H05281402A JP 4077197 A JP4077197 A JP 4077197A JP 7719792 A JP7719792 A JP 7719792A JP H05281402 A JPH05281402 A JP H05281402A
Authority
JP
Japan
Prior art keywords
light
lens
led
lens body
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4077197A
Other languages
Japanese (ja)
Inventor
Sadao Noda
貞雄 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP4077197A priority Critical patent/JPH05281402A/en
Publication of JPH05281402A publication Critical patent/JPH05281402A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

PURPOSE:To reduce the aperture of a lens body and to reduce its cost without degrading the efficiency of the device while reducing its thickness. CONSTITUTION:A lens body 15 is constituted of a refractive lens part 16 provided at the central part of an optical axis K and reflector parts 17, 18. The focal positions O thereof are aligned to the positions where an LED 14 is disposed. The incident light on the refractive lens part 16 from the LED 14 is refracted by the refractive lens 16 and is converted to collimated beams of light. The incident light beams on the reflector parts 17, 18 are totally reflected by reflection surfaces 17a, 17a constituting a parabolic shape and are converted to the collimated beams of light. Since the light of the LED 14 is efficiently converted to the collimated beams of light, the aperture is reduced and the detection distance is increased. Since there is no need for a vapor deposition state of metal, the cost is reduced. Since the lens body is divided to the two reflector parts 17, 18, the thickness thereof is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基準点からの光を集束
して放出する光学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device for focusing and emitting light from a reference point.

【0002】[0002]

【従来の技術】例えば、エリアセンサ等の多光軸光電ス
イッチにおいては、各光軸に対応して投光素子および受
光素子が設けられており、その投光素子から発散される
光は前方に配設されたレンズにより平行光線に変換され
て検出エリアに向けて投光され、検出エリアを通った平
行光線は受光素子の前方に配設された同様のレンズによ
り集束された光として受光面に入射するように構成され
ている。
2. Description of the Related Art For example, in a multi-optical axis photoelectric switch such as an area sensor, a light projecting element and a light receiving element are provided corresponding to each optical axis, and light emitted from the light projecting element is forwardly directed. It is converted into parallel rays by the lens provided and projected toward the detection area, and the parallel rays passing through the detection area are focused on the light receiving surface as light focused by a similar lens arranged in front of the light receiving element. It is configured to be incident.

【0003】この場合、このようなレンズとしては例え
ば凸状の屈折レンズが一般的であるが、LED(発光ダ
イオード)等の点光源の光を平行光線に変換するために
は点光源を屈折レンズの焦点に配置する必要がある。し
かしながら、このように配置するために、点光源と屈折
レンズとの間を焦点距離だけ離間させなければならない
ので、厚さ寸法が大きくなるので全体として装置が大形
化してしまう不具合があった。
In this case, as such a lens, for example, a convex refracting lens is generally used, but in order to convert light from a point light source such as an LED (light emitting diode) into parallel rays, the point light source is a refraction lens. Need to be placed at the focal point of. However, since the point light source and the refracting lens have to be separated by the focal length in order to arrange in this way, there is a problem that the device becomes large as a whole because the thickness dimension becomes large.

【0004】そこで、従来では、このような不具合を解
消するために、例えば、実公平1−12741号公報に
示すようなものが考えられている。このものは、図11
にも示しているように、凸レンズ1の一端面側の中央部
に凸面状で金属蒸着膜が被着された第1の反射面2を形
成し、反対側の面の中央部に凹部3を形成してLEDを
焦点位置Oに配設すると共に、その外周部に凹面状で金
属蒸着膜が被着された第2の反射面4を形成している。
Therefore, conventionally, in order to eliminate such a problem, for example, the one disclosed in Japanese Utility Model Publication No. 1-12741 has been considered. This is shown in FIG.
As also shown in FIG. 1, the convex first lens 1 is provided with a first reflecting surface 2 having a convex metal-deposited film on the central portion on the one end surface side, and a concave portion 3 is provided on the central portion on the opposite surface. The LED is formed and disposed at the focus position O, and the second reflecting surface 4 having a concave metal deposition film is formed on the outer peripheral portion thereof.

【0005】そして、LEDからの光を凸レンズ1内部
を通って第1の反射面2で発散するように反射させ、そ
の反射光を第2の反射面4で再び反射させて前方に向け
て平行光線として出力するものである。つまり、LED
からの光を第1および第2の反射面2,4で2段に反射
させて平行光線にすることにより、LEDと凸レンズ1
との間の距離を短くして薄形化を図ったものである。
Then, the light from the LED passes through the inside of the convex lens 1 and is reflected by the first reflecting surface 2 so as to diverge, and the reflected light is reflected again by the second reflecting surface 4 and is collimated forward. It is output as a light beam. That is, the LED
The light from the LED is reflected by the first and second reflecting surfaces 2 and 4 in two steps to form parallel rays, whereby the LED and the convex lens 1
It is designed to be thinner by shortening the distance between the and.

【0006】[0006]

【発明が解決しようとする課題】ところで、このような
多光軸光電スイッチにおいては、光軸のピッチを短くし
て検出精度を向上させることが要望されている。例えば
光軸ピッチを従来の40mm間隔から半分の20mm間
隔にして光軸の数を2倍にすることにより、検出精度を
向上させるものである。
By the way, in such a multi-optical axis photoelectric switch, it is desired to shorten the optical axis pitch to improve the detection accuracy. For example, the detection accuracy is improved by doubling the number of optical axes by changing the optical axis pitch from the conventional 40 mm interval to half the 20 mm interval.

【0007】この場合、前述したように1光軸当たりに
2個の凸レンズ1を用いているので、例えば24光軸の
従来品では48個の凸レンズ1を用いるのに対して、光
軸の数を2倍の48光軸にすると、合計96個のレンズ
を用いる構成となる。
In this case, since two convex lenses 1 are used for each optical axis as described above, for example, in the conventional product having 24 optical axes, 48 convex lenses 1 are used, whereas the number of optical axes is 24. Is doubled to 48 optical axes, a total of 96 lenses are used.

【0008】しかしながら、従来構成における凸レンズ
1は、製作コストのうち、2つの反射面2,4を形成す
るために行なう金属蒸着工程で略半分のコストがかかっ
てしまうため、全体として非常に高価なものになってし
まう問題がある。
However, the convex lens 1 in the conventional structure is very expensive as a whole because the metal deposition process for forming the two reflecting surfaces 2 and 4 costs about half of the manufacturing cost. There is a problem that it becomes a thing.

【0009】また、このように光軸ピッチを短くする構
成とするために、凸レンズの口径を小さくする必要があ
るが、従来のものでは、口径を小さくすると検出エリア
への光の放出量がその分だけ低下するため、検出距離が
短くなってしまう不具合がある。
Further, in order to make the optical axis pitch short in this way, it is necessary to make the diameter of the convex lens small, but in the conventional one, when the diameter is made small, the amount of light emitted to the detection area is reduced. There is a problem in that the detection distance is shortened because it is reduced by that amount.

【0010】この場合、図12に示すように、通常の凸
レンズLにおいては、焦点Fの位置にLED等の点光源
を配置するので、LEDから放射される光のうちレンズ
に入射する光は光軸Kを基準として角度θaの範囲の光
である。従って、放射角度がθa以上の角度θの光は無
駄となってしまう。この角度θaの値は、図13のよう
な断面形状を示すレンズLaを用いた場合でも最大42
°までしかとることができないため、平行光線として放
出する効率が悪くなる不具合がある。
In this case, as shown in FIG. 12, in the normal convex lens L, since a point light source such as an LED is arranged at the position of the focal point F, the light emitted from the LED that is incident on the lens is the light. The light is in the range of the angle θa with respect to the axis K. Therefore, the light with the emission angle θa or more and the angle θ is wasted. The maximum value of the angle θa is 42 even when the lens La having the sectional shape as shown in FIG. 13 is used.
Since it is possible to obtain only up to °, there is a problem that the efficiency of emitting parallel rays becomes poor.

