JPH05279797A - Cold rolled steel sheet having extremely superior deep drawability and bulging property and its production - Google Patents

Cold rolled steel sheet having extremely superior deep drawability and bulging property and its production

Info

Publication number
JPH05279797A
JPH05279797A JP3011367A JP1136791A JPH05279797A JP H05279797 A JPH05279797 A JP H05279797A JP 3011367 A JP3011367 A JP 3011367A JP 1136791 A JP1136791 A JP 1136791A JP H05279797 A JPH05279797 A JP H05279797A
Authority
JP
Japan
Prior art keywords
value
content
steel sheet
steel
mean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3011367A
Other languages
Japanese (ja)
Other versions
JP3185227B2 (en
Inventor
Yoshihiro Hosoya
佳弘 細谷
Junichi Inagaki
淳一 稲垣
Akihiko Nishimoto
昭彦 西本
Hideji Kanefuji
秀司 金藤
Hiroshi Wakasa
浩 若狭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp filed Critical NKK Corp
Priority to JP01136791A priority Critical patent/JP3185227B2/en
Publication of JPH05279797A publication Critical patent/JPH05279797A/en
Application granted granted Critical
Publication of JP3185227B2 publication Critical patent/JP3185227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a cold rolled steel sheet having superior deep drawability and bulging deformability by preparing a steel which has a specific composition having respectively specified C, S, N, Ti, and Nb contents and where the inplane mean value of Lankford value and the work hardening index in the prescribed tensile strain region are specified, respectively. CONSTITUTION:The cold rolled steel sheet having a composition which consists of, by weight, <=0.0030% C, <=0.05% Si, 0.05-0.50% Mn, <=0.02% P, =0.02% S, 0.03-0.06% Sol. Al, <=0.0040% N, 0.005-0.0015% Nb, 0.04-0.14% Ti, and the balance Fe with inevitable impurities and where (Ti*/-[C]) satisfying equations I,II {where [%C], [%Ti], and [%S] represent C content (%), Ti content (%), and S content (%), respectively} and inequality III {where [%Nb] represents Nb content(%)} is regulated to >=7 is produced. In this cold rolled steel sheet, the inplane mean value (means-r) of Lankford value defined by equation IV {where [r0] means r-value in a steel sheet rolling direction} and the work hardening index evaluated in the region of 10-20% tensile strain are regulated to >=2.8 and >=0.26, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は優れた深絞り成形性と張
出し成形性とを有し、且つ、耐深絞り脆性を改善した超
深絞り用冷延鋼板およびその製造法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-rolled steel sheet for super deep drawing which has excellent deep drawing formability and stretch forming property and has improved deep drawing embrittlement resistance, and a method for producing the same.

【0002】[0002]

【従来技術】極低炭素鋼にNb、Ti、Zr、B等の炭
・窒化物形成元素を添加した所謂IF鋼(Interstitial
Free Steel)は、深絞り性と非時効性が要求される高
深絞り型冷延鋼板(EDDQ)を連続焼鈍で製造するた
めの有力な素材として注目され、今日の連続焼鈍プロセ
スの普及とともにその重要性が認識されてきた。
2. Description of the Related Art So-called IF steel (Interstitial), which is made by adding carbon / nitride forming elements such as Nb, Ti, Zr, and B to ultra-low carbon steel.
Free Steel) is attracting attention as a powerful material for producing high deep drawing cold rolled steel sheets (EDDQ) by continuous annealing, which requires deep drawing and non-aging properties, and its importance as the continuous annealing process spreads today. Sex has been recognized.

【0003】従来、一般的に使用されてきたIF鋼は、
Tiを添加したTi−IF鋼と、Nbを添加したNb−
IF鋼である。特に、Tiは、強力な炭・窒化物形成元
素であると同時に、鋼中Sも硫化物として析出粗大化さ
せるため、Ti−IF鋼は極めて優れた深絞り性と延性
が幅広い成分範囲で安定して得られる特徴がある。しか
し一方では、酸化し易く、製鋼時に酸化物系の表面欠陥
が発生するため、厳密なスラブ手入れが必要である。ま
た、鋼中Cを完全にTiCとして固定した場合、粒界強
度が低下し、深絞り脆性(2次加工脆化現象)が起こる
等の問題が顕在化する。この問題に対しては、微量のボ
ロン(B)を添加することが有効であることも知られて
いるが、その場合、Bを10ppm以上添加するとr値
の劣化(深絞り性の劣化)が問題となる。
The IF steel that has been generally used in the past is
Ti-IF steel containing Ti and Nb containing Nb-
IF steel. In particular, Ti is a strong carbon / nitride forming element, and at the same time, it causes S in steel to precipitate and coarsen as sulfides, so Ti-IF steel has extremely excellent deep drawability and ductility in a wide range of components. There are features that can be obtained. However, on the other hand, oxidization is easy and oxide-based surface defects occur during steelmaking, so strict slab care is required. Further, when C in steel is completely fixed as TiC, the grain boundary strength decreases, and problems such as deep drawing embrittlement (secondary work embrittlement phenomenon) occur. It is known that addition of a small amount of boron (B) is effective for this problem, but in that case, if B is added in an amount of 10 ppm or more, the r value is deteriorated (deep drawability is deteriorated). It becomes a problem.

【0004】これに対し、Nb−IF鋼は主として鋼中
Cのみを固定し、鋼中固溶Cを固定することでTi−I
F鋼と同様優れた深絞り性が得られが、Nbが過剰に添
加されるとNbC析出物による粒成長の抑制作用が顕著
となり、材質が劣化する。このため、Ti−IF鋼に比
べて適正成分範囲が狭いという問題がある。しかし、T
iに比べて酸化物系のスラブ欠陥を作らないため表面品
質が優れている、再結晶集合組織の形成過程でTi−I
F鋼とは異なるr値の面内異方性が現われる等の点が明
らかにされている。
On the other hand, in Nb-IF steel, Ti-I is mainly formed by fixing only C in steel and fixing solid solution C in steel.
Similar to F steel, excellent deep drawability can be obtained, but when Nb is excessively added, the effect of suppressing grain growth due to NbC precipitates becomes remarkable and the material deteriorates. Therefore, there is a problem that the appropriate component range is narrower than that of Ti-IF steel. But T
The surface quality is superior because it does not create oxide-based slab defects compared to i.
It has been clarified that in-plane anisotropy of r value different from that of F steel appears.

