JPH05280382A - Compression ratio control device for internal combustion engine - Google Patents

Compression ratio control device for internal combustion engine

Info

Publication number
JPH05280382A
JPH05280382A JP7374992A JP7374992A JPH05280382A JP H05280382 A JPH05280382 A JP H05280382A JP 7374992 A JP7374992 A JP 7374992A JP 7374992 A JP7374992 A JP 7374992A JP H05280382 A JPH05280382 A JP H05280382A
Authority
JP
Japan
Prior art keywords
eccentric sleeve
oil passage
connecting rod
communication groove
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7374992A
Other languages
Japanese (ja)
Other versions
JP2730387B2 (en
Inventor
Kazuhiro Kojima
一洋 小島
Takeo Kume
建夫 久米
Masahiko Matsuda
雅彦 松田
Takaaki Hirano
孝明 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Automotive Engineering Co Ltd filed Critical Mitsubishi Motors Corp
Priority to JP4073749A priority Critical patent/JP2730387B2/en
Publication of JPH05280382A publication Critical patent/JPH05280382A/en
Application granted granted Critical
Publication of JP2730387B2 publication Critical patent/JP2730387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase a contact surface of a crank pin with an eccentric sleeve for improving the durability of a bearing, and restrict leak of high pressure oil to the low pressure side by forming a pair of communication grooves formed in an inner circumferential surfaces of the eccentric sleeve along half circles respectively. CONSTITUTION:A compression ratio control device for an internal combustion engine has an eccentric sleeve 16 freely rotatably engaged between a crank pin 12 and a larger end part of a connection rod 13. In the eccentric sleeve 16, a high pressure oil passage 31 and a low pressure oil passage 30 for changing the relative rotation position of the eccentric sleeve to the connection rod 13 are bored. In this case, a high pressure communication groove 29 communicating with the high pressure oil passage 31 is formed along almost half circle of an inner circumferential surface of the eccentric sleeve 16. At 180deg. from the high pressure communication groove 29, a low pressure communication groove 27 communicating with the low pressure oil passage 30 is formed along almost half circle in the inner circumferential surface of the eccentric sleeve 16. A contact surface between the crank pin 12 and the eccentric sleeve 16 can thus be increased to improve the durability of a bearing, and leak of high pressure oil can be restricted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧油を介して圧縮比を
切り換えるようにした内燃機関(以下、機関と略称す
る)の圧縮比制御装置に関し、特に機械的な耐久性及び
制御の信頼性を向上させたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression ratio control device for an internal combustion engine (hereinafter abbreviated as "engine") in which the compression ratio is switched via pressure oil, and particularly to mechanical durability and reliability of control. It is the one that improved the sex.

【0002】[0002]

【従来の技術】一般に、圧縮比を高めに設定した機関
は、この機関の圧縮比を低めに設定したものと比較する
と、熱効率の上昇に伴う燃費等の改善が可能となる反
面、機関の高回転領域や高負荷領域にてノッキングが発
生し易くなる欠点がある。そこで、機関の運転中にその
圧縮比を切り換えることができるようにしたものが、例
えば実開平3−92539号公報や実開平3−1270
52号公報等で提案されており、機関の高回転領域や高
負荷領域ではノッキングが発生しないように機関の圧縮
比を下げる一方、ノッキングが発生し難いその他の運転
領域では機関の圧縮比を上げ、熱効率の上昇に伴う燃費
等の改善を行うようにしている。
2. Description of the Related Art In general, an engine with a high compression ratio can improve fuel efficiency and the like due to an increase in thermal efficiency, as compared with a engine with a low compression ratio, but on the other hand There is a drawback that knocking is likely to occur in the rotating region and the high load region. Therefore, the one that can change the compression ratio during the operation of the engine is disclosed in, for example, Japanese Utility Model Laid-Open No. 3-92539 and Japanese Utility Model Laid-Open No. 3-1270.
No. 52, etc., the compression ratio of the engine is lowered so that knocking does not occur in the high engine speed region and high load region of the engine, while the compression ratio of the engine is increased in other operating regions where knocking is difficult to occur. , The fuel efficiency is improved with the increase of thermal efficiency.

【0003】このような従来の圧縮比制御装置の一例に
おける低圧縮比の状態の断面構造を表す図9、そのX−
X矢視断面形状を表す図10、図9におけるストッパピ
ンの部分を拡大抽出した図11に示すように、図示しな
い機関のクランク軸101に形成されたクランクピン102と
連接棒103の大端部との間には、クランクピン102に対し
て外周面を偏心状態に形成した偏心スリーブ104が回転
可能に設けられている。
FIG. 9 showing a cross-sectional structure in a state of low compression ratio in an example of such a conventional compression ratio control device, X- thereof.
As shown in FIG. 11 in which the stopper pin portion in FIG. 10 and FIG. 9 showing the cross-sectional shape as viewed in the direction of the arrow X is enlarged and extracted, the large ends of the crank pin 102 and the connecting rod 103 formed on the crank shaft 101 of the engine (not shown). An eccentric sleeve 104 whose outer circumferential surface is eccentric with respect to the crankpin 102 is rotatably provided between and.

【0004】機関の運転中には、偏心スリーブ104の自
由回転を拘束すると共にこの偏心スリーブ104を所定の
回転位置に固定する必要があるため、偏心スリーブ104
に相隔てて形成された二つの係止凹部104a,104bに係合
し得るストッパピン105がクランク軸101の軸心と平行な
方向(図9中、左右方向)に往復動自在に設けられてい
る。
During operation of the engine, it is necessary to restrain the free rotation of the eccentric sleeve 104 and to fix the eccentric sleeve 104 at a predetermined rotational position.
A stopper pin 105 that can be engaged with two locking recesses 104a, 104b formed separately from each other is provided so as to be capable of reciprocating in a direction parallel to the axis of the crankshaft 101 (left-right direction in FIG. 9). There is.

【0005】中間部分にフランジ状をなすピストン105a
が一体的に形成されたストッパピン105は、クランク軸1
01の軸心と平行に連接棒103の大端部に形成された貫通
穴に対して摺動自在に嵌合されている。このストッパピ
ン105のピストン105aは、貫通穴を2つの油室106,107に
仕切るものであり、これら油室106,107には偏心スリー
ブ104の外周面に臨む油通路108,109がそれぞれ連通して
いる。又、これら油通路108,109が穿設された連接棒103
の貫通穴の油室106側には、ストッパピン105の外径と対
応する貫通穴を形成したばね受けキャップ110が嵌着さ
れ、図示しないボルト等を介して連接棒103の大端部に
固定されている。そして、このばね受けキャップ110と
ピストン105aとの間には、ピストン105aを油室107側に
付勢する圧縮コイルばね111が介装されている。
A piston 105a having a flange shape in the middle portion
Is integrally formed with the crankshaft 1
It is slidably fitted in a through hole formed in the large end of the connecting rod 103 in parallel with the axis of 01. The piston 105a of the stopper pin 105 divides the through hole into two oil chambers 106, 107, and oil passages 108, 109 facing the outer peripheral surface of the eccentric sleeve 104 communicate with the oil chambers 106, 107, respectively. Further, the connecting rod 103 in which these oil passages 108 and 109 are bored
A spring bearing cap 110 having a through hole corresponding to the outer diameter of the stopper pin 105 is fitted to the oil chamber 106 side of the through hole of the, and fixed to the large end of the connecting rod 103 via a bolt or the like not shown. Has been done. A compression coil spring 111 that biases the piston 105a toward the oil chamber 107 is interposed between the spring receiving cap 110 and the piston 105a.