【0011】本発明は、上記事情に鑑みてなされたもの
で、その目的は、金属蒸着工程を不要として低コスト化
が図れる構成でありながら、光源が配置される基準点と
の間隔を小さくして薄形化を図り得、しかも小口径でも
高効率で光の伝達を行うことができるようにした光学装
置を提供するにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the distance from a reference point at which a light source is arranged while reducing the cost by eliminating the metal deposition step. It is an object of the present invention to provide an optical device which can be made thin and which can transmit light with high efficiency even with a small diameter.

【0012】[0012]

【課題を解決するための手段】本発明の光学装置は、基
準点からの光に対して光軸を基準とした所定角度範囲内
の光成分を屈折により集束する屈折レンズ部と、前記基
準点からの光のうち前記所定角度範囲外の光成分を内部
に導いて放物面状をなす反射面で全反射させることによ
り集束する反射体部とを設けて構成したところに特徴を
有する。
An optical device according to the present invention comprises a refraction lens unit for converging light components within a predetermined angle range with respect to light from a reference point by refraction, and the reference point. And a reflector portion that focuses the light component outside the predetermined angle range by guiding the light component to the inside and totally reflecting the light component on the parabolic reflection surface.

【0013】また、反射体部を、基準点からの光に対し
て光軸を基準とした所定角度範囲外の光成分を複数の角
度範囲に分割してそのそれぞれを集束するように複数の
反射面が一体に形成された構成とすることができる。
Further, the reflector portion is divided into a plurality of angle ranges of a light component outside a predetermined angle range with respect to the light from the reference point with respect to the optical axis, and a plurality of reflections are made so as to focus each of them. The surface may be integrally formed.

【0014】[0014]

【作用】請求項1記載の光学装置によれば、基準点に点
光源を配置する場合には、その点光源からの光のうち、
光軸を基準とした所定角度範囲内の光成分は屈折レンズ
部を介して集束されて放出され、所定角度範囲外の光成
分は反射体部の放物面状の反射面での全反射により集束
されて放出されるので、光源からの光を平行光線或は拡
散する光に変換することができる。
According to the optical device of the first aspect, when the point light source is arranged at the reference point, of the light from the point light source,
Light components within a predetermined angle range with respect to the optical axis are focused and emitted through the refraction lens section, and light components outside the predetermined angle range are caused by total reflection on the parabolic reflection surface of the reflector section. Since the light is focused and emitted, the light from the light source can be converted into parallel rays or diffused rays.

【0015】この場合、基準点の点光源からの光が広い
範囲の角度に放出される場合でも、屈折レンズ部の外側
の光に対して反射体部により集束しているので、変換効
率を向上させることができ、これにより小口径化が図れ
ると共に検出距離を長くすることができる。また、反射
体部においては入射する光に対して反射面により全反射
させる構成であるから、金属蒸着等の加工が不要とな
る。
In this case, even when the light from the point light source of the reference point is emitted in a wide range of angles, the light outside the refracting lens is focused by the reflector, so that the conversion efficiency is improved. Therefore, the diameter can be reduced and the detection distance can be increased. Further, in the reflector portion, since the incident light is totally reflected by the reflecting surface, processing such as metal vapor deposition is unnecessary.

【0016】請求項2記載の光学装置によれば、反射体
部に入射する光を複数の角度範囲に分割してそれぞれに
対応した反射面で集束して放出する。これにより、反射
面の厚さ方向の寸法をひとつの反射面で構成する場合に
比べて小さくすることができるので、全体としてさらに
薄形化が図れる。
According to the optical device of the second aspect, the light incident on the reflector portion is divided into a plurality of angular ranges, and the light is focused and emitted by the reflecting surfaces corresponding to the respective angular ranges. As a result, the dimension in the thickness direction of the reflecting surface can be made smaller than that in the case where the reflecting surface is constituted by one reflecting surface, so that the overall thickness can be further reduced.

【0017】[0017]

【実施例】以下、本発明をエリアセンサに適用した場合
の第1の実施例について図1ないし図8を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment in which the present invention is applied to an area sensor will be described below with reference to FIGS.

【0018】図3はエリアセンサ11の概略構成を示す
もので、投光器12および受光器13からなるもので、
例えば検出エリアE内に48光軸(図中1,2・・で示
す)を設けるようにしている。投光器12には各光軸に
対応して投光素子としてのLED(発光ダイオード)1
4が設けられており(図1参照)、受光器13には同様
にして図示しない受光素子が設けられている。
FIG. 3 shows a schematic structure of the area sensor 11, which comprises a light emitter 12 and a light receiver 13.
For example, 48 optical axes (indicated by 1, 2, ... In the figure) are provided in the detection area E. An LED (light emitting diode) 1 as a light projecting element is provided in the projector 12 corresponding to each optical axis.
4 is provided (see FIG. 1), and the light receiver 13 is similarly provided with a light receiving element (not shown).

【0019】そして、各LED14および受光素子の前
面部には図1および図2に示すようなレンズ体15が設
けられている。このレンズ体15は、例えばアクリル樹
脂等を成形することにより一体に形成したもので、次の
ような構成となっている。
A lens body 15 as shown in FIGS. 1 and 2 is provided on the front surface of each LED 14 and the light receiving element. The lens body 15 is integrally formed by molding acrylic resin or the like, for example, and has the following configuration.

【0020】即ち、図1に断面で示すように、光軸Kを
中心とする所定半径内に双曲面16aを有する屈折レン
ズ部16が形成されている。そして屈折レンズ部16の
外周部には、放物面状の反射面17aを有する第1の反
射体部17と、その外周側に放物面状の反射面18bを
有する第2の反射体部18が形成されている。
That is, as shown in cross section in FIG. 1, a refracting lens portion 16 having a hyperboloid 16a within a predetermined radius centered on the optical axis K is formed. Then, on the outer peripheral portion of the refraction lens portion 16, a first reflector portion 17 having a parabolic reflection surface 17a and a second reflector portion having a parabolic reflection surface 18b on the outer peripheral side thereof. 18 is formed.

【0021】また。屈折レンズ部16の焦点と、第1の
反射体部17および第2の反射体部18の各反射面17
a,18aの焦点は一致するように設定されており、そ
の焦点位置Oは、基準点とされるもので、LED14あ
るいは受光素子の受光面が配置されるようになってい
る。
[0021] Also. The focus of the refraction lens unit 16 and the reflecting surfaces 17 of the first reflector unit 17 and the second reflector unit 18
The focal points of a and 18a are set to coincide with each other, and the focal point position O is used as a reference point, and the light receiving surface of the LED 14 or the light receiving element is arranged.

【0022】尚、各反射体部17,18の内側の面部1
7b,18bは焦点位置Oを中心とした球面の一部とな
るように形成されており、焦点位置Oからの光に対して
屈折しないで直進するようになっている。
The inner surface portion 1 of each of the reflector portions 17 and 18
7b and 18b are formed so as to be a part of a spherical surface centered on the focal position O, and are adapted to go straight without refracting light from the focal position O.

【0023】そして、第2の反射体部18は、図2にも
示すように、両側部が平行にカットされた形状に形成さ
れている。これは、投光器12あるいは受光器13のケ
ースの形状に応じてコンパクトな組み込みを可能とする
ためのものである。
As shown in FIG. 2, the second reflector portion 18 is formed in a shape in which both side portions are cut in parallel. This is to enable compact installation depending on the shape of the case of the light projector 12 or the light receiver 13.

【0024】次に、上記構成の作用について説明する
に、まず、図4を参照して原理的な説明をする。即ち、
図4は屈折レンズ部16とひとつの反射体部19を設け
た構成のレンズ体20の断面を示したものである。
Next, in order to explain the operation of the above configuration, first, the principle will be described with reference to FIG. That is,
FIG. 4 shows a cross section of a lens body 20 having a refracting lens portion 16 and one reflector portion 19.