【0005】上記の問題を解決する方法として、Tiと
Nbの持つ特質を融合させる観点から、NbとTiを複
合添加する技術(特公昭61−32375号)が開示さ
れている。この技術の骨子は、0.003〜0.025
wt%のNbと、0.010〜0.037wt%のTi
をそれぞれ、 Nb>2.23C {(48/14)・(N−0.002)}<Ti<(4C+3.43N) の条件を満足する範囲で添加するもので、これにより、
上記したNbとTiの集合組織上の差異を融合させ、r
値の面内異方性を改善する、コイル内の材質変動を小さ
くする等の効果を得ることを内容としている。
As a method for solving the above problems, a technique of adding Nb and Ti in combination (Japanese Patent Publication No. 61-32375) is disclosed from the viewpoint of combining the characteristics of Ti and Nb. The essence of this technology is 0.003-0.025
wt% Nb and 0.010 to 0.037 wt% Ti
Are added in a range satisfying the condition of Nb> 2.23C {(48/14) · (N-0.002)} <Ti <(4C + 3.43N), respectively.
Fusing the differences in texture of Nb and Ti described above,
The contents are to obtain effects such as improving the in-plane anisotropy of the value and reducing the material variation in the coil.

【0006】[0006]

【発明が解決しようとする課題】しかし、このようにN
bとTiを相補する形で添加した場合、それぞれの元素
の炭・窒化物の溶解度から判断して、CがNbとTiに
当量比で分配されて析出すると仮定すると、いずれも析
出しにくくなり、析出したとしても微細に析出するよう
になる。したがって、単純に鋼中C量あるいはN量との
化学量論比のみでNb、Tiを添加するだけでは、面内
異方性やコイル内の材質変動が改善されたとしても、材
質の絶対的レベルの改善という点では十分満足できるも
のとはならない。このことは、上記特公昭61−323
75号に開示された実施例中のn値とmean−r値の
バランス(n値≒0.26〜0.30、mean−r値
≒1.85〜1.95)から判断しても容易に理解で
き、本発明の目的とするような〔mean−r〕値−n
値バランスを達成するものでないことは明らかである。
However, in this way, N
When b and Ti are added in a complementary form, judging from the solubilities of carbon and nitride of each element, assuming that C is distributed in Nb and Ti in an equivalence ratio, it becomes difficult to precipitate either. However, even if it is deposited, it will be finely deposited. Therefore, even if the in-plane anisotropy and material variation in the coil are improved by simply adding Nb and Ti only by the stoichiometric ratio with the C content or N content in the steel, the absolute material In terms of level improvement, it is not completely satisfactory. This is described in Japanese Patent Publication No. 61-323.
It is easy to judge from the balance between the n value and the mean-r value (n value ≈ 0.26 to 0.30, mean-r value ≈ 1.85 to 1.95) in the example disclosed in No. 75. [Mean-r] value-n as is the object of the present invention.
Clearly, it does not achieve value balance.

【0007】近年、自動車車体に使用されている冷延鋼
板は、車体部品形状の複雑化、一体成形の促進、合金化
亜鉛メッキ鋼板の適用部品拡大などに呼応して、従来の
超深絞り用鋼板(EDDQ)を超える成形性を有する鋼
板に対する要求が増している。こうした観点から、Ti
添加IF鋼をベースとして、深絞り成形重視型と張出し
成形重視型とに分けて製品開発を行った例(柴崎ら:
「材料とプロセス 2(1989)」p.1931)も
報告されているが、この報告におけるn値とmean−
r値のバランスは、前者(深絞り成形重視型)でn値=
0.265、mean−r値=2.50、後者(張出し
成形重視型)でn値=0.278、mean−r値=
2.15程度である。
In recent years, cold-rolled steel sheets used for automobile bodies are used for conventional ultra-deep drawing in response to the complicated shape of vehicle body parts, promotion of integral molding, expansion of applicable parts of galvannealed steel sheet. There is an increasing demand for steel sheets having formability that exceeds that of steel sheets (EDDQ). From this viewpoint, Ti
An example of product development based on the additive IF steel, divided into a deep drawing forming type and a stretch forming type (Shibasaki et al.
"Materials and Process 2 (1989)" p. 1931), but the n value and mean-
The balance of r values is n value = the former (deep drawing forming type).
0.265, mean-r value = 2.50, n value = 0.278, mean-r value = in the latter (protruding molding-oriented type)
It is about 2.15.

【0008】本発明は、実用上の観点から深絞り成形性
と張出し成形性を兼備した鋼板およびその製造法を開示
するもので、深絞り性を評価する指標であるmean−
r値が2.8以上、張出し性を評価する指標であるn値
が0.26以上である鋼板を得ることその目的とする。
また、本発明はn値とmean−r値のみならず、良好
な耐深絞り脆性および亜鉛メッキ密着性を有する鋼板を
得ることもその目的としている。
The present invention discloses a steel sheet having both deep drawing formability and stretch forming formability from a practical point of view, and a method for producing the same, which is an index for evaluating deep drawing property.
The purpose is to obtain a steel sheet having an r value of 2.8 or more and an n value of 0.26 or more, which is an index for evaluating the overhang property.
Another object of the present invention is to obtain a steel sheet having not only n value and mean-r value but also good deep drawing embrittlement resistance and zinc plating adhesion.

