JPH0528131U - Automatic transmission power control circuit - Google Patents

Automatic transmission power control circuit

Info

Publication number
JPH0528131U
JPH0528131U JP8371191U JP8371191U JPH0528131U JP H0528131 U JPH0528131 U JP H0528131U JP 8371191 U JP8371191 U JP 8371191U JP 8371191 U JP8371191 U JP 8371191U JP H0528131 U JPH0528131 U JP H0528131U
Authority
JP
Japan
Prior art keywords
transmission
output
voltage
signal
power amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8371191U
Other languages
Japanese (ja)
Inventor
中村  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP8371191U priority Critical patent/JPH0528131U/en
Publication of JPH0528131U publication Critical patent/JPH0528131U/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmitters (AREA)

Abstract

(57)【要約】 【目的】 送信オン信号によって送信搬送波が振幅変調
され電力増幅された送信出力から得られる利得制御電圧
によって送信出力が一定に保たれる自動送信電力制御回
路の立上り過渡応答を改善する。 【構成】 電力増幅器4の送信出力を検波した後ローパ
スフィルタ7から得られる直流電圧bと、送信オン信号
aによって基準電圧発生器8からの基準電圧を微分回路
10で微分して直流電圧bの逆の特性を有する電圧cと
を加算器11で加算した電圧を利得制御電圧dとして電
力増幅器4に与えて、送信オンと同時に安定した送信出
力eが得られるように構成した。
(57) [Abstract] [Purpose] A rising transient response of an automatic transmission power control circuit in which the transmission output is kept constant by a gain control voltage obtained from the transmission output in which the transmission carrier is amplitude-modulated by the transmission ON signal and power amplified. Improve. A DC voltage b obtained from a low pass filter 7 after detecting a transmission output of a power amplifier 4 and a reference voltage from a reference voltage generator 8 by a transmission ON signal a are differentiated by a differentiating circuit 10 to obtain a DC voltage b. The voltage obtained by adding the voltage c having the opposite characteristic by the adder 11 is supplied to the power amplifier 4 as the gain control voltage d so that the stable transmission output e can be obtained at the same time as the transmission is turned on.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、送信機の自動送信電力制御回路(APC)回路に関し、送信開始時 の過渡応答の改善に関するものである。 The present invention relates to an automatic transmission power control circuit (APC) circuit of a transmitter, and relates to improvement of transient response at the start of transmission.

【0002】[0002]

【従来の技術】[Prior Art]

低電力段変調方式の振幅変調(AM)用送信機の一般的な自動送信電力制御回 路の構成例を図3に示す。図において、シンセサイザ等の発振器(OSC)1で 発生された搬送波はスイッチ(SW)2に入力され、送信オン信号(この信号に より送信機は待ち受け状態から送信状態になる)により導通状態になる。 FIG. 3 shows an example of the configuration of a general automatic transmission power control circuit of a low power stage modulation type amplitude modulation (AM) transmitter. In the figure, a carrier wave generated by an oscillator (OSC) 1 of a synthesizer or the like is input to a switch (SW) 2 and is turned on by a transmission on signal (this signal causes a transmitter to change from a standby state to a transmission state). .

【0003】 このスイッチ2により送信のオン,オフを制御する。スイッチ2の出力は変調 器3に入力され、変調信号により変調される。変調器3からの変調をかけられた 搬送波は電力増幅器4に入力され、所定の電力まで増幅され出力される。The switch 2 controls transmission on / off. The output of the switch 2 is input to the modulator 3 and is modulated by the modulation signal. The modulated carrier wave from the modulator 3 is input to the power amplifier 4, amplified to a predetermined power, and output.

【0004】 この電力増幅器は可変利得増幅器であり、ローパスフィルタ(LPF)7の出 力であるAPC制御電圧により利得が制御される。これは、温度,周波数,電力 増幅器自身の利得の差(固体差)による利得の変動を補償し、一定の送信出力を 得るためのものである。This power amplifier is a variable gain amplifier, and the gain is controlled by the APC control voltage which is the output of the low pass filter (LPF) 7. This is to obtain a constant transmission output by compensating for gain variations due to differences in temperature, frequency, and gain of the power amplifier itself (individual difference).

【0005】 電力増幅器4の出力は、方向性結合器(DC)5を通過し送信出力となる。方 向性結合器5では、送信出力の一部を取り出し検波器6へ出力する。The output of the power amplifier 4 passes through the directional coupler (DC) 5 and becomes a transmission output. The directional coupler 5 extracts a part of the transmission output and outputs it to the detector 6.