【0025】尚、本実施例におけるレンズ体15の形状
の設計およびその具体的な効果については、実施例の説
明の最後にまとめて説明している。
The design of the shape of the lens body 15 and the specific effect thereof in this embodiment are collectively described at the end of the description of the embodiment.

【0026】図4において、焦点位置Oに配置されたL
ED14からの光のうち、例えば光軸Kに沿った光路a
を通る光は屈折レンズ部16を直進してそのまま検出エ
リアE側に放出される。また、光路bを通る光は屈折レ
ンズ部16に入射すると屈折されることにより光軸Kに
平行な光線として検出エリアE側に放出される。
In FIG. 4, L arranged at the focus position O
Of the light from the ED 14, for example, the optical path a along the optical axis K
The light passing through goes straight through the refraction lens unit 16 and is emitted to the detection area E side as it is. Further, the light passing through the optical path b is refracted upon entering the refraction lens portion 16 and is emitted to the detection area E side as a light ray parallel to the optical axis K.

【0027】次に、光路cを通る光は、屈折しないで面
部19bから反射体部19内に直進するように入射し、
反射面19aで全反射されることにより光軸Kと平行な
光線として検出エリアE側に放出される。そして、光路
dを通る光も同様にして反射体部19に入射して反射面
19aで全反射して光軸Kに平行な光線として検出エリ
アE側に放出される。
Next, the light passing through the optical path c is not refracted but is incident straight from the surface portion 19b into the reflector portion 19,
By being totally reflected by the reflecting surface 19a, it is emitted to the detection area E side as a light beam parallel to the optical axis K. Similarly, the light passing through the optical path d is also incident on the reflector portion 19, totally reflected by the reflecting surface 19a, and emitted to the detection area E side as a light ray parallel to the optical axis K.

【0028】これにより、焦点位置OからのLED14
の光は、光軸Kに対して90°近い範囲の角度の光まで
平行光線として検出エリアE側に放出されることにな
り、LED14が発散する光を効率良く利用することが
できる。また、焦点位置Oに受光素子を配置する場合に
は、検出エリアE側からの平行光線を効率良く集光して
その受光面に入射させることができる。
As a result, the LED 14 from the focus position O
Is emitted to the detection area E side as parallel rays up to light having an angle of about 90 ° with respect to the optical axis K, and the light diverged by the LED 14 can be efficiently used. Further, when the light receiving element is arranged at the focal position O, the parallel light rays from the detection area E side can be efficiently collected and made incident on the light receiving surface.

【0029】さて、上述したように、光路c,dのよう
な屈折レンズ部16の外側に入射する光に対して、ひと
つの反射体部19でカバーする構成の場合には、反射面
19aの受光領域を大きくする関係で、レンズ体20の
厚さ寸法D1が比較的大きくなる。
As described above, in the case of the structure in which the light incident on the outside of the refracting lens portion 16 such as the optical paths c and d is covered by one reflector portion 19, the reflecting surface 19a of the reflecting surface 19a is formed. The thickness dimension D1 of the lens body 20 is relatively large due to the large light receiving area.

【0030】そこで、本実施例におけるレンズ体15
は、上述の構成を改善したもので、反射体部19に代え
て、2つの反射体部17,18を設ける構成としている
ものである。
Therefore, the lens body 15 in the present embodiment.
Is an improvement of the above-described configuration, and is configured such that two reflector portions 17 and 18 are provided instead of the reflector portion 19.

【0031】即ち、図5において、焦点位置Oに配置さ
れたLED14からの光のうち、例えば、光軸Kに沿っ
た光路aを通る光や光路bを通る光は、上述同様に屈折
レンズ部16を介して光軸Kに平行な光線として検出エ
リアE側に放出される。
That is, in FIG. 5, of the light from the LED 14 arranged at the focal position O, for example, the light passing through the optical path a along the optical axis K and the light passing through the optical path b are the same as those described above in the refraction lens section. It is emitted to the detection area E side as a light beam parallel to the optical axis K via 16.

【0032】次に、光路cを通る光は、屈折しないで面
部17bから反射体部17内に直進するように入射し、
反射面17aで全反射されることにより光軸Kと平行な
光線として検出エリアE側に放出される。そして、光路
dを通る光は、面部18bに屈折しないで反射体部18
内に直進するように入射し、反射面18aで全反射して
光軸Kに平行な光線として検出エリアE側に放出され
る。
Next, the light passing through the optical path c is not refracted but is incident straight from the surface portion 17b into the reflector portion 17,
By being totally reflected by the reflecting surface 17a, it is emitted to the detection area E side as a light beam parallel to the optical axis K. Then, the light passing through the optical path d is not refracted by the surface portion 18b but is reflected by the reflector portion 18
The light enters the inside so as to go straight, is totally reflected by the reflecting surface 18a, and is emitted to the detection area E side as a light beam parallel to the optical axis K.

【0033】これにより、焦点位置OからのLED14
の光は、光軸Kに対して90°近い範囲の角度の光まで
平行光線として検出エリアE側に放出されることにな
り、LED14が発散する光を効率良く利用することが
でき、また焦点位置Oに受光素子を配置した場合にはそ
の受光面に効率良く集光することができる。
As a result, the LED 14 from the focus position O
Light is emitted to the detection area E side as parallel rays up to a light having an angle in the range of about 90 ° with respect to the optical axis K, and the light diverged by the LED 14 can be efficiently used, and the light is focused. When the light receiving element is arranged at the position O, the light can be collected efficiently on the light receiving surface.

【0034】そして、この場合には、焦点位置Oからの
LED14の光で、光軸Kに対する放射角度が屈折レン
ズ部16への入射角度を超える光成分のうち放射角度が
小さい範囲の光成分を内側に配置している反射体部17
により平行光線に変換するので、レンズ体15の厚さ寸
法D2を小さくすることができるのである。
In this case, of the light from the LED 14 from the focal position O, the light component in the range where the emission angle is small among the light components whose emission angle with respect to the optical axis K exceeds the incident angle to the refraction lens portion 16 is selected. Reflector part 17 arranged inside
Since the light rays are converted into parallel light rays by, the thickness dimension D2 of the lens body 15 can be reduced.

【0035】このような本実施例によれば、次のような
効果が得られる。即ち、第1に、レンズ体15を屈折レ
ンズ部16および反射体部17,18により構成して、
焦点位置からの光に対して、屈折レンズ部16に入射す
る光成分を屈折により平行光線として放出し、光軸Kに
対する放射角度が大きい光成分を反射体部17,18に
より平行光線に変換するようにしたので、光軸Kに対す
る角度が略90°に渡る広い範囲の光を利用することが
できるようになり、小口径のレンズ体15を構成する場
合でも集光効率を向上させると共に検出距離をより長く
することができる。
According to this embodiment, the following effects can be obtained. That is, firstly, the lens body 15 is composed of the refractive lens portion 16 and the reflector portions 17 and 18, and
With respect to the light from the focus position, the light component incident on the refraction lens unit 16 is refracted and emitted as a parallel light beam, and the light components having a large emission angle with respect to the optical axis K are converted into parallel light beams by the reflectors 17 and 18. As a result, it becomes possible to utilize a wide range of light with an angle of about 90 ° with respect to the optical axis K, and even when the lens body 15 having a small diameter is constructed, the light collection efficiency is improved and the detection distance is increased. Can be longer.

【0036】第2に、反射体部17,18に入射する光
成分を、それぞれの反射面17a,18aにおいて全反
射させるようにしたので、レンズ体15の製作において
金属蒸着工程を不要とすることができ、従って、レンズ
体15を簡単且つ安価に製作できる。
Secondly, since the light components incident on the reflector portions 17 and 18 are totally reflected on the respective reflecting surfaces 17a and 18a, the metal vapor deposition step is not required in the production of the lens body 15. Therefore, the lens body 15 can be manufactured easily and inexpensively.

【0037】第3に、2つの反射体部17,18を設け
る構成としたので、レンズ体15の厚さ寸法D2をさら
に小さくすることができ、投光器12或は受光機13の
小形化を図り得る。
Thirdly, since the two reflector portions 17 and 18 are provided, the thickness dimension D2 of the lens body 15 can be further reduced, and the projector 12 or the light receiver 13 can be downsized. obtain.