【0009】[0009]

【課題を解決するための手段】このため、本発明は次の
ような構成を有する。 (1) C≦0.0030wt%、Si≦0.05wt
%、0.05wt%≦Mn≦0.50wt%、P≦0.
02wt%、S≦0.02wt%、0.03wt%≦S
ol.Al≦0.06wt%、N≦0.0040wt
%、0.005wt%≦Nb≦0.015wt%、0.
04wt%≦Ti≦0.14wt%を含有し、且つ、 (Ti*/〔C〕)≧7 但し、 Ti*/〔C〕=〔wt%Ti*〕/4〔wt
%C〕 〔wt%Ti*〕=〔wt%Ti〕−{(48/14)
・〔wt%N〕+(48/32)・〔wt%S〕} 〔wt%C〕 :C含有量(wt%) 〔wt%Ti〕:Ti含有量(wt%) 〔wt%N〕 :N含有量(wt%) 〔wt%S〕 :S含有量(wt%) 7≦(〔wt%Ti〕/〔wt%Nb〕)≦18 但し、 〔wt%Ti〕:Ti含有量(wt%) 〔wt%Nb〕:Nb含有量(wt%) を満足し、残部Feおよび不可避的不純物からなる鋼組
成を有する、下式で定義されるランクフォード値の面内
平均値〔mean−r〕が2.8以上、10%〜20%
の引張り歪域で評価した加工硬化指数nが0.26以上
である極めて優れた深絞り成形性と張出し成形性を有す
る冷延鋼板。 〔mean−r〕=(〔r0〕+2〔r45〕+〔r90〕)/4 但し、 〔r0〕 :鋼板圧延方向でのr値 〔r45〕:鋼板圧延方向に対し45°方向でのr値 〔r90〕:鋼板圧延方向に対し90°方向でのr値 (2) C≦0.0030wt%、Si≦0.05wt
%、0.05wt%≦Mn≦0.50wt%、P≦0.
02wt%、S≦0.02wt%、0.03wt%≦S
ol.Al≦0.06wt%、N≦0.0040wt
%、0.005wt%≦Nb≦0.015wt%、0.
04wt%≦Ti≦0.14wt%を含有し、且つ、 (Ti*/〔C〕)≧7 但し、 Ti*/〔C〕=〔wt%Ti*〕/4〔wt
%C〕 〔wt%Ti*〕=〔wt%Ti〕−{(48/14)
・〔wt%N〕+(48/32)・〔wt%S〕} 〔wt%C〕 :C含有量(wt%) 〔wt%Ti〕:Ti含有量(wt%) 〔wt%N〕 :N含有量(wt%) 〔wt%S〕 :S含有量(wt%) 7≦(〔wt%Ti〕/〔wt%Nb〕)≦18 但し、 〔wt%Ti〕:Ti含有量(wt%) 〔wt%Nb〕:Nb含有量(wt%) を満足し、残部Feおよび不可避的不純物からなる組成
を有する鋼を、常法にて熱間圧延、冷間圧延および連続
焼鈍することを特徴とする、下式で定義されるランクフ
ォード値の面内平均値〔mean−r〕が2.8以上、
10%〜20%の引張り歪域で評価した加工硬化指数n
が0.26以上である極めて優れた深絞り成形性と張出
し成形性を有する冷延鋼板の製造方法。 〔mean−r〕=(〔r0〕+2〔r45〕+〔r90〕)/4 但し、 〔r0〕 :鋼板圧延方向でのr値 〔r45〕:鋼板圧延方向に対し45°方向でのr値 〔r90〕:鋼板圧延方向に対し90°方向でのr値 (3) 上記(2)において、スラブ加熱温度≦120
0℃、熱延巻取温度:580〜640℃で熱間圧延した
後、圧延率:76〜84%で冷間圧延し、次いで800
℃〜880℃で連続焼鈍することを特徴とする極めて優
れた深絞り成形性と張出し成形性を有する冷延鋼板の製
造方法。
Therefore, the present invention has the following configuration. (1) C ≦ 0.0030 wt%, Si ≦ 0.05 wt
%, 0.05 wt% ≦ Mn ≦ 0.50 wt%, P ≦ 0.
02 wt%, S ≦ 0.02 wt%, 0.03 wt% ≦ S
ol. Al ≦ 0.06 wt%, N ≦ 0.0040 wt
%, 0.005 wt% ≤ Nb ≤ 0.015 wt%, 0.
04 wt% ≤ Ti ≤ 0.14 wt% and (Ti * / [C]) ≥ 7 where Ti * / [C] = [wt% Ti *] / 4 [wt
% C] [wt% Ti *] = [wt% Ti]-{(48/14)
-[Wt% N] + (48/32)-[wt% S]} [wt% C]: C content (wt%) [wt% Ti]: Ti content (wt%) [wt% N] : N content (wt%) [wt% S]: S content (wt%) 7 ≦ ([wt% Ti] / [wt% Nb]) ≦ 18 However, [wt% Ti]: Ti content ( wt%) [wt% Nb]: Nb content (wt%) is satisfied, and the steel composition is composed of the balance Fe and unavoidable impurities. r] is 2.8 or more, 10% to 20%
The cold-rolled steel sheet having extremely excellent deep drawing formability and stretch formability, which has a work hardening index n of 0.26 or more evaluated in the tensile strain range. [Mean-r] = ([r 0] +2 [r 45] + [r 90]) / 4 where [r 0]: r value of steel plate rolling direction [r 45]: 45 ° with respect to the steel sheet rolling direction Value in the direction [r 90 ]: r value in the direction of 90 ° with respect to the steel plate rolling direction (2) C ≦ 0.0030 wt%, Si ≦ 0.05 wt
%, 0.05 wt% ≦ Mn ≦ 0.50 wt%, P ≦ 0.
02 wt%, S ≦ 0.02 wt%, 0.03 wt% ≦ S
ol. Al ≦ 0.06 wt%, N ≦ 0.0040 wt
%, 0.005 wt% ≤ Nb ≤ 0.015 wt%, 0.
04 wt% ≤ Ti ≤ 0.14 wt% and (Ti * / [C]) ≥ 7 where Ti * / [C] = [wt% Ti *] / 4 [wt
% C] [wt% Ti *] = [wt% Ti]-{(48/14)
-[Wt% N] + (48/32)-[wt% S]} [wt% C]: C content (wt%) [wt% Ti]: Ti content (wt%) [wt% N] : N content (wt%) [wt% S]: S content (wt%) 7 ≦ ([wt% Ti] / [wt% Nb]) ≦ 18 However, [wt% Ti]: Ti content ( wt%) [wt% Nb]: Steel that satisfies the Nb content (wt%) and has a composition consisting of balance Fe and unavoidable impurities is hot-rolled, cold-rolled and continuously annealed by a conventional method. The in-plane average value [mean-r] of the Rank Ford value defined by the following equation is 2.8 or more,
Work hardening index n evaluated in the tensile strain region of 10% to 20%
Is 0.26 or more, which is a method for producing a cold-rolled steel sheet having extremely excellent deep drawing formability and stretch formability. [Mean-r] = ([r 0] +2 [r 45] + [r 90]) / 4 where [r 0]: r value of steel plate rolling direction [r 45]: 45 ° with respect to the steel sheet rolling direction Value in the direction [r 90 ]: r value in the 90 ° direction with respect to the steel sheet rolling direction (3) In the above (2), the slab heating temperature ≦ 120
After hot rolling at 0 ° C. and hot rolling coiling temperature: 580 to 640 ° C., cold rolling is performed at a rolling ratio: 76 to 84%, and then 800.
A method for producing a cold-rolled steel sheet having extremely excellent deep drawing formability and stretch formability, which is characterized in that continuous annealing is carried out at a temperature of ℃ to 880 ℃.