【0006】前記偏心スリーブ104の両端部には、連接
棒103の大端部を挾む一対のフランジ部が形成されてお
り、図示例では連接棒103の大端部が大偏心位置を採る
ような一方のフランジ部に切欠き状をなす前記係止凹部
104aが形成され、連接棒103の大端部が小偏心位置を採
るような他方のフランジ部に切欠き状をなす前記係止凹
部104bが形成されている。
A pair of flanges are formed at both ends of the eccentric sleeve 104 so as to sandwich the large end of the connecting rod 103. In the illustrated example, the large end of the connecting rod 103 has a large eccentric position. Notch-shaped locking recess formed on one of the flanges
104a is formed, and the engagement recess 104b having a notch shape is formed in the other flange portion such that the large end of the connecting rod 103 takes a small eccentric position.

【0007】つまり、ストッパピン105が図11に示す
状態から左側へ移動し、ストッパピン105と係止凹部104
aとが係合することにより、大偏心位置にて連接棒103の
大端部と偏心スリーブ104とが固定される。一方、スト
ッパピン105が右側へ移動して図示の如くストッパピン1
05と係止凹部104bとが係合することにより、小偏心位置
にて連接棒103の大端部と偏心スリーブ104とが固定され
る。
That is, the stopper pin 105 moves to the left from the state shown in FIG.
By engaging with a, the large end of the connecting rod 103 and the eccentric sleeve 104 are fixed at the large eccentric position. On the other hand, the stopper pin 105 moves to the right side and the stopper pin 1
By engaging 05 with the locking recess 104b, the large end of the connecting rod 103 and the eccentric sleeve 104 are fixed at the small eccentric position.

【0008】前記連接棒103の大端部に形成されて油室1
06,107にそれぞれ連通する油通路108,109には、偏心ス
リーブ104,クランクピン102,クランクアーム112及びク
ランク軸101のクランクジャーナル113に形成された低圧
油路114及び高圧油路115が接続し、クランクジャーナル
113側から油室106,107へそれぞれ圧油が供給される。
The oil chamber 1 is formed at the large end of the connecting rod 103.
The low pressure oil passage 114 and the high pressure oil passage 115 formed in the eccentric sleeve 104, the crank pin 102, the crank arm 112, and the crank journal 113 of the crankshaft 101 are connected to the oil passages 108 and 109 respectively communicating with the crank journals.
Pressure oil is supplied to the oil chambers 106 and 107 from the 113 side.

【0009】なお、クランクピン102及び連接棒103の大
端部に対して偏心スリーブ104が相対回転するため、偏
心スリーブ104の内周面にはクランクピン102に形成され
た低圧油路114及び高圧油路115に常に連通し得る一対の
環状溝116,117が全周に亙って近接状態で形成されてお
り、同様に偏心スリーブ104の外周面が摺接する連接棒1
03の大端部の内周面にも、偏心スリーブ104に形成され
た低圧油路114及び高圧油路115に常に連通し得る一対の
環状溝118,119が全周に亙って相互に近接状態で形成さ
れている。
Since the eccentric sleeve 104 rotates relative to the large ends of the crank pin 102 and the connecting rod 103, the low pressure oil passage 114 and the high pressure oil passage formed in the crank pin 102 are formed on the inner peripheral surface of the eccentric sleeve 104. A pair of annular grooves 116, 117 that can always communicate with the oil passage 115 are formed in a close state over the entire circumference, and similarly the connecting rod 1 with which the outer peripheral surface of the eccentric sleeve 104 slides.
Also on the inner peripheral surface of the large end of 03, a pair of annular grooves 118, 119 which can be always communicated with the low pressure oil passage 114 and the high pressure oil passage 115 formed in the eccentric sleeve 104 are in close proximity to each other over the entire circumference. Has been formed.

【0010】従って、図示しない油ポンプからの高圧油
が油通路109を介して油室107に供給されると、油室106
内には油通路108を介して図示しない油ポンプからの低
圧油が供給されているため、圧縮コイルばね111のばね
力に抗してストッパピン105のピストン105aが図示の如
く右方へ移動する。この結果、ストッパピン105と係止
凹部104bとが係合し、連接棒103の大端部が小偏心位置
に保持されるため、機関は低圧縮比状態となる。
Therefore, when high-pressure oil from an oil pump (not shown) is supplied to the oil chamber 107 through the oil passage 109, the oil chamber 106
Since low-pressure oil is supplied from an oil pump (not shown) into the inside through an oil passage 108, the piston 105a of the stopper pin 105 moves to the right as shown against the spring force of the compression coil spring 111. .. As a result, the stopper pin 105 and the locking recess 104b are engaged with each other, and the large end of the connecting rod 103 is held at the small eccentric position, so that the engine is in a low compression ratio state.

【0011】逆に、図示しない油ポンプからの低圧油が
油通路109を介して油室107に供給されると、油室106内
には油通路108を介して図示しない油ポンプからの低圧
油が同時に供給されているため、圧縮コイルばね111の
ばね力によりストッパピン105のピストン105aが図11
に示す状態から左方へ移動する。この結果、ストッパピ
ン105と係止凹部104aとが係合し、連接棒103の大端部が
大偏心位置に保持されるため、機関は高圧縮比状態とな
る。
On the contrary, when the low-pressure oil from the oil pump (not shown) is supplied to the oil chamber 107 through the oil passage 109, the low-pressure oil from the oil pump (not shown) enters the oil chamber 106 through the oil passage 108. 11 is supplied at the same time, the piston 105a of the stopper pin 105 is driven by the spring force of the compression coil spring 111 as shown in FIG.
Move to the left from the state shown in. As a result, the stopper pin 105 and the locking recess 104a are engaged with each other, and the large end of the connecting rod 103 is held in the large eccentric position, so that the engine is in the high compression ratio state.

【0012】[0012]

【発明が解決しようとする課題】図9〜図11に示した
従来の機関の圧縮比制御装置では、偏心スリーブ104の
内周面の全周に亙って二本の環状溝116,117が形成され
ているため、クランクピン102と偏心スリーブ104との接
触面積が少なくなり、軸受メタルとしての偏心スリーブ
104の耐久性を高く保持することが困難である。
In the conventional compression ratio control device for an engine shown in FIGS. 9 to 11, two annular grooves 116 and 117 are formed over the entire circumference of the inner peripheral surface of the eccentric sleeve 104. Therefore, the contact area between the crank pin 102 and the eccentric sleeve 104 is reduced, and the eccentric sleeve as the bearing metal is
It is difficult to keep the durability of 104 high.