【0038】図9は本発明の第2の実施例を示すもの
で、以下、第1の実施例と異なる部分について説明す
る。即ち、レンズ体21は、屈折レンズ部22および反
射体部17,18から構成されるものである。この場
合、屈折レンズ部22は、焦点位置O側の面22aが曲
率の小さいレンズ面として形成され、反対側の面22b
が曲率の大きいレンズ面として形成されているものであ
る。
FIG. 9 shows a second embodiment of the present invention. Hereinafter, parts different from the first embodiment will be described. That is, the lens body 21 is composed of the refractive lens portion 22 and the reflector portions 17 and 18. In this case, in the refractive lens portion 22, the surface 22a on the focal position O side is formed as a lens surface having a small curvature, and the surface 22b on the opposite side is formed.
Is formed as a lens surface having a large curvature.

【0039】そして、このような本実施例によっても、
焦点位置Oからの光に対して各光路aないしdを通る光
成分は、図示のように平行光線として検出エリアE側に
放出され、また平行光線が検出エリアE側から入射され
ると上述の逆の光路を辿ることにより焦点位置Oに集光
されるので、第1の実施例と同様の効果が得られるよう
になる。
Also according to this embodiment,
The light component passing through each of the optical paths a to d with respect to the light from the focal position O is emitted as a parallel light beam to the detection area E side as shown in the figure, and when the parallel light beam is incident from the detection area E side, Since the light is focused at the focal position O by following the opposite optical path, the same effect as that of the first embodiment can be obtained.

【0040】図10は本発明の第3の実施例を示すもの
で、以下、これについて説明する。即ち、レンズ体23
は、LED14側に屈折レンズ部14aが既に形成され
たものに対応するもので、レンズ体23には、光軸Kを
中心とした屈折レンズ部が配置されるべき部分に筒状の
空洞部23aが形成されており、外壁面には、原理説明
で用いた図4に示す如くの反射面19aを有する反射体
部19が形成されている。
FIG. 10 shows a third embodiment of the present invention, which will be described below. That is, the lens body 23
Corresponds to the one in which the refraction lens portion 14a is already formed on the LED 14 side, and the lens body 23 has a cylindrical hollow portion 23a in the portion where the refraction lens portion with the optical axis K as the center is to be arranged. Is formed on the outer wall surface, and a reflector portion 19 having a reflection surface 19a as shown in FIG. 4 used in the explanation of the principle is formed.

【0041】このような構成によれば、焦点位置Oに配
置されたLED14からの光のうち、光路a或は光路b
を通る光は、屈折レンズ部14aにより屈折されて平行
光線として放出され、光路cあるいは光路dを通ってレ
ンズ体23の反射体部19に入射する光は、反射面19
aで全反射されて平行光線として検出エリアE側に放出
されるようになる。
According to this structure, of the light from the LED 14 arranged at the focal position O, the light path a or the light path b is included.
The light that passes through is refracted by the refracting lens portion 14a and is emitted as parallel rays, and the light that enters the reflector portion 19 of the lens body 23 through the optical path c or the optical path d is reflected by the reflecting surface 19
The light is totally reflected by a and is emitted to the detection area E side as a parallel light beam.

【0042】従って、第3の実施例においても、LED
14からの光を効率良く平行光線に変換できると共に、
既製のLED14を用いた場合でも、簡単且つ安価に製
作し得るレンズ体23をキャップのようにして取り付け
るだけで簡単に装着できるものである。この場合、より
効率良くするためには、LED14側の屈折レンズ部1
4aの屈折率とレンズ体23の屈折率は略同じ値となる
材質のものにより形成されていることが望ましい。
Therefore, also in the third embodiment, the LED
The light from 14 can be efficiently converted into parallel rays,
Even when the ready-made LED 14 is used, it can be easily mounted simply by mounting the lens body 23 that can be manufactured easily and inexpensively like a cap. In this case, in order to make it more efficient, the refractive lens unit 1 on the LED 14 side
It is preferable that the refractive index of 4a and the refractive index of the lens body 23 are made of a material having substantially the same value.

【0043】尚、上記各実施例においては、反射体部を
1つ或は2つ設ける構成としたが、これに限らず、3つ
以上設ける構成としても良い。
In each of the above embodiments, one or two reflectors are provided, but the present invention is not limited to this, and three or more reflectors may be provided.

【0044】また、上記各実施例においては、屈折レン
ズ部および反射体部の各焦点位置をLED14の配置位
置に一致させるように構成したが、これに限らず、例え
ば、LEDの出力部分がレンズ作用を持ち、光の放射角
度に応じて仮想的な焦点位置が異なる場合には、放射角
度に応じたそれぞれの焦点位置に合わせて屈折レンズ部
および反射体部を形成するようにすれば良い。
Further, in each of the above-mentioned embodiments, the focal positions of the refracting lens portion and the reflecting portion are made to coincide with the arrangement position of the LED 14, but the present invention is not limited to this, and for example, the output portion of the LED is the lens. In the case where the virtual focal position has a function and varies depending on the emission angle of light, the refraction lens portion and the reflector portion may be formed in accordance with the respective focal positions according to the emission angle.

【0045】そして、上記各実施例においては、焦点位
置Oを基準点としてLED14を配置してレンズ体1
5,20或は21により平行光線に変換して放出するよ
うにしたが、これに限らず、例えば、基準点を焦点位置
Oからずらすことにより、LED14からの光を、レン
ズ体15,20或は21を介して光軸に対する広がり角
度が15゜程度或はそれ以上の角度に拡散する光線に集
束して放出するようにしても良く、この場合にも、LE
D14からの光を効率良く集束して放出することができ
る。
In each of the above embodiments, the LED 14 is arranged with the focus position O as a reference point, and the lens body 1
The light is converted into parallel rays by 5, 20, or 21 and emitted, but the invention is not limited to this. For example, by shifting the reference point from the focus position O, the light from the LED 14 is made to pass through the lens body 15, 20, or 21. May be converged into a light beam which spreads through 21 and has a divergence angle of about 15 ° or more with respect to the optical axis, and in this case also, LE
The light from D14 can be efficiently focused and emitted.

【0046】さて、次に、本実施例におけるレンズ体1
5の設計手順について説明するに、(a)屈折レンズ部
の双曲面形状の設計,(b)反射体部の反射面形状の設
計,(c)臨界角の確認および(d)従来のレンズ体と
本実施例のレンズ体との集光効率の比較の4つの項目に
わけて述べる。
Now, next, the lens body 1 in the present embodiment.
5, the design of the hyperboloid shape of the refracting lens portion, (b) the design of the reflecting surface shape of the reflector portion, (c) confirmation of the critical angle, and (d) the conventional lens body will be described. And the four items of the comparison of the light collection efficiency of the lens body of the present embodiment.

【0047】(a)屈折レンズ部の双曲面形状の設計 例えば、LED14と屈折レンズ部16との間隔を1m
m程度とするため、焦点距離f=2(mm)とする。一
般に、レンズの曲面を光軸Kを通る断面の形状として表
わすと、図6に示すx−y座標系において次式(1)の
ように表わされる。但し、cは頂点曲率,kは円錐定数
とする。
(A) Design of hyperboloid shape of refraction lens part For example, the distance between the LED 14 and the refraction lens part 16 is 1 m.
Since the distance is about m, the focal length f = 2 (mm). Generally, when the curved surface of the lens is expressed as the shape of the cross section passing through the optical axis K, it is expressed by the following equation (1) in the xy coordinate system shown in FIG. However, c is a vertex curvature, and k is a conic constant.

【0048】[0048]

【数1】 また、図6に示した双曲面16aの頂点の曲率半径r,
頂点曲率cおよび円錐定数kは、屈折レンズ部16の屈
折率nおよび焦点距離fを用いるとそれぞれ次式
(2),(3)および(4)のように表わされる。
[Equation 1] Also, the radius of curvature r of the apex of the hyperboloid 16a shown in FIG.
The vertex curvature c and the conic constant k are expressed by the following equations (2), (3) and (4), respectively, using the refractive index n and the focal length f of the refractive lens unit 16.