【0010】以下、本発明の詳細を説明する。本発明
は、成分設計上の許容範囲が広い、製造条件に対し
て材質が安定している、Nb添加鋼に比べて粒成長性
に優れる等の点から、Ti添加IF鋼をベースとし、さ
らに、表面性状の改善、集合組織制御、耐深絞り脆性改
善を狙いとして、Ti量に比して微量で且つTi量との
関係で限定された量のNbを添加することを基本的な特
徴としている。
The details of the present invention will be described below. The present invention is based on Ti-added IF steel, which has a wide allowable range in component design, is stable against manufacturing conditions, and is superior in grain growth compared to Nb-added steel. For the purpose of improving the surface properties, controlling the texture, and improving the resistance to deep drawing embrittlement, the basic feature is to add a small amount of Nb relative to the Ti amount and a limited amount of Nb in relation to the Ti amount. There is.

【0011】まず、本発明において上述した従来技術と
根本的に異なる点は、以下の式で定義されるTi*/
〔C〕(原子量%比)を7以上と限定することにある。 Ti*/〔C〕=〔wt%Ti*〕/4〔wt%C〕 〔wt%Ti*〕=〔wt%Ti〕−{(48/14)・〔wt%N〕+ (48/32)・〔wt%S〕} 但し、 〔wt%C〕 :C含有量(wt%) 〔wt%Ti〕:Ti含有量(wt%) 〔wt%N〕 :N含有量(wt%) 〔wt%S〕 :S含有量(wt%)
First, the fundamental difference of the present invention from the above-mentioned prior art is that Ti * / is defined by the following equation.
[C] (atomic weight ratio) is limited to 7 or more. Ti * / [C] = [wt% Ti *] / 4 [wt% C] [wt% Ti *] = [wt% Ti]-{(48/14). [Wt% N] + (48/32 ). [Wt% S]} where [wt% C]: C content (wt%) [wt% Ti]: Ti content (wt%) [wt% N]: N content (wt%) [ wt% S]: S content (wt%)

【0012】本発明では鋼中Cの固定に際して十分な量
のTiを添加することによって、炭・窒化物の完全固定
とそれら析出物の粗大化を狙いとしている。図1は、T
i:0.01〜0.20wt%、Nb:0wt%および
0.002〜0.03wt%の範囲の鋼について、上記
Ti*/〔C〕が下記に定義されるmean−r値およ
びΔr値に及ぼす影響を調べ、これを整理したものであ
る。 〔mean−r〕=(〔r0〕+2〔r45〕+〔r90〕)/4 Δr=(〔r0〕+〔r90〕−2〔r45〕)/2 但し、 〔r0〕 :鋼板圧延方向でのr値 〔r45〕:鋼板圧延方向に対し45°方向でのr値 〔r90〕:鋼板圧延方向に対し90°方向でのr値 同図によれば、微量のNbが添加された場合、固溶Nb
としての熱延板組織の細粒化により、mean−r値の
レベルが上昇することが判る。
The present invention aims at the complete fixation of carbon / nitride and the coarsening of their precipitates by adding a sufficient amount of Ti when fixing C in steel. Figure 1 shows T
i: 0.01 to 0.20 wt%, Nb: 0 wt%, and 0.002 to 0.03 wt% of steel, the above-mentioned Ti * / [C] means-r value and Δr value defined below. This is a summary of the effects on the. [Mean-r] = ([r 0] +2 [r 45] + [r 90]) / 4 [Delta] r = ([r 0] + [r 90] -2 [r 45]) / 2 where [r 0 ]: R value in the rolling direction of the steel plate [r 45 ]: r value in the 45 ° direction with respect to the rolling direction of the steel plate [r 90 ]: r value in the 90 ° direction with respect to the rolling direction of the steel plate When Nb is added, solid solution Nb
It is understood that the level of the mean-r value rises due to the fine graining of the structure of the hot-rolled sheet.