【0006】 検波器6からは送信出力に比例した電圧が出力されるが、送信出力はAM変調 されているため、その出力は変調信号の包絡線成分が現れる。このため、LPF 7により包絡線の変調成分を除去し、平均電力に比例する利得制御電圧を発生さ せている。この利得制御電圧により電力増幅器4の利得を制御し、送信出力を一 定に保っている。図4はこのような従来の自動送信電力制御回路を使用した時の 送信出力波形の過渡応答を示す各部波形図である。なお図4は説明を分かり易く するため変調成分を省略してある。図4において、aは送信オン信号であり、A 点で送信機を送信状態にしている。bは送信出力の波形である。A点で送信が開 始されスイッチ2がオンすると、送信出力は、その電力増幅器4の最大出力Cが 出力される。これは送信開始直後のA点では波形cに示すように、LPF7から の出力がなく、更にLPF7の時定数により電圧の出力が遅れて立上がるためで ある。The detector 6 outputs a voltage proportional to the transmission output, but since the transmission output is AM-modulated, an envelope component of the modulation signal appears in the output. Therefore, the LPF 7 removes the modulation component of the envelope and generates a gain control voltage proportional to the average power. The gain control voltage controls the gain of the power amplifier 4 to keep the transmission output constant. FIG. 4 is a waveform diagram of each part showing a transient response of a transmission output waveform when such a conventional automatic transmission power control circuit is used. The modulation component is omitted in FIG. 4 for the sake of clarity. In FIG. 4, a is a transmission ON signal, and the transmitter is in the transmission state at point A. b is the waveform of the transmission output. When the transmission is started at the point A and the switch 2 is turned on, the transmission output is the maximum output C of the power amplifier 4. This is because there is no output from the LPF 7 at point A immediately after the start of transmission, as shown by the waveform c, and the voltage output rises with a delay due to the time constant of the LPF 7.

【0007】 従って、送信開始後は電力増幅器4に対して利得最大となる制御電圧(低い電 圧)が発生しているため、電力増幅器4は利得最大の状態となる。その後はLP F7の時定数にほぼ等しい時間(AからBまでの時間)以上経過後に規定出力D となる。Therefore, since the control voltage (low voltage) that maximizes the gain is generated in the power amplifier 4 after the start of transmission, the power amplifier 4 is in the maximum gain state. After that, the specified output D is obtained after a lapse of time (time from A to B) substantially equal to the time constant of the LP F7.

【0008】[0008]

【考案が解決しようとする課題】[Problems to be solved by the device]

このため、過渡的に出力が過大となり、また変調成分にも歪を生じることにな り、送信開始直後の通信が正常に行われなくなる。 本考案の目的は、送信開始直後に過渡的に発生する送信機の出力の過大及び変 調の歪をなくし、送信開始直後から安定した送信出力を得ることができる振幅変 調用送信機の自動送信電力制御回路を提供することにある。 For this reason, the output becomes transiently excessive, and the modulation component is also distorted, so that communication immediately after the start of transmission cannot be performed normally. The object of the present invention is to eliminate the excessive output and distortion distortion of the transmitter transiently generated immediately after the start of transmission, and to obtain a stable transmission output immediately after the start of transmission. It is to provide a power control circuit.

【0009】[0009]

【課題を解決するための本考案の手段】[Means of the Invention for Solving the Problems]

本考案の自動送信電力制御回路は、送信オン信号により送信搬送波が振幅変調 され電力増幅器によって送信出力が送出されるとともに、該送信出力の一部を検 出しローパスフィルタによって得られる送信平均電力に比例する電圧を利得制御 電圧として前記電力増幅器に与えて送信出力を一定に保つように構成された自動 送信電力制御回路において、 前記送信オン信号により所定の基準電圧を入力し前記ローパスフィルタの出力 立上り特性と逆の特性となるような電圧波形を出力する微分回路と、 該微分回路の出力と前記ローパスフィルタの出力とを加算して前記電力増幅器 に与える前記利得制御電圧を出力する加算器と を備えて、送信オン信号が印加された直後から所望の送信出力が得られるよう に構成したことを特徴とするものである。 In the automatic transmission power control circuit of the present invention, the transmission carrier is amplitude-modulated by the transmission ON signal, the transmission output is sent out by the power amplifier, and a part of the transmission output is detected and proportional to the transmission average power obtained by the low-pass filter. In the automatic transmission power control circuit configured to apply a voltage to the power amplifier as a gain control voltage to keep the transmission output constant, an output rising characteristic of the low-pass filter is input by inputting a predetermined reference voltage by the transmission ON signal. A differentiating circuit that outputs a voltage waveform having a characteristic opposite to that of the above, and an adder that adds the output of the differentiating circuit and the output of the low-pass filter and outputs the gain control voltage given to the power amplifier. The configuration is such that the desired transmission output is obtained immediately after the transmission ON signal is applied. It