【0049】[0049]

【数2】 ここで、屈折レンズ16の材質をアクリル(PMMA)
とすると、その屈折率n=1.485であり、また、焦
点距離f=2(mm)としているから、上述の式
(2),(3)および(4)により、 頂点の曲率半径 r=0.97(mm) …(5) 頂点曲率 c=1.031 …(6) 円錐定数 k=−2.205 …(7) として得られる。
[Equation 2] Here, the material of the refraction lens 16 is acrylic (PMMA)
Then, since the refractive index n = 1.485 and the focal length f = 2 (mm), the curvature radius r of the apex can be calculated from the above equations (2), (3) and (4). 0.97 (mm) (5) Vertex curvature c = 1.031 (6) Cone constant k = -2.205 (7)

【0050】(b)反射体部の反射面形状の設計 ここでは、放物面をなす反射面17a,18aのそれぞ
れ焦点を上述の屈折レンズ部16の双曲面16aの焦点
に一致させることにし、2つの反射面17a,18aの
光軸Kを通る断面の外形線のそれぞれが図6に示す点
A,Bを通ると仮定する。
(B) Design of Reflection Surface Shape of Reflector Section Here, the respective focal points of the parabolic reflection surfaces 17a and 18a are made to coincide with the focal points of the hyperboloid 16a of the refraction lens section 16 described above. It is assumed that the outlines of the cross sections passing through the optical axis K of the two reflecting surfaces 17a and 18a pass through points A and B shown in FIG.

【0051】1.点Aを通る反射面形状の設計 反射面17aの光軸Kを通る断面における放物線状の外
形線は、一般に、式(8)のように表わされるから、図
6の座標系を用いて表わすと式(9)のようになる。
1. Design of Reflecting Surface Shape Passing Point A Since the parabolic outline of the reflecting surface 17a in the section passing through the optical axis K is generally expressed by Expression (8), it can be expressed using the coordinate system of FIG. It becomes like Formula (9).

【0052】[0052]

【数3】 従って、いま、点Aの座標(x,y)を、 (x,y)=(1.5, 3.39) …(10) とすると、この座標値を式(9)に代入すれば、p1の
値は2次方程式の根として得られるから、その実根を求
めると、 p1=1.1035 …(11) となる。これにより、式(9)に上述のp1の値を代入
すれば、点Aを通る反射面17aの外形線は式(12)
のように表わされる。
[Equation 3] Therefore, assuming that the coordinates (x, y) of the point A are (x, y) = (1.5, 3.39) (10), by substituting these coordinate values into the equation (9), Since the value of p1 is obtained as the root of the quadratic equation, the real root is calculated as p1 = 1.1035 (11). Accordingly, by substituting the above-mentioned value of p1 into the equation (9), the outline of the reflecting surface 17a passing through the point A is given by the equation (12).
It is expressed as.

【0053】[0053]

【数4】 また、このとき、レンズの曲面を表わす式(1)によれ
ば、 円錐定数 k=−1 …(13) 頂点の曲率半径 r=2p=2.207 …(14) となる。
[Equation 4] Further, at this time, according to the equation (1) representing the curved surface of the lens, the conic constant k = −1 (13) and the radius of curvature of the apex r = 2p = 2.207 (14).

【0054】2.点Bを通る反射面形状の設計 上述と同様にして、点Bの座標(x,y)を、 (x,y)=(1, 6.2) …(15) とすると、この座標値を式(9)に代入すれば、p2の
値は、 p2=2.64006 …(16) となる。これにより、式(9)に上述のp2の値を代入
すれば、点Bを通る反射面18aの外形線は、式(1
7)のようになる。
2. Designing the shape of the reflecting surface passing through the point B In the same manner as described above, if the coordinates (x, y) of the point B are (x, y) = (1, 6.2) (15), this coordinate value is Substituting into equation (9), the value of p2 is p2 = 2.64006 (16). Accordingly, by substituting the above-mentioned value of p2 into the equation (9), the outline of the reflecting surface 18a passing through the point B is given by the equation (1
It becomes like 7).

【0055】[0055]

【数5】 また、このとき、レンズの曲面を表わす式(1)によれ
ば、 円錐定数 k=−1 …(18) 頂点の曲率半径 r=2p=5.28 …(19) となる。
[Equation 5] Further, at this time, according to the expression (1) expressing the curved surface of the lens, the conic constant k = −1 (18) and the radius of curvature of the apex r = 2p = 5.28 (19).

【0056】(c)臨界角の確認 光が内部を通過して反射面17a,18aで全反射をお
こす条件としての臨界角θの値は、一般的に式(20)
のように示される。
(C) Confirmation of critical angle The value of the critical angle θ as a condition under which light passes through the inside and causes total reflection on the reflecting surfaces 17a, 18a is generally expressed by the formula (20).
As shown.

【0057】[0057]

【数6】 これにより、前述したアクリルの屈折率n=1.485
を式(20)に代入して求めると、 臨界角 θ=42.33° …(21) となる。
[Equation 6] As a result, the above-mentioned acrylic refractive index n = 1.485.
By substituting in equation (20), the critical angle θ = 42.33 ° (21) is obtained.

【0058】次に、各反射面17a,18aにおける最
小の入射角は、図7に示すように、点Aおよび点Bにお
ける焦点Oに対する入射角θ1,θ2であるから、この
値を求める。入射角θ1は、点Aをとおるy軸方向に平
行な直線で分割した角度α1およびβ1の和(θ1=α
1+β1)として表わされる。
Next, since the minimum incident angles on the reflecting surfaces 17a and 18a are incident angles θ1 and θ2 with respect to the focal point O at the points A and B as shown in FIG. 7, these values are obtained. The incident angle θ1 is the sum of angles α1 and β1 divided by a straight line parallel to the y-axis direction passing through the point A (θ1 = α
1 + β1).

【0059】上述の角度α1は、反射面17aの点Aに
おける接線の傾きm1で示される角度に等しい。そこ
で、反射面を表わす式(9)から、yを求めてこれをx
で微分すると次式(22),(23)のようになる。
The above angle α1 is equal to the angle indicated by the slope m1 of the tangent line at the point A of the reflecting surface 17a. Then, y is calculated from the equation (9) representing the reflecting surface and is calculated as x
Differentiating by means of the following equations (22) and (23).

【0060】[0060]

【数7】 上述の式(23)に、先に求めたp1の値(p1=1.
1035)およびx座標の値(x=1.5)を代入する
と、 m1=0.65104 となり、これから角度α1を求めると、式(24),
(25)のように求めることができる。
[Equation 7] In the above equation (23), the value of p1 previously obtained (p1 = 1.
1035) and the value of the x coordinate (x = 1.5), m1 = 0.65104 is obtained. From this, the angle α1 is calculated by the equation (24),
It can be obtained as in (25).

【0061】[0061]

【数8】 α1=33.05672° …(25) 一方、角度β1は、点Aの座標から求められるので、次
式(26),(27)のようにして求めることができ
る。
[Equation 8] α1 = 33.05672 ° (25) On the other hand, since the angle β1 is obtained from the coordinates of the point A, it can be obtained by the following equations (26) and (27).

【0062】[0062]

【数9】 β1=23.86833° …(27) 従って、点Aにおける入射角θ1は、 θ1=α1+β1 =56.934° …(28) となる。これにより、点Aにおける入射角θ1は、式
(21)で示した臨界角θ(=42.33°)よりも充
分大きいので、反射面17aに当たった光は全て全反射
することになる。
[Equation 9] β1 = 23.86833 ° (27) Therefore, the incident angle θ1 at the point A is θ1 = α1 + β1 = 56.934 ° (28). As a result, the incident angle θ1 at the point A is sufficiently larger than the critical angle θ (= 42.33 °) shown in the equation (21), so that all the light striking the reflecting surface 17a is totally reflected.