【0013】また、図2は、Ti:0.01〜0.20
wt%、Nb:0wt%および0.002wt%〜0.
03wt%の範囲の鋼について、TiとNbの重量%比
(〔wt%Ti〕/〔wt%Nb〕)がmean−r値
および加工硬化指数n(10%〜20%の引張り歪域で
評価したn値)に及ぼす影響について調べ、これを整理
したものである。これによれば、〔wt%Ti〕/〔w
t%Nb〕を7〜18の範囲に設定した場合にのみ優れ
たmean−r値(2.8以上)とn値(0.26)の
バランスが得られることが判る。
Further, FIG. 2 shows that Ti: 0.01 to 0.20.
wt%, Nb: 0 wt% and 0.002 wt% to 0.
For steel in the range of 03 wt%, the weight% ratio of Ti and Nb ([wt% Ti] / [wt% Nb]) is evaluated in the mean-r value and the work hardening index n (tensile strain range of 10% to 20%). This is a summary of the effect on the n value). According to this, [wt% Ti] / [w
It can be seen that an excellent balance between the mean-r value (2.8 or more) and the n value (0.26) can be obtained only when t% Nb] is set in the range of 7 to 18.

【0014】そこで、本発明における最も重要な添加元
素であるTiとNbについて、その限定理由を述べる。
Tiは、既に述べたように強力な炭・窒化物形成元素で
あり、上記の〜のメリットが得られる元素である。
特に、平衡状態で鋼中Cを固定するためにはTi*/
〔C〕≧1であればよいが、析出物のサイズを十分に粗
大化させて優れた粒成長性とともに、<111>//N
D方位の再結晶粒の集積を高めるためには、Ti*/
〔C〕≧7とすることが好ましいことが図1からも示唆
される。したがって、本発明では、Ti*/〔C〕≧7
と規定する。
Then, the reasons for limiting the most important additional elements in the present invention, Ti and Nb, will be described.
As described above, Ti is a strong carbon / nitride forming element, and is an element that can obtain the above-mentioned merits.
In particular, in order to fix C in steel in equilibrium, Ti * /
[C] ≧ 1 is sufficient, but the size of the precipitates is sufficiently coarsened to provide excellent grain growth and <111> // N
In order to enhance the accumulation of recrystallized grains in the D direction, Ti * /
It is suggested from FIG. 1 that [C] ≧ 7 is preferable. Therefore, in the present invention, Ti * / [C] ≧ 7
Stipulate.

【0015】さらに本発明では、上記の規定に加えTi
添加量として0.04wt%≦Ti≦0.14wt%と
規定する。Tiが0.04wt%未満では鋼中Cの固定
は可能であるが、TiCの粗大化が起こり難くなり、プ
ロセス上、熱延時に高温で巻取る等の対策が必要とな
る。一方、0.14wt%を超えて添加しても顕著な添
加効果が認められないばかりでなく、表面欠陥の顕在
化、合金コストの上昇等が問題となる。
Further, in the present invention, in addition to the above stipulation, Ti
The addition amount is defined as 0.04 wt% ≦ Ti ≦ 0.14 wt%. When Ti is less than 0.04 wt%, C in steel can be fixed, but coarsening of TiC is less likely to occur, and measures such as winding at high temperature during hot rolling are required in the process. On the other hand, not only when the content exceeds 0.14 wt%, a remarkable addition effect is not observed, but also surface defects are revealed and alloy cost is increased.

【0016】Nbは、本発明における必須添加元素であ
るが、その添加量は0.005〜0.015wt%の微
量な範囲に限定する。特に、上述した図2に示されるよ
うに〔wt%Ti〕/〔wt%Nb〕を7〜18の範囲
に限定することが、さらその添加効果を顕著なものにす
る。また、Nbを微量添加することは、耐深絞り脆性の
改善にも効果があることが明らかになった。このような
効果を得るためも、Nb添加の下限は0.005wt%
と規定される。また、添加量の上限については、製造条
件による材質変動が大きくなること、材質的に逆に硬化
すること、合金コストが上昇すること等の点から0.0
15wt%に限定する。
Nb is an essential addition element in the present invention, but its addition amount is limited to a minute range of 0.005 to 0.015 wt%. In particular, limiting [wt% Ti] / [wt% Nb] to a range of 7 to 18 as shown in FIG. Further, it has been clarified that the addition of a small amount of Nb is effective in improving the deep drawing embrittlement resistance. In order to obtain such effects, the lower limit of Nb addition is 0.005 wt%
Is prescribed. In addition, the upper limit of the addition amount is 0.0 from the viewpoint that the material changes greatly depending on the manufacturing conditions, the material hardens conversely, the alloy cost increases, and the like.
Limited to 15 wt%.

【0017】さらに、本発明における副次的効果とし
て、Ti*/〔C〕≧7の範囲でTiを添加した鋼にお
いて微量のNbを添加すると、図3に示すように、連続
鋳造スラブの表面品質が著しく改善されることが明らか
になった。このような効果が得られるメカニズムは必ず
しも明らかではないが、微量のNbが存在することによ
って、スラブ表面でのTiの酸化反応が抑制されるため
であると考えられる。このことによって、本発明で開示
した技術は、亜鉛メッキ鋼板の下地鋼板としても有用性
を有することが明らかになった。
Further, as a secondary effect of the present invention, when a small amount of Nb is added to the steel containing Ti in the range of Ti * / [C] ≧ 7, as shown in FIG. It has been found that the quality is significantly improved. The mechanism by which such an effect is obtained is not necessarily clear, but it is considered that the presence of a small amount of Nb suppresses the oxidation reaction of Ti on the slab surface. From this, it became clear that the technology disclosed in the present invention has utility as a base steel sheet for galvanized steel sheets.