【0013】しかも、これら二本の環状溝116,117が近
接状態となっているため、高圧側の環状溝117から低圧
側の環状溝116へ圧油の漏れが発生し易く、高圧側の環
状溝117に圧油を供給した場合にストッパピン105の切換
動作に遅れが生ずる虞があり、正確な圧縮比の切換制御
を行うことが困難である。
Moreover, since these two annular grooves 116, 117 are in close proximity to each other, pressure oil easily leaks from the high pressure side annular groove 117 to the low pressure side annular groove 116, and the high pressure side annular groove 117. When pressure oil is supplied to the stopper pin 105, the switching operation of the stopper pin 105 may be delayed, and it is difficult to perform accurate compression ratio switching control.

【0014】[0014]

【発明の目的】本発明は、軸受メタルとしての偏心スリ
ーブの耐久性を損なうことなく、正確な圧縮比の切換制
御を行うことが可能な機関の圧縮比制御装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a compression ratio control device for an engine capable of performing accurate compression ratio switching control without impairing the durability of the eccentric sleeve as the bearing metal. ..

【0015】[0015]

【課題を解決するための手段】第1番目の本発明による
機関の圧縮比制御装置は、クランクピンと連接棒の大端
部との間に偏心スリーブが回転自在に嵌合され且つ前記
連接棒に対する前記偏心スリーブの相対回転位置を切り
換えるための高圧油路と低圧油路とが前記偏心スリーブ
に穿設された内燃機関の圧縮比制御装置において、前記
偏心スリーブの内周面のほぼ半周に亙って形成され且つ
前記高圧油路に連通する高圧連通溝と、この高圧連通溝
とほぼ180度隔てて前記偏心スリーブの内周面のほぼ
半周に亙って形成され且つ前記低圧油路に連通する低圧
連通溝とを具えたものである。
In a compression ratio control system for an engine according to a first aspect of the present invention, an eccentric sleeve is rotatably fitted between a crank pin and a large end portion of the connecting rod, and is connected to the connecting rod. In a compression ratio control device for an internal combustion engine in which a high-pressure oil passage and a low-pressure oil passage for switching the relative rotational position of the eccentric sleeve are formed in the eccentric sleeve, the compression ratio control device covers approximately half of the inner peripheral surface of the eccentric sleeve. And a high-pressure communication groove that is formed to communicate with the high-pressure oil passage, and is formed over approximately half of the inner peripheral surface of the eccentric sleeve at a distance of approximately 180 degrees from the high-pressure communication groove and communicates with the low-pressure oil passage. It is equipped with a low-pressure communication groove.

【0016】第2番目の本発明による機関の圧縮比制御
装置は、クランクピンと連接棒の大端部との間に回転自
在に嵌合される偏心スリーブと、前記連接棒に組み込ま
れ且つ前記偏心スリーブに相隔てて形成された一対の係
合部の何れかに係合して当該連接棒と前記偏心スリーブ
との相対回転位置を切り換えるストッパピンと、前記ク
ランクピンからクランクジャーナルに亙って穿設され且
つこのクランクジャーナル側から圧油が供給される第一
の油路と、この第一の油路に交差状態で連通するように
前記クランクピンに穿設され且つ両端がこのクランクピ
ンの外周面に開口する第二の油路と、この第二の油路に
常に連通するように前記偏心スリーブの内周面のほぼ半
周に亙って形成された連通溝と、この連通溝に接続する
ように前記偏心スリーブに放射状に穿設された複数本の
第三の油路と、これら第三の油路と常に連通するように
前記連接棒の大端部の内周面の周方向に沿って円弧状に
形成された連通溝と、この連通溝に接続するように前記
連接棒の大端部に穿設されて前記ストッパピンを少なく
とも一方の前記係合部側に付勢する圧油を供給するため
の第四の油路とを具えたものである。
According to a second aspect of the present invention, there is provided an engine compression ratio control device comprising: an eccentric sleeve rotatably fitted between a crankpin and a large end portion of a connecting rod; A stopper pin that engages with one of a pair of engaging portions formed separately from the sleeve to switch the relative rotational position of the connecting rod and the eccentric sleeve, and is drilled from the crank pin to the crank journal. And a first oil passage to which pressure oil is supplied from the crank journal side, and the crank pin is bored so as to communicate with the first oil passage in an intersecting state with the first oil passage, and both ends are the outer peripheral surface of the crank pin. A second oil passage opening to the second oil passage, a communication groove formed over almost the half circumference of the inner peripheral surface of the eccentric sleeve so as to always communicate with the second oil passage, and to connect to this communication groove. To the eccentric A plurality of third oil passages radially formed in the groove, and an arc shape along the circumferential direction of the inner peripheral surface of the large end of the connecting rod so as to always communicate with these third oil passages. For supplying the hydraulic oil which is formed on the connecting groove and the large diameter end portion of the connecting rod which is connected to the connecting groove and which urges the stopper pin toward at least one of the engaging portions. It has a fourth oil passage.

【0017】[0017]

【作用】第1番目の本発明では、高圧連通溝や低圧連通
溝が偏心スリーブの内周面のほぼ半周にしか形成されて
おらず、クランクピンと偏心スリーブとの接触面積の増
大による軸受耐久性が向上する。又、これら高圧連通溝
と低圧連通溝とがほぼ180度隔てて形成されているた
め、高圧連通溝に供給された高圧油が低圧連通溝側に漏
れにくくなり、制御の応答性が改善されて迅速に圧縮比
の切換がなされる。
In the first aspect of the present invention, the high-pressure communication groove and the low-pressure communication groove are formed only on approximately half of the inner peripheral surface of the eccentric sleeve, and the bearing durability is increased by increasing the contact area between the crankpin and the eccentric sleeve. Is improved. Further, since the high-pressure communication groove and the low-pressure communication groove are formed so as to be separated by about 180 degrees, the high-pressure oil supplied to the high-pressure communication groove is unlikely to leak to the low-pressure communication groove side, and the control response is improved. The compression ratio is switched quickly.

【0018】第2番目の本発明では、クランクピンから
クランクジャーナルに亙って穿設され且つこのクランク
ジャーナル側からクランクピンに向けて第一の油路から
圧油を供給すると、この圧油は第一の油路に交差状態で
連通する第二の油路の両側からクランクピンの外周面、
第二の油路に常に連通するように偏心スリーブの内周面
のほぼ半周に亙って形成された連通溝、偏心スリーブに
放射状に穿設された複数本の第三の油路、これら第三の
油路と常に連通するように連接棒の大端部の内周面の周
方向に沿って円弧状に形成された連通溝、この連通溝に
接続するように連接棒の大端部に穿設された第四の油路
の順に供給され、これによってストッパピンが一方の係
合部側に付勢され、所定の圧縮比側に切り換えられる。
In the second aspect of the present invention, when pressure oil is provided from the crank pin to the crank journal and pressure oil is supplied from the crank journal side to the crank pin from the first oil passage, the pressure oil is discharged. From the both sides of the second oil passage that communicates with the first oil passage in an intersecting state, the outer peripheral surface of the crank pin,
A communication groove formed over almost half of the inner peripheral surface of the eccentric sleeve so as to always communicate with the second oil passage, a plurality of third oil passages radially provided in the eccentric sleeve, and these third oil passages. A communicating groove formed in an arc shape along the circumferential direction of the inner peripheral surface of the large end of the connecting rod so as to always communicate with the three oil passages, and on the large end of the connecting rod so as to connect to this communicating groove. The oil is supplied in the order of the drilled fourth oil passage, whereby the stopper pin is urged toward the one engagement portion side and switched to the predetermined compression ratio side.