【0063】同様にして点Bにおける入射角θ2を求め
ると、 θ2=α2+β2 …(29) =40.41°+9.1623° =49.58° …(30) となって、やはり反射面18aに当たった光も全て全反
射することになる。
Similarly, the incident angle θ2 at the point B is calculated as follows: θ2 = α2 + β2 (29) = 40.41 ° + 9.1623 ° = 49.58 ° (30) All the light that hits will be totally reflected.

【0064】(d)従来のレンズ体と本実施例のレンズ
体との集光効率の比較 図11に示すように、従来のパラボラレンズ式のもの
(サンクス社製品名NA40)と、図1あるいは図8に
示した本実施例のものとの集光効率特性を求める。即
ち、従来のものにおいては、図11に示すように、焦点
Oに配置したLEDからレンズ体1を介して前方に有効
に放出される光の角度範囲は、光軸Kを基準として21
°から38°までの17°の範囲である。また、本実施
例のものにおいては、図8に示すように、有効に放出さ
れる光の角度範囲は、0°から35°までの35°と、
50°から80°までの30°の範囲となる。
(D) Comparison of light collecting efficiency between the conventional lens body and the lens body of the present embodiment. As shown in FIG. 11, a conventional parabola lens type lens (product name NA40 of Sunkus Co.) and FIG. The light collection efficiency characteristic with that of the present embodiment shown in FIG. 8 will be obtained. That is, in the conventional device, as shown in FIG. 11, the angular range of the light effectively emitted forward from the LED arranged at the focus O through the lens body 1 is 21 with respect to the optical axis K.
The range is 17 ° from ° to 38 °. Further, in the present embodiment, as shown in FIG. 8, the angle range of the light effectively emitted is 35 ° from 0 ° to 35 °,
The range is 30 ° from 50 ° to 80 °.

【0065】そこで、実際に焦点Oの位置にLED14
を配置した場合の値を求めてみる。発明者の検証によれ
ば、試算に用いたLED14の通電電流IF を100m
Aとし、そのLED14の放射光の指向特性を考慮して
計算すると、 従来品 … 0.8336mW(IF =100mA) 本実施例 … 3.35 mW(IF =100mA) という結果が得られ、これにより、本実施例のものにお
いては、従来品と比較して4.02倍つまり約4倍もの
集光効率差が得られたことになる。
Therefore, the LED 14 is actually placed at the position of the focus O.
I will try to find the value when I place. According to the inventor's verification, the conduction current IF of the LED 14 used in the trial calculation is 100 m
Assuming that the value is A and is calculated in consideration of the directional characteristics of the emitted light of the LED 14, the conventional product ... 0.8336 mW (IF = 100 mA) The present embodiment ... 3.35 mW (IF = 100 mA) is obtained. In the case of the present embodiment, a light-collecting efficiency difference of 4.02 times, that is, about 4 times that of the conventional product is obtained.

【0066】[0066]

【発明の効果】請求項1記載の光学装置によれば、基準
点からの光に対して、屈折レンズ部により、所定角度範
囲内の光成分を屈折により集束し、反射体部により、所
定角度範囲外の光成分を内部に導いて放物面状をなす反
射面で全反射させることにより集束するようにしたの
で、広い角度範囲の光を平行光線或は拡散する光に集束
できて全体の小口径化を図ると共に検出距離を長くする
ことができ、反射体部の反射面で全反射させる構成か
ら、蒸着等の加工が不要となって安価に製作できるとい
う優れた効果を奏する。
According to the optical device of the first aspect, with respect to the light from the reference point, the refraction lens unit refracts and focuses the light component within a predetermined angle range, and the reflector unit causes the light component to have a predetermined angle. Since the light component outside the range is guided to the inside and is totally reflected by the parabolic reflecting surface, the light in a wide angle range can be focused into parallel rays or diffused rays, and Since the diameter can be reduced and the detection distance can be lengthened, and the structure in which the reflection surface of the reflector portion is totally reflected, processing such as vapor deposition is not necessary, and the excellent effect that it can be manufactured at low cost is achieved.

【0067】請求項2記載の光学装置によれば、反射体
部を、基準点からの光に対して光軸を基準とした所定角
度範囲外の光成分を複数の角度範囲に分割してそのそれ
ぞれを集束する複数の反射面を一体に有する構成とした
ので、反射面の厚さ方向の寸法をひとつの反射面で構成
する場合に比べて小さくすることができ、従って、上述
の効果に加えてさらに全体の薄形化が図れるという優れ
た効果を奏する。
According to the optical device of the second aspect, in the reflector portion, the light component outside the predetermined angle range with respect to the light from the reference point outside the predetermined angle range is divided into a plurality of angle ranges. Since it is configured to integrally have a plurality of reflecting surfaces for converging each, it is possible to reduce the dimension in the thickness direction of the reflecting surface as compared with the case where it is configured by one reflecting surface. Therefore, in addition to the above effect This has the excellent effect that the overall thickness can be further reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すレンズ体の縦断側
面図
FIG. 1 is a vertical sectional side view of a lens body showing a first embodiment of the present invention.

【図2】レンズ体の側面図および正面図FIG. 2 is a side view and a front view of a lens body.

【図3】エリアセンサの概略的な構成図FIG. 3 is a schematic configuration diagram of an area sensor.

【図4】レンズ体の原理説明図その1FIG. 4 is an explanatory view of the principle of the lens body, part 1

【図5】レンズ体の原理説明図その2FIG. 5 is an explanatory view of the principle of the lens body, part 2

【図6】レンズ体の設計手順における説明図FIG. 6 is an explanatory diagram of a lens body design procedure.

【図7】レンズ体の設計手順における説明図FIG. 7 is an explanatory diagram of a lens body design procedure.

【図8】レンズ体の効率比較用の説明図FIG. 8 is an explanatory diagram for comparing efficiency of lens bodies.

【図9】本発明の第2の実施例を示す図1相当図FIG. 9 is a view corresponding to FIG. 1 showing a second embodiment of the present invention.

【図10】本発明の第3の実施例を示す図1相当図FIG. 10 is a view corresponding to FIG. 1 showing a third embodiment of the present invention.

【図11】従来例の凸レンズの効率比較用の説明図FIG. 11 is an explanatory diagram for efficiency comparison of a convex lens of a conventional example.

【図12】従来例の不具合を説明する図FIG. 12 is a diagram illustrating a defect of a conventional example.

【図13】図12相当図FIG. 13 is a view corresponding to FIG.

【符号の説明】[Explanation of symbols]

11はエリアセンサ、12は投光器、13は受光器、1
4はLED、15,20,21はレンズ体、14a,1
6,22は屈折レンズ部、16aは双曲面、17,1
8,19は反射体部、17a,18a,19aは反射面
である。
11 is an area sensor, 12 is a light emitter, 13 is a light receiver, 1
4 is an LED, 15, 20, 21 are lens bodies, 14a, 1
6, 22 are refraction lens parts, 16a are hyperboloids, 17, 1
Reference numerals 8 and 19 are reflector portions, and 17a, 18a and 19a are reflection surfaces.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基準点からの光に対して光軸を基準とし
た所定角度範囲内の光成分を屈折により集束する屈折レ
ンズ部と、前記基準点からの光のうち前記所定角度範囲
外の光成分を内部に導いて放物面状をなす反射面で全反
射させることにより集束する反射体部とを具備したこと
を特徴とする光学装置。
1. A refracting lens unit for converging a light component within a predetermined angle range with respect to the light from a reference point within a predetermined angle range by refraction, and a light from the reference point outside the predetermined angle range. An optical device comprising: a reflector portion that guides a light component inside and totally reflects the light component on a parabolic reflection surface to focus the light component.
【請求項2】 反射体部は、基準点からの光に対して光
軸を基準とした所定角度範囲外の光成分を複数の角度範
囲に分割してそのそれぞれを集束する複数の反射面を一
体に有することを特徴とする請求項1記載の光学装置。
2. The reflector portion has a plurality of reflecting surfaces that divide a light component outside a predetermined angle range with respect to the optical axis with respect to light from a reference point into a plurality of angle ranges and focus each of them. The optical device according to claim 1, wherein the optical device is integrally formed.
JP4077197A 1992-03-31 1992-03-31 Optical device Pending JPH05281402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077197A JPH05281402A (en) 1992-03-31 1992-03-31 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077197A JPH05281402A (en) 1992-03-31 1992-03-31 Optical device