【0018】次に、他の元素の限定理由について説明す
る。 C:n値の向上のためには、TiCのサイズのみなら
ず、その総量を限定する必要があり、本発明では高n値
を得るためCの上限を0.0030wt%と規定する。 Si:一般の鋼のレベル程度でも、本発明の作用効果に
特に悪影響を及ぼすものではないが、延性のレベルを高
く維持するため、0.05wt%以下とする。 Mn:TiがSの固定に寄与するため、Mnは一般の鋼
のレベルより低くても問題はないが、0.05wt%未
満では溶銑予備処理コストが上昇するため、下限を0.
05wt%と規定する。一方、0.50wt%を超える
とMnによる固溶強化によりYPが上昇し、n値が低下
する。このため、上限は0.50wt%と規定する。 P:Pは粒界脆化元素であり、特に粒界が脆弱になり易
いIF鋼においては、その上限は厳しく管理されなくて
はならない。このため本発明では、0.02wt%をそ
の上限とする。特に、上述した微量Nbの添加による耐
深絞り脆性の顕著な改善効果をより安定的なものとする
ためには、Pは0.01wt%以下とすることが好まし
い。 S:Sは、TiSとして析出することにより有効Ti量
(Ti*)を減少させる。したがって、本発明ではその
上限を0.02wt%と規定する。
Next, the reasons for limiting other elements will be described. In order to improve the C: n value, it is necessary to limit not only the size of TiC but also the total amount thereof. In the present invention, the upper limit of C is specified to be 0.0030 wt% in order to obtain a high n value. Si: Even at the level of ordinary steel, it does not adversely affect the operation and effect of the present invention, but in order to maintain a high level of ductility, it is set to 0.05 wt% or less. Since Mn: Ti contributes to the fixation of S, Mn may be lower than the level of general steel, but if it is less than 0.05 wt%, the hot metal pretreatment cost increases, so the lower limit is set to 0.
It is specified as 05 wt%. On the other hand, if it exceeds 0.50 wt%, YP increases and the n value decreases due to solid solution strengthening by Mn. Therefore, the upper limit is defined as 0.50 wt%. P: P is a grain boundary embrittlement element, and the upper limit must be strictly controlled particularly in IF steel where the grain boundary is liable to become brittle. Therefore, in the present invention, the upper limit is 0.02 wt%. In particular, in order to make the remarkable improvement effect of the deep drawing embrittlement resistance due to the addition of a trace amount of Nb more stable, P is preferably 0.01 wt% or less. S: S reduces the effective Ti amount (Ti *) by precipitating as TiS. Therefore, in the present invention, the upper limit is specified as 0.02 wt%.

【0019】Sol.Al:Ti添加鋼の場合、NはT
iNとして固定されるため、Nを固定するだけの目的で
あれば、連続鋳造が可能な範囲でAlの添加量を低減す
ることはできる。しかし、本発明では、通常のAlキル
ド鋼並みにAlを添加する。これは、極低炭素鋼の鋳造
時の湯流れ性の改善に加えて、Alで脱酸することによ
り、Tiの酸化を抑制し、表面欠陥の発生を減ずるため
である。以上の観点から、Sol.Alとして0.03
wt%〜0.06wt%の範囲に規定する。 N:Nは、IF鋼の材質面からは基本的には低い程好ま
しく、特に、窒化物の減少に伴いmean−r値が改善
される。しかし、本発明ではTi*/〔C〕を十分高い
レベルに設定していため、通常レベル程度のN量の変動
では材質上極端な変化はない。したがって、本発明では
n値、mean−r値に対して許容されるレベルとし
て、その上限を0.0040wt%と規定する。
Sol. In the case of Al: Ti-added steel, N is T
Since it is fixed as iN, for the purpose of only fixing N, the addition amount of Al can be reduced within the range where continuous casting is possible. However, in the present invention, Al is added to the same level as ordinary Al-killed steel. This is because, in addition to improving the flowability of the ultra-low carbon steel during casting, deoxidation with Al suppresses the oxidation of Ti and reduces the occurrence of surface defects. From the above viewpoint, Sol. 0.03 as Al
It is specified in the range of wt% to 0.06 wt%. From the viewpoint of the material of the IF steel, N: N is basically preferably as low as possible, and in particular, the mean-r value is improved as the amount of nitrides is reduced. However, since Ti * / [C] is set to a sufficiently high level in the present invention, there is no extreme change in the material due to the fluctuation of the N content at a normal level. Therefore, in the present invention, the upper limit is defined as 0.0040 wt% as the allowable level for the n value and the mean-r value.

【0020】本発明で開示した鋼板は、常法にて製品と
しても従来の冷延鋼板のレベルを上回る特性を得ること
ができるが、本発明に規定した成分系に最も良好な特性
を付与するための製造方法について以下に開示する。本
発明の成分系に対しては、スラブ加熱温度≦1200
℃、熱延巻取り温度:580〜640℃、冷間圧延率:
76〜84%、連続焼鈍温度:800〜880℃とする
ことが最も好ましい。
The steel sheet disclosed in the present invention can obtain the characteristics exceeding the level of the conventional cold-rolled steel sheet even if it is manufactured as a product by a conventional method, but it imparts the best characteristics to the component system defined in the present invention. The manufacturing method for this will be disclosed below. For the component system of the present invention, slab heating temperature ≤1200
C, hot rolling coiling temperature: 580-640C, cold rolling rate:
Most preferably, it is 76 to 84% and the continuous annealing temperature is 800 to 880 ° C.

【0021】この中で最も重要なのは、熱延巻取り温度
と冷間圧延率である。高いmean−r値を得るために
は、熱延板中の炭・窒化物が粗大化し、さらにフェライ
ト粒径は小さい方が好ましい。前者については、Ti*
/〔C〕≧7とすることにより、巻取り温度を下げるこ
とが可能となる結果、これを達成できる。また、Nbが
固溶Nbとして細粒化に寄与するため、後者の状態が達
成できる。この効果を示す例として、図4に表2中の鋼
番13(Ti−Nb系)と鋼番12(Ti系)における
〔mean−r〕値−n値バランスに及ぼす巻取り温度
の影響(巻き取温度LCT:620℃、巻き取温度HC
T:680℃)を示す。図から明らかなように、Ti−
Nb系のmean−r値は、Ti系のmean−r値よ
りも高く、さらに、620℃巻取りを行うことによって
680℃巻取りよりもmean−r値が上昇することが
判る。以上のような結果を踏まえ、mean−r値の観
点から巻取り温度の上限は640℃とすることが好まし
い。但し、巻取り温度が580℃を下回ると、TiCが
微細に析出するため、製品のmean−r値が低下して
しまう。このため、巻取り温度の下限は580℃とす
る。
The most important of these are the hot rolling coiling temperature and the cold rolling rate. In order to obtain a high mean-r value, it is preferable that the carbon / nitride in the hot-rolled sheet becomes coarse and the ferrite grain size be small. For the former, Ti *
By setting / [C] ≧ 7, the winding temperature can be lowered, and this can be achieved. Further, since Nb contributes to grain refinement as solid solution Nb, the latter state can be achieved. As an example showing this effect, the effect of the coiling temperature on the [mean-r] value-n value balance in steel No. 13 (Ti-Nb system) and steel No. 12 (Ti system) in Table 2 in FIG. 4 ( Winding temperature LCT: 620 ° C, winding temperature HC
T: 680 ° C.). As is clear from the figure, Ti-
It can be seen that the mean-r value of the Nb type is higher than the mean-r value of the Ti type, and further that the winding at 620 ° C increases the mean-r value as compared to the winding at 680 ° C. Based on the above results, the upper limit of the winding temperature is preferably 640 ° C. from the viewpoint of the mean-r value. However, when the winding temperature is lower than 580 ° C., TiC is finely precipitated, so that the mean-r value of the product is lowered. Therefore, the lower limit of the winding temperature is 580 ° C.