【0019】[0019]

【実施例】本発明による機関の圧縮比制御装置の一実施
例における高圧縮比の状態の断面構造を表す図1、その
II−II矢視断面形状を表す図2、図1におけるストッパ
ピンの部分を拡大抽出した図3に示すように、図示しな
い機関のクランク軸11に形成されたクランクピン12
には、連接棒13の大端部が回転自在に嵌着され、この
連接棒13の小端部には機関の図示しない気筒内を往復
動し得るピストン14がピストンピン15を介して枢着
されている。又、前記クランクピン12と連接棒13の
大端部との間には、クランクピン12に対して外周面が
偏心した偏心スリーブ16が回転可能に設けられている
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 showing a cross-sectional structure in a high compression ratio state in an embodiment of an engine compression ratio control apparatus according to the present invention.
As shown in FIG. 2 which is a sectional view taken along the line II-II and in which the stopper pin portion in FIG. 1 is enlarged and extracted, a crank pin 12 formed on a crank shaft 11 of an engine (not shown)
A large end portion of the connecting rod 13 is rotatably fitted in the connecting rod 13, and a piston 14 capable of reciprocating in a cylinder (not shown) of the engine is pivotally attached to the small end portion of the connecting rod 13 via a piston pin 15. Has been done. An eccentric sleeve 16 having an outer peripheral surface eccentric to the crank pin 12 is rotatably provided between the crank pin 12 and the large end of the connecting rod 13.

【0020】機関の運転中には、偏心スリーブ16の自
由回転を拘束すると共にこの偏心スリーブ16を所定の
回転位置に固定する必要があるため、偏心スリーブ16
に相隔てて形成された二つの係止凹部16a,16bに係合し
得るストッパピン17がクランク軸11の軸心と平行な
方向(図1中、左右方向)に往復動自在に設けられてい
る。中間部分にフランジ状をなすピストン17aが一体的
に形成されたストッパピン17は、連接棒13の大端部
に対してクランク軸11の軸心と平行な方向に摺動自在
に嵌合されている。
During operation of the engine, it is necessary to restrain the free rotation of the eccentric sleeve 16 and fix the eccentric sleeve 16 at a predetermined rotational position.
A stopper pin 17 capable of engaging with two locking recesses 16a, 16b formed separately from each other is provided so as to be reciprocally movable in a direction parallel to the axis of the crankshaft 11 (left-right direction in FIG. 1). There is. The stopper pin 17, which is integrally formed with a flange-shaped piston 17a in the middle portion, is slidably fitted to the large end of the connecting rod 13 in a direction parallel to the axis of the crankshaft 11. There is.

【0021】このストッパピン17のピストン17aは、
連接棒13の大端部に形成される2つの油室18,19
を仕切るものであり、これら油室18,19には連接棒
13の大端部に穿設されて偏心スリーブ16の外周面に
臨む潤滑用油通路20と切換用油通路21とがそれぞれ
連通している。又、連接棒13の大端部の油室19側に
は、ストッパピン17の外径と対応する環状のばね受け
キャップ22が嵌着され、図示しないボルト等を介して
連接棒13の大端部に固定されている。そして、このば
ね受けキャップ22とピストン17aとの間には、ピスト
ン17aを油室19側に付勢する圧縮コイルばね23が介
装されている。
The piston 17a of this stopper pin 17 is
Two oil chambers 18 and 19 formed at the large end of the connecting rod 13.
The oil chambers 18 and 19 are communicated with the lubricating oil passage 20 and the switching oil passage 21 which are formed at the large end of the connecting rod 13 and face the outer peripheral surface of the eccentric sleeve 16. ing. On the oil chamber 19 side of the large end portion of the connecting rod 13, an annular spring receiving cap 22 corresponding to the outer diameter of the stopper pin 17 is fitted, and the large end of the connecting rod 13 is attached via a bolt or the like not shown. It is fixed to the section. A compression coil spring 23 for urging the piston 17a toward the oil chamber 19 is interposed between the spring receiving cap 22 and the piston 17a.

【0022】前記偏心スリーブ16の両端部には、連接
棒13の大端部を挾む一対のフランジ部が形成されてお
り、本実施例では連接棒13の大端部が大偏心位置を採
るような一方のフランジ部に切欠き状をなす前記係止凹
部16aが形成され、連接棒13の大端部が小偏心位置を
採るような他方のフランジ部に切欠き状をなす前記係止
凹部16bが形成されている。つまり、ストッパピン17
が図1及び図3に示す状態から右方へ移動してストッパ
ピン17と係止凹部16bとが係合することにより、小偏
心位置にて連接棒13の大端部と偏心スリーブ16とが
固定される。一方、ストッパピン17が左方へ移動して
図1〜図3に示す如くストッパピン17と係止凹部16a
とが係合することにより、大偏心位置にて連接棒13の
大端部と偏心スリーブ16とが固定される。
A pair of flanges are formed at both ends of the eccentric sleeve 16 so as to sandwich the large end of the connecting rod 13. In this embodiment, the large end of the connecting rod 13 takes a large eccentric position. The notch-shaped engaging recess 16a is formed in one of the flanges, and the notch-like engaging recess is formed in the other flange so that the large end of the connecting rod 13 takes a small eccentric position. 16b is formed. That is, the stopper pin 17
Moves to the right from the state shown in FIGS. 1 and 3, and the stopper pin 17 and the locking recess 16b engage with each other, so that the large end of the connecting rod 13 and the eccentric sleeve 16 at the small eccentric position. Fixed. On the other hand, the stopper pin 17 moves to the left to move the stopper pin 17 and the locking recess 16a as shown in FIGS.
By engaging with, the large end of the connecting rod 13 and the eccentric sleeve 16 are fixed at the large eccentric position.

【0023】ここで、連接棒13の大端部が大偏心位置
にあると、クランクピン12とピストンピン15との間
隔が見掛け上、伸びた状態になって高圧縮比状態が実現
される。又、連接棒13の大端部が小偏心位置にある
と、クランクピン12とピストンピン15との間隔が見
掛け上、縮んだ状態になって低圧縮比状態が実現され
る。
Here, when the large end of the connecting rod 13 is in the large eccentric position, the space between the crank pin 12 and the piston pin 15 is apparently extended and a high compression ratio state is realized. Further, when the large end of the connecting rod 13 is in the small eccentric position, the gap between the crank pin 12 and the piston pin 15 is apparently contracted and a low compression ratio state is realized.