Publications (1)

Publication Number Publication Date
JPH05281402A true JPH05281402A (en) 1993-10-29

Family

ID=13627102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077197A Pending JPH05281402A (en) 1992-03-31 1992-03-31 Optical device

Country Status (1)

Country Link
JP (1) JPH05281402A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337206A (en) * 2000-05-26 2001-12-07 Toppan Printing Co Ltd Fresnel lens
DE10051464A1 (en) * 2000-10-17 2002-05-16 Osram Opto Semiconductors Gmbh fresnel lens
JP2005268166A (en) * 2004-03-22 2005-09-29 Okaya Electric Ind Co Ltd Display lamp
EP1688788A1 (en) * 2005-02-02 2006-08-09 Seiko Epson Corporation Screen and image display apparatus
WO2008090574A1 (en) 2007-01-26 2008-07-31 Sic Divisione Elettronica S.R.L. Lens for a light emitting diode and manufacturing method therefor
EP2056018A1 (en) * 2007-10-31 2009-05-06 Foxsemicon Integrated Technology, Inc. Lamp cover and illumination lamp having the same
EP2110689A1 (en) * 2008-04-18 2009-10-21 Taiwan Network Computer & Electronic Co., Ltd. Light distribution board having improved grating structure including a plurality of light gratings each with multiple focuses
JP2010152282A (en) * 2008-12-26 2010-07-08 Mitsubishi Electric Corp Lens, light source device, and illumination device
DE102010028755A1 (en) 2009-05-09 2011-01-05 Citizen Electronics Co., Ltd., Fujiyoshida Lens member and optical unit using the lens member
JP2011027928A (en) * 2009-07-23 2011-02-10 Stanley Electric Co Ltd Shape calculation method of lens for lighting, lens for lighting, and lighting system
DE102009041613A1 (en) * 2009-09-17 2011-04-07 R. Stahl Schaltgeräte GmbH Lighting system, has rib sections comprising radially outside boundary surface and radially inside boundary surface, and LED arranged on side, where light from LED is accessed at side by inside boundary surface
DE10297286B4 (en) * 2001-10-16 2011-06-30 Teledyne Lighting and Display Products, Inc., Calif. Flexible lighting segment
DE102011002483A1 (en) 2010-01-10 2011-07-28 Citizen Electronics Co., Ltd., Yamanashi-ken Lens element and optical unit comprising the lens element
JP2011525288A (en) * 2008-06-13 2011-09-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Orientable lens for LED fixtures
JP2011192494A (en) * 2010-03-15 2011-09-29 Stanley Electric Co Ltd Lighting system and fresnel lens
JP2012004095A (en) * 2010-05-18 2012-01-05 Enplas Corp Luminous flux control member, light emitting device, and lighting device
JP2012028010A (en) * 2010-07-20 2012-02-09 Stanley Electric Co Ltd Lamp fitting for vehicle
DE102011017614A1 (en) 2010-04-27 2012-03-01 Citizen Electronics Co., Ltd. Lens element and optical unit, which uses the lens element
JP2012063736A (en) * 2010-08-20 2012-03-29 Enplas Corp Luminous flux control member and optical device having the same
DE102011083586A1 (en) 2010-09-29 2012-04-19 Citizen Electronics Co., Ltd. Lens element and optical unit using this
CN102818169A (en) * 2011-06-09 2012-12-12 海洋王照明科技股份有限公司 Light source structure and taxiway side light utilizing same
WO2013024836A1 (en) 2011-08-12 2013-02-21 シチズン電子株式会社 Lens member and light-emitting device using same
EP2565696A1 (en) * 2011-09-02 2013-03-06 Samsung Electronics Co., Ltd. Condensing lens and lighting device equipped with said condensing lens
CN105423191A (en) * 2015-12-31 2016-03-23 杭州上达光电科技有限公司 Lamp
JP2016528584A (en) * 2013-06-04 2016-09-15 ネオノード インコーポレイテッド Light touch screen
WO2016149900A1 (en) * 2015-03-24 2016-09-29 Hong Xu An optical lens and a spotlight including the same
JP2016224394A (en) * 2015-05-29 2016-12-28 日亜化学工業株式会社 Light source device
CN106594674A (en) * 2016-10-26 2017-04-26 佛山市中山大学研究院 Collimating lens based on point light source
CN106678736A (en) * 2015-12-30 2017-05-17 佛山市中山大学研究院 Tooth-shaped lens structure
JP2017147025A (en) * 2016-02-15 2017-08-24 ウシオ電機株式会社 Light source unit
CN107533157A (en) * 2015-04-02 2018-01-02 飞利浦照明控股有限公司 Light-beam forming unit and the spotlight using light-beam forming unit
WO2018207380A1 (en) * 2017-05-11 2018-11-15 Scivax株式会社 Optical element and optical system device
WO2018207501A1 (en) 2017-05-11 2018-11-15 Scivax株式会社 Optical element and optical system device
CN109690173A (en) * 2016-09-12 2019-04-26 西铁城时计株式会社 Light emitting device
WO2020253526A1 (en) * 2019-06-19 2020-12-24 苏州欧普照明有限公司 Lens and lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755002A (en) * 1980-09-18 1982-04-01 Ichikoh Industries Ltd Lens for lamp
JPS62276502A (en) * 1986-05-26 1987-12-01 Matsushita Electric Works Ltd Fresnel lens
JPH0216898A (en) * 1988-07-04 1990-01-19 Nippon Telegr & Teleph Corp <Ntt> Distributed multiple line concentrated speech path

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755002A (en) * 1980-09-18 1982-04-01 Ichikoh Industries Ltd Lens for lamp
JPS62276502A (en) * 1986-05-26 1987-12-01 Matsushita Electric Works Ltd Fresnel lens
JPH0216898A (en) * 1988-07-04 1990-01-19 Nippon Telegr & Teleph Corp <Ntt> Distributed multiple line concentrated speech path