【0010】[0010]

【実施例】【Example】

図1は本考案の実施例を示す回路構成図である。図1において、1〜7の回路 は図3の従来の場合と同様である。図2は送信オン信号による送信開始から送信 出力が安定するまでの過渡応答を示す各部電圧波形図である。図2も説明を分か り易くするため変調成分を省略してある。図2において、送信オン信号aにより A点から送信が開始されるとLPF7の出力はその時定数によりbに示すような 電圧波形を示す。 ここでLPF7の立上り電圧波形と逆の電圧波形を発生させる微分回路10の 出力とLPF7の出力とを加算器11により加算する。 FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention. In FIG. 1, the circuits 1 to 7 are the same as in the conventional case of FIG. FIG. 2 is a voltage waveform diagram of each part showing a transient response from the start of transmission by the transmission ON signal to the stabilization of the transmission output. Also in FIG. 2, the modulation component is omitted for the sake of clarity. In FIG. 2, when transmission is started from the point A by the transmission on signal a, the output of the LPF 7 shows a voltage waveform as shown by b due to its time constant. Here, the adder 11 adds the output of the differentiating circuit 10 for generating a voltage waveform opposite to the rising voltage waveform of the LPF 7 and the output of the LPF 7.

【0011】 加算器11の出力波形を図2のdに示す。微分回路10の出力の初期電圧は基 準電圧発生器8からの基準電圧により得る。また、トリガはスイッチ(SW)9 を送信オン信号により閉じることにより得る。 基準電圧の設定は送信機が規定出力を出しているときの利得制御電圧(加算器 11の出力)に合わせる。この基準電圧とLPF7の時定数以上の十分な時間が 経過した後の加算器11の出力とに誤差がある場合は、例えば基準電圧が高い場 合は図2の破線のような波形となる。しかし、従来に比べてその変動は小さくな る。The output waveform of the adder 11 is shown in FIG. The initial voltage of the output of the differentiating circuit 10 is obtained by the reference voltage from the reference voltage generator 8. The trigger is obtained by closing the switch (SW) 9 with a transmission ON signal. The setting of the reference voltage is adjusted to the gain control voltage (output of the adder 11) when the transmitter is producing the specified output. When there is an error between this reference voltage and the output of the adder 11 after a sufficient time equal to or longer than the time constant of the LPF 7, for example, when the reference voltage is high, the waveform becomes as shown by the broken line in FIG. However, the fluctuation is smaller than before.

【0012】 さらに、基準電圧の誤差は、周波数特性に対応する電圧発生回路や温度に比例 する電圧を発生させる補正回路を付加しその出力を基準電圧出力に加算すること により極めて小さくすることができる。 以上により図2のeに示すように、送信開始直後から所望の安定した送信出力 波形を得ることができる。Further, the error of the reference voltage can be made extremely small by adding a voltage generating circuit corresponding to the frequency characteristic and a correction circuit generating a voltage proportional to temperature and adding the output to the reference voltage output. . As described above, as shown in e of FIG. 2, a desired stable transmission output waveform can be obtained immediately after the start of transmission.

【0013】[0013]

【考案の効果】[Effect of the device]

本考案を実施することにより、送信立上りの過渡特性が改善され、送信機の立 上り時の変調波の欠落防止並びに歪率の改善、送信機の次段に接続される機器の 破壊防止などに大きい効果がある。 By implementing the present invention, the transient characteristics at the transmission start-up are improved, the modulation wave is prevented from being lost at the start-up of the transmitter, the distortion rate is improved, and the equipment connected to the next stage of the transmitter is prevented from being destroyed. It has a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1の各部波形図である。FIG. 2 is a waveform chart of each part of FIG.

【図3】従来の回路構成ブロック図である。FIG. 3 is a block diagram of a conventional circuit configuration.

【図4】図3の各部波形図である。FIG. 4 is a waveform diagram of each part of FIG.