【0024】図1中のIV−IV矢視断面構造,V−V矢視
断面構造,VI−VI矢視断面構造,VII−VII矢視断面構造を
それぞれ表す図4,図5,図6,図7に示すように、偏心
スリーブ16が嵌合する連接棒13の大端部の内周面に
は、前記潤滑用油通路20に接続する潤滑用連通溝24
と、前記切換用油通路21に接続する切換用連通溝25
とが当該大端部の内周面の周方向で重複しないように相
互にほぼ180度隔てて円弧状に刻設されており、本実
施例では潤滑用連通溝24の周方向長さを切換用連通溝
25の周方向長さよりも短く設定している。
4, 5, and 6, respectively showing the IV-IV arrow sectional structure, the VV arrow sectional structure, the VI-VI arrow sectional structure, and the VII-VII arrow sectional structure in FIG. As shown in FIG. 7, on the inner peripheral surface of the large end portion of the connecting rod 13 into which the eccentric sleeve 16 is fitted, a lubricating communication groove 24 connected to the lubricating oil passage 20 is formed.
And a switching communication groove 25 connected to the switching oil passage 21.
Are carved in an arc shape so as not to overlap each other in the circumferential direction of the inner peripheral surface of the large end portion, and in this embodiment, the circumferential length of the lubricating communication groove 24 is switched. It is set shorter than the circumferential length of the communication groove 25.

【0025】又、前記偏心スリーブ16の内周面には、
クランクピン12の外周面に両端が開口する潤滑油供給
路26に対して常に連通し得る連通溝27と、クランク
ピン12の外周面に両端が開口する切換用油供給路28
に対して常に連通し得ると共に前記連通溝27と相隔て
て交差する連通溝29とが当該偏心スリーブ16の内周
面のほぼ半周に亙り相互にほぼ180度隔てて刻設され
ている。又、前記潤滑用油通路20と前記潤滑油供給路
26とが常に連通し得るように、偏心スリーブ16には
一方の連通溝27に接続する潤滑用溝連通路30が放射
状に複数本形成されている。同様に、前記切換用油通路
21と前記切換用油供給路28とが常に連通し得るよう
に、偏心スリーブ16には他方の連通溝29に接続する
切換用溝連通路31が放射状に複数本形成されている。
Further, on the inner peripheral surface of the eccentric sleeve 16,
A communication groove 27 that can always communicate with a lubricating oil supply passage 26 having both ends open to the outer peripheral surface of the crank pin 12, and a switching oil supply passage 28 having both ends open to the outer peripheral surface of the crank pin 12.
A communication groove 29, which can communicate with each other and intersects with the communication groove 27 at a distance from each other, is formed on substantially the half circumference of the inner peripheral surface of the eccentric sleeve 16 at an interval of about 180 degrees from each other. In addition, a plurality of lubricating groove communicating passages 30 connected to one communicating groove 27 are radially formed in the eccentric sleeve 16 so that the lubricating oil passage 20 and the lubricating oil supply passage 26 can always communicate with each other. ing. Similarly, a plurality of switching groove communication passages 31 connected to the other communication groove 29 are radially connected to the eccentric sleeve 16 so that the switching oil passage 21 and the switching oil supply passage 28 can always communicate with each other. Has been formed.

【0026】前記クランクピン12に形成された潤滑油
供給路26には、クランクアーム32、1番クランクジ
ャーナル(以下、これを1番ジャーナルと呼称する)3
3、3番クランクジャーナル(以下、これを3番ジャー
ナルと呼称する)34、5番クランクジャーナル(以
下、これを5番ジャーナルと呼称する)35にそれぞれ
形成された潤滑油路36が接続し、高圧縮比を選択した
場合に1番ジャーナル33,3番ジャーナル34,5番ジ
ャーナル35側から図示しない圧油が油室18へ供給さ
れるようになっている。
In the lubricating oil supply passage 26 formed in the crank pin 12, a crank arm 32, a first crank journal (hereinafter referred to as a first journal) 3
Lubricating oil passages 36 formed respectively in third and third crank journals (hereinafter, referred to as third journal) 34, fifth crank journals (hereinafter, referred to as fifth journal) 35 are connected, When a high compression ratio is selected, pressure oil (not shown) is supplied to the oil chamber 18 from the first journal 33, the third journal 34, and the fifth journal 35 side.

【0027】又、前記クランクピン12に形成された切
換用油供給路28には、クランクアーム32、2番クラ
ンクジャーナル(以下、これを2番ジャーナルと呼称す
る)37、4番クランクジャーナル(以下、これを4番
ジャーナルと呼称する)38にそれぞれ形成された制御
油路39が接続し、低圧縮比を選択した場合に2番ジャ
ーナル37及び4番ジャーナル38側から図示しない圧
油が油室19に供給されるようになっている。
The switching oil supply passage 28 formed in the crank pin 12 has a crank arm 32, a second crank journal (hereinafter, referred to as a second journal) 37, a fourth crank journal (hereinafter, referred to as a second crank journal). (This is referred to as the fourth journal) 38 is connected to the respective control oil passages 39, and when a low compression ratio is selected, pressure oil (not shown) is fed from the second journal 37 and the fourth journal 38 side to the oil chamber. 19 are supplied.

【0028】本実施例では、クランク軸11の両端に位
置する1番ジャーナル33,5番ジャーナル35と、ク
ランク軸11の中央に位置する3番ジャーナル34とか
ら潤滑油をクランクピン12と偏心スリーブ16との間
に供給する一方、クランク軸11の中央に位置する3番
ジャーナル34とクランク軸11の両端部に位置する1
番ジャーナル33,5番ジャーナルと35との間に位置
する2番ジャーナル37及び4番ジャーナル38から油
室19へ圧油を供給するようにしているが、このような
油路構造に限定されるわけではない。
In this embodiment, lubricating oil is supplied from the first journal 33 and the fifth journal 35 located at both ends of the crankshaft 11 and the third journal 34 located in the center of the crankshaft 11 to the crankpin 12 and the eccentric sleeve. No. 3 journal 34 located in the center of the crankshaft 11 and one located at both ends of the crankshaft 11
Pressure oil is supplied to the oil chamber 19 from the second journal 37 and the fourth journal 38, which are located between the third journal 33, the fifth journal 35, and the fifth journal 35, but is limited to such an oil passage structure. Do not mean.

【0029】本実施例における油圧制御回路を表す図8
に示すように、1番ジャーナル33,3番ジャーナル3
4,5番ジャーナル35にそれぞれ形成された潤滑油路
36は、クランク軸11外にて主ギャラリ40に臨んで
いる。又、2番ジャーナル37及び4番ジャーナル38
にそれぞれ形成された制御油路39は、クランク軸11
外にて後述する油圧切換弁41に接続している。
FIG. 8 showing a hydraulic control circuit in this embodiment.
As shown in, 1st journal 33, 3rd journal 3
The lubricating oil passages 36 formed in the fourth and fifth journals 35 respectively face the main gallery 40 outside the crankshaft 11. Also, the second journal 37 and the fourth journal 38
The control oil passages 39 respectively formed in the
It is externally connected to a hydraulic pressure switching valve 41 described later.