【0022】次に、冷間圧延率は、mean−r値と耐
深絞り脆性の観点から決定した。図5は、図4で使用し
た鋼について、スラブ加熱温度H:1250℃、L:1
150℃、巻取り温度LCT:620℃、HCT:68
0℃、冷延率75%、79%、82%の各条件で製造し
た鋼板の深絞り脆化遷移温度Tthとmean−r値の
バランスを示したものである。同図から明らかなよう
に、Ti−IF鋼の深絞り脆化臨界温度(Tth)は、
微量のNb添加で改善される。特に、スラブ加熱温度:
1150℃、巻取り温度:620℃の条件で製造した場
合、Tthは−90℃程度まで改善される。また、Tt
hは、mean−r値と同様に冷圧率依存性が認められ
る。しかし、mean−r値が冷圧率を上げることによ
って改善されるのに対し、Tthは逆に上昇する。これ
は、集合組織の変化に伴う粒界性格の変化と関連した現
象であると考えられる。そして、mean−r値の観点
から冷圧率の下限は76%(望ましくは80%)とする
ことが好ましく、一方、上限に関しては、深絞り脆化対
策と圧延0°方向のmean−r値の低下を考慮して、
84%とすることが好ましい。
Next, the cold rolling rate was determined from the viewpoint of the mean-r value and the deep drawing embrittlement resistance. FIG. 5 shows the slab heating temperature H: 1250 ° C., L: 1 for the steel used in FIG.
150 ° C, winding temperature LCT: 620 ° C, HCT: 68
It shows the balance between the deep-drawing embrittlement transition temperature Tth and the mean-r value of the steel sheet produced under the conditions of 0 ° C., cold rolling rate of 75%, 79%, and 82%. As is clear from the figure, the deep drawing embrittlement critical temperature (Tth) of Ti-IF steel is
It is improved by adding a trace amount of Nb. In particular, slab heating temperature:
When manufactured under the conditions of 1150 ° C. and winding temperature: 620 ° C., Tth is improved to about −90 ° C. Also, Tt
Similar to the mean-r value, h has cold pressure dependency. However, while the mean-r value is improved by increasing the cold pressure ratio, Tth is increased on the contrary. This is considered to be a phenomenon related to the change in grain boundary character due to the change in texture. From the viewpoint of the mean-r value, the lower limit of the cold rolling ratio is preferably 76% (desirably 80%), while the upper limit is the deep drawing embrittlement countermeasure and the mean-r value in the rolling 0 ° direction. Considering the decrease of
It is preferably 84%.

【0023】スラブ加熱温度と連続焼鈍温度に関して
は、前者は、図5で示した深絞り脆化の問題から上限を
1200℃とし、後者は、十分な再結晶後の粒成長を図
るため下限を800℃に限定し、また、Ti*/〔C〕
≧7として粒成長性を改善した場合、Ac3点直下で焼
鈍すると2次再結晶による異常粗大化が発生する可能性
があるため、その上限を880℃に限定する。なお、本
発明の鋼板はバッチ焼鈍によって製造することも可能で
あり、得られる鋼板の材質は高温連続焼鈍材に較べて若
干劣るものの、従来鋼板に較べ優れた特性が得られるも
のである。特に、Ti−IF鋼を素材としバッチ焼鈍を
実施した場合には、過度の粒成長により肌荒れが生じる
という問題があるが、本発明材ではこのような問題生じ
ることなくバッチ焼鈍を実施することができる。
Regarding the slab heating temperature and the continuous annealing temperature, the former has an upper limit of 1200 ° C. due to the problem of deep drawing embrittlement shown in FIG. 5, and the latter has a lower limit for achieving sufficient grain growth after recrystallization. Limited to 800 ℃, Ti * / [C]
When the grain growth property is improved by ≧ 7, there is a possibility that abnormal coarsening due to secondary recrystallization may occur when annealing just under the Ac 3 point, so the upper limit is limited to 880 ° C. The steel sheet of the present invention can also be manufactured by batch annealing, and although the obtained steel sheet material is slightly inferior to the high temperature continuous annealed material, it has excellent characteristics compared to the conventional steel sheet. In particular, when performing batch annealing using Ti-IF steel as a raw material, there is a problem that rough skin occurs due to excessive grain growth, but with the material of the present invention, it is possible to perform batch annealing without causing such a problem. it can.