【符号の説明】[Explanation of symbols]

1 搬送波発振器 2 スイッチ 3 振幅変調器 4 電力増幅器 5 方向性結合器 6 検波器 7 LPF(低域フィルタ) 8 基準電圧発生器 9 スイッチ 10 微分回路 11 加算器 1 carrier wave oscillator 2 switch 3 amplitude modulator 4 power amplifier 5 directional coupler 6 detector 7 LPF (low-pass filter) 8 reference voltage generator 9 switch 10 differentiator circuit 11 adder

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 送信オン信号により送信搬送波が振幅変
調され電力増幅器によって送信出力が送出されるととも
に、該送信出力の一部を検出しローパスフィルタによっ
て得られる送信平均電力に比例する電圧を利得制御電圧
として前記電力増幅器に与えて送信出力を一定に保つよ
うに構成された自動送信電力制御回路において、 前記送信オン信号により所定の基準電圧を入力し前記ロ
ーパスフィルタの出力立上り特性と逆の特性となるよう
な電圧波形を出力する微分回路と、 該微分回路の出力と前記ローパスフィルタの出力とを加
算して前記電力増幅器に与える前記利得制御電圧を出力
する加算器とを備えて、送信オン信号が印加された直後
から所望の送信出力が得られるように構成したことを特
徴とする自動送信電力制御回路。
1. A transmission carrier is amplitude-modulated by a transmission ON signal, a transmission output is transmitted by a power amplifier, and a voltage proportional to the transmission average power obtained by a low-pass filter is detected by detecting a part of the transmission output and gain control is performed. In an automatic transmission power control circuit configured to be given to the power amplifier as a voltage to keep the transmission output constant, a predetermined reference voltage is input by the transmission ON signal and a characteristic opposite to the output rising characteristic of the low-pass filter. A transmission ON signal, and a differential circuit that outputs a voltage waveform as described above, and an adder that adds the output of the differential circuit and the output of the low-pass filter and outputs the gain control voltage to be applied to the power amplifier. An automatic transmission power control circuit, characterized in that a desired transmission output is obtained immediately after the voltage is applied.
JP8371191U 1991-09-19 1991-09-19 Automatic transmission power control circuit Pending JPH0528131U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8371191U JPH0528131U (en) 1991-09-19 1991-09-19 Automatic transmission power control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8371191U JPH0528131U (en) 1991-09-19 1991-09-19 Automatic transmission power control circuit

Publications (1)

Publication Number Publication Date
JPH0528131U true JPH0528131U (en) 1993-04-09

Family

ID=13810087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8371191U Pending JPH0528131U (en) 1991-09-19 1991-09-19 Automatic transmission power control circuit

Country Status (1)

Country Link
JP (1) JPH0528131U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310827A (en) * 1986-07-01 1988-01-18 Kokusai Electric Co Ltd Transmission output control circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310827A (en) * 1986-07-01 1988-01-18 Kokusai Electric Co Ltd Transmission output control circuit

Similar Documents

Publication Publication Date Title
JP3698669B2 (en) Polar loop transmission circuit
KR100668206B1 (en) Circuit and method for linearizing amplitude modulation in a power amplifier
JP4203968B2 (en) Apparatus and method for wireless transmitter
RU95119833A (en) POWER AMPLIFIER COMBINED WITH THE AMPLITUDE MODULATION CONTROLLER AND THE PHASE MODULATION CONTROLLER
JPH0379891B2 (en)
WO1998000908A1 (en) Circuit arrangement comprising a cartesian amplifier
US4021745A (en) Pulse width modulated signal amplifier
US5293407A (en) Digital modulator with digital power control circuit
JP2001045079A (en) Radio frequency signal generator
JP2690168B2 (en) Distortion correction device for power amplifier
JPS6317023Y2 (en)
US5208549A (en) Automatic power control apparatus for linear modulation
JP3447110B2 (en) Mobile radio system and transmitter used therefor
JPH0528131U (en) Automatic transmission power control circuit
US5847622A (en) Quadrature phase shift keying modulating apparatus
JPH07118614B2 (en) amplifier
JP3460861B2 (en) Automatic transmission power control circuit
JPH0730444A (en) Transmitter
US5347240A (en) Circuit and method for automatically controlling the carrier frequency of a video recording device
JPH07123123A (en) 4-phase modulation circuit
JPH08204585A (en) Automatic transmission power control circuit
JP3038641B2 (en) Power deviation correction method and power deviation correction device
JPH0496428A (en) Radio equipment
US5332980A (en) Modulation circuit having frequency sensitive power supply voltage
JPH05315875A (en) Automatic transmission power controller