【0030】油溜め42からの圧油は、潤滑用リリーフ
弁43が付設された潤滑用油ポンプ44により予め設定
した潤滑用に調圧され、油フィルタ45を介して主ギャ
ラリ40へ供給される。そして、この主ギャラリ40か
ら潤滑油路36を通じ、潤滑用の圧油が潤滑油供給路2
6から連通溝27,潤滑用溝連通路30,潤滑用油通路2
0を介して油室18側に常に供給される他、機関の各部
に分配供給される。
The pressure oil from the oil sump 42 is regulated for a preset lubrication by a lubrication oil pump 44 provided with a lubrication relief valve 43, and is supplied to the main gallery 40 via an oil filter 45. .. Then, pressure oil for lubrication is supplied from the main gallery 40 to the lubricating oil supply passage 2 through the lubricating oil passage 36.
6 to communication groove 27, lubrication groove communication passage 30, lubrication oil passage 2
In addition to being constantly supplied to the oil chamber 18 side via 0, it is distributed and supplied to each part of the engine.

【0031】前記主ギャラリ40と前記油圧切換弁41
との間には、油圧切換弁40側に高圧の圧油を供給する
切換用油ポンプ46が介装されており、前記制御油路3
9は油圧切換弁41を介して主ギャラリ40側か或いは
切換用油ポンプ46側に連通状態を切り換えられるよう
になっている。又、油圧切換弁41には機関の運転状態
に基づいて通電状態が切り換えられる電磁制御弁47が
付設されており、この電磁制御弁47に対する通電状態
を制御ユニット48にて制御することにより、当該油圧
切換弁41に対して主ギャラリ40側からのパイロット
圧の給排が切り換えられ、油圧切換弁41が駆動され
る。
The main gallery 40 and the hydraulic switching valve 41
A switching oil pump 46 for supplying high-pressure pressure oil to the hydraulic pressure switching valve 40 side is interposed between the control oil passage 3 and the control oil passage 3.
The communication state of 9 can be switched to the main gallery 40 side or the switching oil pump 46 side via the hydraulic pressure switching valve 41. Further, the hydraulic pressure switching valve 41 is provided with an electromagnetic control valve 47 for switching the energized state based on the operating state of the engine. By controlling the energized state of the electromagnetic control valve 47 by the control unit 48, The supply / discharge of pilot pressure from the main gallery 40 side is switched with respect to the hydraulic pressure switching valve 41, and the hydraulic pressure switching valve 41 is driven.

【0032】つまり、車両の運転状態に基づいて制御ユ
ニット48により電磁制御弁47が図示する非通電状態
に保持されている場合には、制御油路39が油圧切換弁
41を介して主ギャラリ40に連通状態となり、低圧油
が制御油路39から切換用油供給路28,連通溝29,切
換用溝連通路31,切換用油通路21を介して油室19
側に供給される結果、圧縮コイルばね22のばね力によ
りストッパピン17は高圧縮比状態を実現する偏心スリ
ーブ16の係止凹部16aに係合する。逆に、車両の運転
状態に基づいて制御ユニット48により電磁制御弁47
が通電状態に保持されると、主ギャラリ40からのパイ
ロット圧が油圧切換弁41に付勢され、切換用油ポンプ
46からの高圧油が制御油路32を介して油室19に供
給される結果、ストッパピン17は低圧縮比状態を実現
する偏心スリーブ16の係止凹部16bに係合する。
That is, when the electromagnetic control valve 47 is held in the non-energized state shown by the control unit 48 based on the operating state of the vehicle, the control oil passage 39 is connected to the main gallery 40 via the hydraulic pressure switching valve 41. The low pressure oil from the control oil passage 39 through the switching oil supply passage 28, the communication groove 29, the switching groove communication passage 31, and the switching oil passage 21.
As a result of being supplied to the side, the stopper pin 17 is engaged with the locking recess 16a of the eccentric sleeve 16 which realizes a high compression ratio state by the spring force of the compression coil spring 22. On the contrary, the control unit 48 controls the electromagnetic control valve 47 based on the driving state of the vehicle.
Is maintained in the energized state, the pilot pressure from the main gallery 40 is urged to the hydraulic pressure switching valve 41, and the high-pressure oil from the switching oil pump 46 is supplied to the oil chamber 19 via the control oil passage 32. As a result, the stopper pin 17 engages with the locking recess 16b of the eccentric sleeve 16 which realizes a low compression ratio state.

【0033】なお、圧縮比の切り換えは、車両の運転状
態により予め設定されたマップに基づいて行われる。
又、本実施例では制御油路39の途中に切換用リリーフ
弁49を付設し、切換用油ポンプ46から制御油路39
側に供給される圧油の油圧を、圧縮コイルばね23のば
ね力に抗してストッパピン17が図3中、右側に変位す
るに足る切換用に調圧するようにしており、これら潤滑
用油ポンプ44及び切換用油ポンプ46は共に機関によ
って駆動される。
The switching of the compression ratio is carried out based on a map preset according to the operating state of the vehicle.
Further, in this embodiment, a switching relief valve 49 is attached in the middle of the control oil passage 39 so that the switching oil pump 46 can control the control oil passage 39.
The oil pressure of the pressure oil supplied to the side is adjusted against the spring force of the compression coil spring 23 so as to switch the stopper pin 17 to the right in FIG. Both the pump 44 and the switching oil pump 46 are driven by the engine.

【0034】このように、本実施例では偏心スリーブ1
6の内周に形成される連通溝27や連通溝29をその全
周に亙って形成していないため、従来のものよりも偏心
スリーブ16の軸受耐久性が向上する。又、クランクピ
ン12と偏心スリーブ16との間、及び偏心スリーブ1
6と連接棒13の大端部との間にそれぞれ軸受メタルを
介装するようにしても良いが、この場合には、軸受メタ
ルを連接棒13や偏心スリーブ16に対して一体的に固
定することが望ましい。
Thus, in this embodiment, the eccentric sleeve 1
Since the communication groove 27 and the communication groove 29 formed on the inner circumference of 6 are not formed over the entire circumference, the bearing durability of the eccentric sleeve 16 is improved as compared with the conventional one. Further, between the crank pin 12 and the eccentric sleeve 16, and the eccentric sleeve 1
Although bearing metal may be interposed between 6 and the large end of the connecting rod 13, in this case, the bearing metal is integrally fixed to the connecting rod 13 and the eccentric sleeve 16. Is desirable.

【0035】[0035]

【発明の効果】本発明の機関の圧縮比制御装置による
と、偏心スリーブの内周面に形成される一対の連通溝が
ほぼ半周にしか形成されていないため、クランクピンと
偏心スリーブとの接触面積の増大による軸受耐久性を向
上させることができる。又、これら一対の連通溝を18
0度隔てて形成しているため、高圧側の連通溝に供給さ
れる高圧油が低圧側の連通溝に漏れにくくなり、制御の
応答性が改善されて迅速に圧縮比の切換を行うことがで
きる。
According to the compression ratio control device for an engine of the present invention, since the pair of communication grooves formed on the inner peripheral surface of the eccentric sleeve are formed on only about half the circumference, the contact area between the crankpin and the eccentric sleeve. The bearing durability can be improved by increasing In addition, the pair of communication grooves are
Since they are formed 0 degrees apart, the high pressure oil supplied to the high pressure side communication groove is unlikely to leak to the low pressure side communication groove, the control response is improved, and the compression ratio can be switched quickly. it can.