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337206A (en) * 2000-05-26 2001-12-07 Toppan Printing Co Ltd Fresnel lens
DE10051464A1 (en) * 2000-10-17 2002-05-16 Osram Opto Semiconductors Gmbh fresnel lens
US6940660B2 (en) 2000-10-17 2005-09-06 Osram Gmbh Optical device
DE10051464B4 (en) * 2000-10-17 2011-08-11 OSRAM Opto Semiconductors GmbH, 93055 fresnel lens
DE10297286B4 (en) * 2001-10-16 2011-06-30 Teledyne Lighting and Display Products, Inc., Calif. Flexible lighting segment
JP2005268166A (en) * 2004-03-22 2005-09-29 Okaya Electric Ind Co Ltd Display lamp
EP1688788A1 (en) * 2005-02-02 2006-08-09 Seiko Epson Corporation Screen and image display apparatus
US7538943B2 (en) 2005-02-02 2009-05-26 Seiko Epson Corporation Screen and image display apparatus
WO2008090574A1 (en) 2007-01-26 2008-07-31 Sic Divisione Elettronica S.R.L. Lens for a light emitting diode and manufacturing method therefor
EP2056018A1 (en) * 2007-10-31 2009-05-06 Foxsemicon Integrated Technology, Inc. Lamp cover and illumination lamp having the same
US7753564B2 (en) 2007-10-31 2010-07-13 Foxsemicon Integrated Technology, Inc. Lampshade and illumination lamp having the same
EP2110689A1 (en) * 2008-04-18 2009-10-21 Taiwan Network Computer & Electronic Co., Ltd. Light distribution board having improved grating structure including a plurality of light gratings each with multiple focuses
JP2011525288A (en) * 2008-06-13 2011-09-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Orientable lens for LED fixtures
JP2010152282A (en) * 2008-12-26 2010-07-08 Mitsubishi Electric Corp Lens, light source device, and illumination device
DE102010028755B4 (en) 2009-05-09 2023-02-23 Citizen Electronics Co., Ltd. Lens element and optical unit using the lens element
US8220975B2 (en) 2009-05-09 2012-07-17 Citizen Electronics Co., Ltd. Lens member and optical unit using said lens member
DE102010028755A1 (en) 2009-05-09 2011-01-05 Citizen Electronics Co., Ltd., Fujiyoshida Lens member and optical unit using the lens member
JP2011027928A (en) * 2009-07-23 2011-02-10 Stanley Electric Co Ltd Shape calculation method of lens for lighting, lens for lighting, and lighting system
DE102009041613A1 (en) * 2009-09-17 2011-04-07 R. Stahl Schaltgeräte GmbH Lighting system, has rib sections comprising radially outside boundary surface and radially inside boundary surface, and LED arranged on side, where light from LED is accessed at side by inside boundary surface
DE102011002483A1 (en) 2010-01-10 2011-07-28 Citizen Electronics Co., Ltd., Yamanashi-ken Lens element and optical unit comprising the lens element
US8517571B2 (en) 2010-01-10 2013-08-27 Citizen Electronics Co., Ltd. Lens member and optical unit including the same
JP2011192494A (en) * 2010-03-15 2011-09-29 Stanley Electric Co Ltd Lighting system and fresnel lens
DE102011017614A1 (en) 2010-04-27 2012-03-01 Citizen Electronics Co., Ltd. Lens element and optical unit, which uses the lens element
US8475011B2 (en) 2010-04-27 2013-07-02 Citizen Electronics Co., Ltd. Lens member and optical unit using said lens member
JP2012004095A (en) * 2010-05-18 2012-01-05 Enplas Corp Luminous flux control member, light emitting device, and lighting device
JP2012028010A (en) * 2010-07-20 2012-02-09 Stanley Electric Co Ltd Lamp fitting for vehicle
JP2012063736A (en) * 2010-08-20 2012-03-29 Enplas Corp Luminous flux control member and optical device having the same
DE102011083586A1 (en) 2010-09-29 2012-04-19 Citizen Electronics Co., Ltd. Lens element and optical unit using this
US8851713B2 (en) 2010-09-29 2014-10-07 Citizen Electronics Co., Ltd. Lens member and optical unit using said lens member
CN102818169A (en) * 2011-06-09 2012-12-12 海洋王照明科技股份有限公司 Light source structure and taxiway side light utilizing same
WO2013024836A1 (en) 2011-08-12 2013-02-21 シチズン電子株式会社 Lens member and light-emitting device using same
US10024517B2 (en) 2011-08-12 2018-07-17 Citizen Electronics Co., Ltd. Lens member and light-emitting device using same
CN102980134A (en) * 2011-09-02 2013-03-20 三星Led株式会社 Condensing lens and lighting device equipped with said condensing lens
EP2565696A1 (en) * 2011-09-02 2013-03-06 Samsung Electronics Co., Ltd. Condensing lens and lighting device equipped with said condensing lens
JP2013054342A (en) * 2011-09-02 2013-03-21 Samsung Electronics Co Ltd Condensing lens and lighting device equipped with the condensing lens
US8879170B2 (en) 2011-09-02 2014-11-04 Samsung Electronics., Ltd. Condensing lens and lighting device equipped with said condensing lens
JP2016528584A (en) * 2013-06-04 2016-09-15 ネオノード インコーポレイテッド Light touch screen
WO2016149900A1 (en) * 2015-03-24 2016-09-29 Hong Xu An optical lens and a spotlight including the same
CN107533157B (en) * 2015-04-02 2019-10-08 飞利浦照明控股有限公司 Light-beam forming unit and the spotlight for using light-beam forming unit
CN107533157A (en) * 2015-04-02 2018-01-02 飞利浦照明控股有限公司 Light-beam forming unit and the spotlight using light-beam forming unit
JP2016224394A (en) * 2015-05-29 2016-12-28 日亜化学工業株式会社 Light source device
CN106678736A (en) * 2015-12-30 2017-05-17 佛山市中山大学研究院 Tooth-shaped lens structure
CN105423191A (en) * 2015-12-31 2016-03-23 杭州上达光电科技有限公司 Lamp
JP2017147025A (en) * 2016-02-15 2017-08-24 ウシオ電機株式会社 Light source unit
CN109690173B (en) * 2016-09-12 2020-07-28 西铁城时计株式会社 Light emitting device
CN109690173A (en) * 2016-09-12 2019-04-26 西铁城时计株式会社 Light emitting device
US10585308B2 (en) 2016-09-12 2020-03-10 Citizen Watch Co., Ltd. Light-emitting device
CN106594674A (en) * 2016-10-26 2017-04-26 佛山市中山大学研究院 Collimating lens based on point light source
WO2018207765A1 (en) * 2017-05-11 2018-11-15 Scivax株式会社 Optical element and optical system device
CN109247028A (en) * 2017-05-11 2019-01-18 Scivax株式会社 Optical element and optical system device
WO2018207501A1 (en) 2017-05-11 2018-11-15 Scivax株式会社 Optical element and optical system device
KR20200005416A (en) 2017-05-11 2020-01-15 에스씨아이브이에이엑스 가부시키가이샤 Optical element and optical system device
WO2018207380A1 (en) * 2017-05-11 2018-11-15 Scivax株式会社 Optical element and optical system device
US10823371B2 (en) 2017-05-11 2020-11-03 Scivax Corporation Optical device and optical system apparatus
EP3623852A4 (en) * 2017-05-11 2020-12-30 Scivax Corporation Optical element and optical system device
WO2020253526A1 (en) * 2019-06-19 2020-12-24 苏州欧普照明有限公司 Lens and lamp
US11774062B2 (en) 2019-06-19 2023-10-03 Suzhou Opple Lighting Co., Ltd. Lens with total reflective incident surface and lighting fixture

Similar Documents

Publication Publication Date Title
JPH05281402A (en) Optical device
US4770514A (en) Collimating compound catoptric immersion lens
TW515913B (en) One-piece lens arrays for collimating and focusing light and LED light generators using same
KR101173319B1 (en) Side reflector for illumination using light emitting diode
EP2959214B1 (en) An arrangement comprising an optical device and a reflector
JP3370612B2 (en) Light intensity conversion element, collimating lens, objective lens, and optical device
JP2593430B2 (en) Illumination optical system for endoscope
IL106092A (en) Illumination system having an aspherical lens and a method of manufacturing such a system
JP4195292B2 (en) Imaging system using catadioptric system and catadioptric system
US20060239020A1 (en) Lighting module giving a light beam with cut-off line for a motor vehicle headlight, and a headlight comprising such a module
EP3278012B1 (en) Optical beam shaping device and spot light using the same
US20070014035A1 (en) Compact non-imaging light collector
JP6490432B2 (en) Lighting device
US7333083B1 (en) Optical based performance improvement for an optical illumination configuration
JP5470784B2 (en) Light receiving device and sensor device
JP2004531757A (en) Apparatus for converting a light beam emitted from a laser light source into parallel light, and a light beam conversion apparatus for the apparatus
CN107490816B (en) Fully-reflected type Fresnel Lenses
JP3423420B2 (en) Point condensing lens and solar condensing device using the same
JP2652092B2 (en) Lighting equipment
CN215341039U (en) Optical system for realizing light curtain
CN115712109A (en) Laser radar&#39;s printing opacity shell and laser radar
CN115656967A (en) Laser radar&#39;s printing opacity shell and laser radar
JP2531890Y2 (en) Optical sensor
JP3770488B2 (en) Point condensing lens and solar condensing device using the same
CN117111315A (en) Integrated laser shaping device