【0036】しかも、一対の連通溝とストッパピン側と
を常に連通させるようにしたので、連通溝が偏心スリー
ブの内周面のほぼ半周にしか形成されていなくても、偏
心スリーブとクランクピンとの回転位相の如何にかかわ
らず、確実にストッパピン側に高圧油を供給することが
でき、制御の遅れが発生するような不具合をなくすこと
ができる。
Moreover, since the pair of communication grooves and the stopper pin side are always communicated with each other, even if the communication groove is formed only on approximately half of the inner peripheral surface of the eccentric sleeve, the eccentric sleeve and the crank pin are connected. Regardless of the rotation phase, high-pressure oil can be reliably supplied to the stopper pin side, and it is possible to eliminate the problem of delay in control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による機関の圧縮比制御装置の一実施例
における高圧縮比を選択した状態の主要部の断面図であ
る。
FIG. 1 is a cross-sectional view of a main part in a state in which a high compression ratio is selected in an embodiment of a compression ratio control device for an engine according to the present invention.

【図2】そのII−II矢視断面図である。FIG. 2 is a sectional view taken along the line II-II.

【図3】図1におけるストッパピンの部分の抽出拡大断
面図である。
FIG. 3 is an extracted enlarged cross-sectional view of a stopper pin portion in FIG.

【図4】図1におけるIV−IV矢視断面図である。FIG. 4 is a sectional view taken along the line IV-IV in FIG.

【図5】図1におけるV−V矢視断面図である。5 is a cross-sectional view taken along the line VV in FIG.

【図6】図1におけるVI−VI矢視断面図である。6 is a sectional view taken along the line VI-VI in FIG.

【図7】図1におけるVII−VII矢視断面図である。FIG. 7 is a sectional view taken along the line VII-VII in FIG.

【図8】本実施例における油圧制御回路図である。FIG. 8 is a hydraulic control circuit diagram in the present embodiment.

【図9】従来の内燃機関の圧縮比制御装置の一例におけ
る低圧縮比の状態を表す主要部の断面図である。
FIG. 9 is a cross-sectional view of a main portion showing a low compression ratio state in an example of a conventional compression ratio control device for an internal combustion engine.

【図10】そのX−X矢視断面図である。FIG. 10 is a sectional view taken along line XX.

【図11】図8におけるストッパピンの部分を拡大状態
で抽出した断面図である。
11 is a cross-sectional view of the stopper pin portion in FIG. 8 extracted in an enlarged state.

【符号の説明】[Explanation of symbols]

11はクランク軸、12はクランクピン、13は連接
棒、14はピストン、15はピストンピン、16は偏心
スリーブ、16a,16bは係止凹部、17はストッパピン、1
7aはピストン、18は油室、19も油室、20は潤滑用
油通路、21は切換用油通路、22はばね受けキャッ
プ、23は圧縮コイルばね、24は潤滑用連通溝、25
は切換用連通溝、26は潤滑油供給路、27は連通溝、
28は切換用油供給路、29は連通溝、30は潤滑用溝
連通路、31は切換用溝連通路、32はクランクアー
ム、33は1番ジャーナル、34は3番ジャーナル、3
5は5番ジャーナル、36は潤滑油路、37は2番ジャ
ーナル、38は4番ジャーナル、39は制御油路、40
は主ギャラリ、41は油圧切換弁、42は油溜め、43
は潤滑用リリーフ弁、44は潤滑用油ポンプ、45は油
フィルタ、46は切換用油ポンプ、47は電磁制御弁、
48は制御ユニット、49は切換用リリーフ弁である。
11 is a crank shaft, 12 is a crank pin, 13 is a connecting rod, 14 is a piston, 15 is a piston pin, 16 is an eccentric sleeve, 16a and 16b are locking recesses, 17 is a stopper pin, 1
7a is a piston, 18 is an oil chamber, 19 is an oil chamber, 20 is a lubricating oil passage, 21 is a switching oil passage, 22 is a spring receiving cap, 23 is a compression coil spring, 24 is a lubricating communicating groove, and 25
Is a communication groove for switching, 26 is a lubricating oil supply passage, 27 is a communication groove,
28 is a switching oil supply passage, 29 is a communication groove, 30 is a lubricating groove communication passage, 31 is a switching groove communication passage, 32 is a crank arm, 33 is a 1st journal, 34 is a 3rd journal, 3
5 is a 5th journal, 36 is a lubricating oil passage, 37 is a 2nd journal, 38 is a 4th journal, 39 is a control oil passage, 40
Is a main gallery, 41 is a hydraulic switching valve, 42 is an oil sump, 43
Is a relief valve for lubrication, 44 is an oil pump for lubrication, 45 is an oil filter, 46 is an oil pump for switching, 47 is an electromagnetic control valve,
Reference numeral 48 is a control unit, and 49 is a switching relief valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 雅彦 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 平野 孝明 京都府京都市右京区太秦巽町1番地 三菱 自動車エンジニアリング株式会社京都事業 所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Matsuda 5-3-8, Shiba, Minato-ku, Tokyo Mitsubishi Motors Corporation (72) Inventor Takaaki Hirano, No. 1 Uzumasacho, Ukyo-ku, Kyoto Prefecture Mitsubishi Motors Engineering Co., Ltd. Kyoto Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 クランクピンと連接棒の大端部との間に
偏心スリーブが回転自在に嵌合され且つ前記連接棒に対
する前記偏心スリーブの相対回転位置を切り換えるため
の高圧油路と低圧油路とが前記偏心スリーブに穿設され
た内燃機関の圧縮比制御装置において、前記偏心スリー
ブの内周面のほぼ半周に亙って形成され且つ前記高圧油
路に連通する高圧連通溝と、この高圧連通溝とほぼ18
0度隔てて前記偏心スリーブの内周面のほぼ半周に亙っ
て形成され且つ前記低圧油路に連通する低圧連通溝とを
具えた内燃機関の圧縮比制御装置。
1. An eccentric sleeve is rotatably fitted between a crank pin and a large end of a connecting rod, and a high pressure oil passage and a low pressure oil passage for switching a relative rotational position of the eccentric sleeve with respect to the connecting rod. In a compression ratio control device for an internal combustion engine having a hole formed in the eccentric sleeve, a high-pressure communication groove formed over almost half of the inner peripheral surface of the eccentric sleeve and communicating with the high-pressure oil passage, and the high-pressure communication groove. About 18 with a groove
A compression ratio control device for an internal combustion engine, comprising: a low pressure communication groove which is formed over approximately half a circumference of an inner peripheral surface of the eccentric sleeve and is communicated with the low pressure oil passage at an interval of 0 degree.
【請求項2】 クランクピンと連接棒の大端部との間に
回転自在に嵌合される偏心スリーブと、前記連接棒に組
み込まれ且つ前記偏心スリーブに相隔てて形成された一
対の係合部の何れかに係合して当該連接棒と前記偏心ス
リーブとの相対回転位置を切り換えるストッパピンと、
前記クランクピンからクランクジャーナルに亙って穿設
され且つこのクランクジャーナル側から圧油が供給され
る第一の油路と、この第一の油路に交差状態で連通する
ように前記クランクピンに穿設され且つ両端がこのクラ
ンクピンの外周面に開口する第二の油路と、この第二の
油路に常に連通するように前記偏心スリーブの内周面の
ほぼ半周に亙って形成された連通溝と、この連通溝に接
続するように前記偏心スリーブに放射状に穿設された複
数本の第三の油路と、これら第三の油路と常に連通する
ように前記連接棒の大端部の内周面の周方向に沿って円
弧状に形成された連通溝と、この連通溝に接続するよう
に前記連接棒の大端部に穿設されて前記ストッパピンを
少なくとも一方の前記係合部側に付勢する圧油を供給す
るための第四の油路とを具えた内燃機関の圧縮比制御装
置。
2. An eccentric sleeve rotatably fitted between a crank pin and a large end portion of the connecting rod, and a pair of engaging portions incorporated in the connecting rod and spaced from the eccentric sleeve. A stopper pin that engages with any of the above to switch the relative rotational position between the connecting rod and the eccentric sleeve,
A first oil passage that is bored from the crank pin across the crank journal and to which pressure oil is supplied from the crank journal side, and the crank pin so as to communicate with the first oil passage in an intersecting state. A second oil passage that is bored and has both ends open to the outer peripheral surface of the crank pin, and is formed over almost half of the inner peripheral surface of the eccentric sleeve so as to always communicate with the second oil passage. Communication groove, a plurality of third oil passages radially formed in the eccentric sleeve so as to be connected to the communication groove, and a large diameter of the connecting rod so as to always communicate with these third oil passages. A communication groove formed in an arc shape along the circumferential direction of the inner peripheral surface of the end portion, and at least one of the stopper pins formed in the large end portion of the connecting rod so as to be connected to the communication groove. Fourth oil for supplying pressure oil for urging to the engaging part side Compression ratio control apparatus for an internal combustion engine equipped with and.
JP4073749A 1992-03-30 1992-03-30 Compression ratio control device for internal combustion engine Expired - Lifetime JP2730387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4073749A JP2730387B2 (en) 1992-03-30 1992-03-30 Compression ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4073749A JP2730387B2 (en) 1992-03-30 1992-03-30 Compression ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH05280382A true JPH05280382A (en) 1993-10-26
JP2730387B2 JP2730387B2 (en) 1998-03-25

Family

ID=13527213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4073749A Expired - Lifetime JP2730387B2 (en) 1992-03-30 1992-03-30 Compression ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2730387B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053225A1 (en) * 2004-11-04 2006-05-11 Daimlerchrysler Ag Reciprocating piston engine for motor vehicle has locking device which has two adjustable bolts and first spring element is arranged between bolts which presses bolts
JP2012117423A (en) * 2010-11-30 2012-06-21 Suzuki Motor Corp Engine oil pump arrangement structure
JP2013011206A (en) * 2011-06-29 2013-01-17 Nissan Motor Co Ltd Multiple linkage type piston-crank mechanism of internal combustion engine
CN106150708A (en) * 2015-05-15 2016-11-23 丰田自动车株式会社 Internal combustion engine
CN108843449A (en) * 2018-09-11 2018-11-20 吉林大学 A kind of single-cylinder engine with hydraulic variable compression ratio mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367635U (en) * 1986-10-22 1988-05-07
JPS6371443U (en) * 1986-10-29 1988-05-13
JPS63174541U (en) * 1986-12-03 1988-11-11
JPH03267533A (en) * 1990-03-19 1991-11-28 Mitsubishi Motors Corp Variable compression ratio device for internal combustion engine
JP3092539U (en) * 2002-09-03 2003-03-20 瑞軒科技股▲ふん▼ 有限公司 Monitor pedestal
JP3127052U (en) * 2006-09-07 2006-11-16 奇▲こう▼科技股▲ふん▼有限公司 Electronic device cooling fan

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367635U (en) * 1986-10-22 1988-05-07
JPS6371443U (en) * 1986-10-29 1988-05-13
JPS63174541U (en) * 1986-12-03 1988-11-11
JPH03267533A (en) * 1990-03-19 1991-11-28 Mitsubishi Motors Corp Variable compression ratio device for internal combustion engine
JP3092539U (en) * 2002-09-03 2003-03-20 瑞軒科技股▲ふん▼ 有限公司 Monitor pedestal
JP3127052U (en) * 2006-09-07 2006-11-16 奇▲こう▼科技股▲ふん▼有限公司 Electronic device cooling fan

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053225A1 (en) * 2004-11-04 2006-05-11 Daimlerchrysler Ag Reciprocating piston engine for motor vehicle has locking device which has two adjustable bolts and first spring element is arranged between bolts which presses bolts
JP2012117423A (en) * 2010-11-30 2012-06-21 Suzuki Motor Corp Engine oil pump arrangement structure
JP2013011206A (en) * 2011-06-29 2013-01-17 Nissan Motor Co Ltd Multiple linkage type piston-crank mechanism of internal combustion engine
CN106150708A (en) * 2015-05-15 2016-11-23 丰田自动车株式会社 Internal combustion engine
JP2016217193A (en) * 2015-05-15 2016-12-22 トヨタ自動車株式会社 Internal combustion engine
US10393012B2 (en) 2015-05-15 2019-08-27 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
CN108843449A (en) * 2018-09-11 2018-11-20 吉林大学 A kind of single-cylinder engine with hydraulic variable compression ratio mechanism

Also Published As

Publication number Publication date
JP2730387B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
US10273835B2 (en) Valve opening/closing timing control apparatus
US5893345A (en) Valve control apparatus for an internal combustion engine
JP6838772B2 (en) Variable capacity oil pump
EP0777037B2 (en) Intenal combustion engine with valve timing control device
JP2002513883A (en) A device that adjusts the rotation angle of the shaft hydraulically with respect to the drive pulley
JP3974998B2 (en) Hydraulic mechanical continuously variable transmission for vehicles
JP3310490B2 (en) Valve train for internal combustion engine
US10273836B2 (en) Valve opening/closing timing control apparatus
JPH05280382A (en) Compression ratio control device for internal combustion engine
JP2688728B2 (en) Compression ratio control device for internal combustion engine
JP2005120967A (en) Forced opening/closing valve system
JPH05280383A (en) Compression ratio control device for internal combustion engine
JP2587580Y2 (en) Oil pump relief valve
JPH04295166A (en) Horizontally installed cylinder type four-cycle internal combustion engine
JP2000064866A (en) Variable compression ratio device for internal combustion engine
JP2785425B2 (en) Variable compression ratio device for internal combustion engine
KR100305039B1 (en) One-head type piston compressor
JP2842113B2 (en) Variable valve timing control device
JP2624050B2 (en) Method for controlling compression ratio of internal combustion engine
JPH05340277A (en) Buffer mechanism of variable compression ratio device for internal combustion engine
JPH089386Y2 (en) Variable compression ratio device for internal combustion engine
US10563575B2 (en) Arrangement of a switching valve module in a connecting rod of a reciprocating internal combustion engine
JPH0734831A (en) Intake/exhaust valve drive control device of internal combustion engine
JPH077648Y2 (en) Lubrication structure of automatic transmission
JP3354030B2 (en) Engine Valve Actuator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971118