【0024】上述のように本発明では、mean−r値
≧2.8、n値≧0.26を狙いとしてTi*/〔C〕
および〔wt%Ti〕/〔wt%Nb〕の限定を行うも
のである。ところで、低いTi量でTi*/〔C〕を7
以上にするためには、C、N、Sの低減が不可欠であ
る。しかしこの場合、熱延板の組織が粗粒化し易くな
り、冷延、焼鈍後のr値の面内異方性が大きくなる傾向
がある。図6は以上の点に関し、Ti量とTi*/
〔C〕のバランスを変えた素材についてmean−r値
とΔr値を調べた結果を示したものである(なお、図中
の斜めの線はC:0.001wt%、N:0.001w
t%、S:0.001wt%の場合の、Ti量に対する
Ti*/〔C〕の値を示す)。これによれば、Ti*/
〔C〕≧7の領域でmean−r値≧2.8は得られる
が、0.04wt%≦Ti<0.06wt%の範囲では
Δr≧0.5であるのに対し、Ti≧0.06wt%の
範囲ではΔr<0.5となる。したがって、今日の製鋼
技術のレベルおよび製造コスト上の観点からして、C、
N、Sを極限まで低減するには限界があることを考慮す
ると、Ti≧0.06wt%の範囲とすることが、実用
上より有利であるといえる。
As described above, in the present invention, Ti * / [C] is aimed at the mean-r value ≥2.8 and the n value ≥0.26.
And [wt% Ti] / [wt% Nb] are limited. By the way, Ti * / [C] is reduced to 7 with low Ti
In order to achieve the above, reduction of C, N, and S is indispensable. However, in this case, the structure of the hot-rolled sheet is likely to be coarsened, and the in-plane anisotropy of the r value after cold rolling and annealing tends to increase. FIG. 6 shows the Ti amount and Ti * /
The results of examining the mean-r value and the Δr value of the material in which the balance of [C] is changed are shown (the diagonal lines in the figure are C: 0.001 wt% and N: 0.001 w).
The value of Ti * / [C] with respect to the Ti amount in the case of t% and S: 0.001 wt% is shown). According to this, Ti * /
Although a mean-r value ≧ 2.8 is obtained in the region of [C] ≧ 7, Δr ≧ 0.5 in the range of 0.04 wt% ≦ Ti <0.06 wt%, whereas Ti ≧ 0. In the range of 06 wt%, Δr <0.5. Therefore, from the viewpoint of today's steelmaking technology level and manufacturing cost, C,
Considering that there is a limit to the reduction of N and S to the limit, it can be said that Ti ≧ 0.06 wt% is more practically advantageous.

【0025】[0025]

【実施例】【Example】

〔実施例1〕表1および表2に示される代表鋼種を使用
し、連鋳スラブ表面のピンホール密度(2mmホットス
カーフ後の評価)を調べた。その結果を表3に示す。
Example 1 Using representative steel types shown in Tables 1 and 2, the pinhole density (evaluation after 2 mm hot scarf) on the surface of the continuous casting slab was examined. The results are shown in Table 3.

【0026】〔実施例2〕表1および表2に示される代
表鋼種について、スラブ加熱温度:1150℃、熱延仕
上温度:900℃、巻取り温度:620℃、冷圧率:8
2%、焼鈍温度:860℃、調圧率:0.5%の条件で
製造された鋼板について、その材質を調べた。その結果
を表4および表5に示す。
Example 2 With respect to the representative steel types shown in Tables 1 and 2, slab heating temperature: 1150 ° C., hot rolling finishing temperature: 900 ° C., winding temperature: 620 ° C., cold pressure ratio: 8
The material of the steel sheet manufactured under the conditions of 2%, annealing temperature: 860 ° C., and pressure regulation rate: 0.5% was examined. The results are shown in Tables 4 and 5.

【0027】〔実施例3〕表1および表2に示される本
発明鋼(鋼番8、11、13)について、表6および表
7に示す種々の条件で製造された鋼板の材質を調べた。
その結果を表8および表9に示す。
Example 3 With respect to the steels of the present invention (steel Nos. 8, 11, and 13) shown in Tables 1 and 2, the materials of the steel plates produced under various conditions shown in Tables 6 and 7 were examined. ..
The results are shown in Tables 8 and 9.

【0028】〔実施例4〕表1および表2に示される代
表鋼種について、実施例2と同一条件で冷間圧延まで行
った素材を、CGLにて、850℃焼鈍を行った後、目
付量:55/55(g/m2)の亜鉛メッキを行い、次
いで合金化させた鋼板について、0.5%調圧後、ドロ
ービートテストによりメッキ剥離量を評価した。その結
果を表10に示す。
Example 4 With respect to the representative steel types shown in Tables 1 and 2, the material which was cold-rolled under the same conditions as in Example 2 was annealed at 850 ° C. by CGL, and then the basis weight was measured. : 55/55 (g / m 2 ) galvanized, and then alloyed steel sheets were subjected to 0.5% pressure regulation, and then the amount of stripped plating was evaluated by a draw beat test. The results are shown in Table 10.

【0029】〔実施例5〕表1および表2に示される代
表鋼種について、箱焼鈍を実施した鋼板の材料特性を表
11に示す。この実施例では、800℃でオ−プンコイ
ル焼鈍を実施した。本実施例によれば、バッチ焼鈍を実
施した本発明鋼板は、高温で連続焼鈍したものに較べて
材質は若干劣るものの、比較鋼に較べ優れた特性が得ら
れていることが判る。
[Embodiment 5] Table 11 shows the material properties of the steel sheets subjected to box annealing for the representative steel types shown in Tables 1 and 2. In this example, open coil annealing was performed at 800 ° C. According to this example, it can be seen that the steel sheet of the present invention, which has been subjected to batch annealing, is slightly inferior in material quality to the one continuously annealed at a high temperature, but has superior characteristics to the comparative steel.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【表7】 [Table 7]

【0037】[0037]

【表8】 [Table 8]

【0038】[0038]

【表9】 [Table 9]

【0039】[0039]

【表10】 [Table 10]

【0040】[0040]

【表11】 [Table 11]

【図面の簡単な説明】[Brief description of drawings]

【図1】Ti添加IF鋼およびTi−Nb添加IF鋼の
mean−r値およびΔr値に及ぼすTi*/〔C〕の
影響を示す図面である。
FIG. 1 is a drawing showing the effect of Ti * / [C] on the mean-r value and Δr value of Ti-added IF steel and Ti-Nb-added IF steel.

【図2】mean−r値とn値のバランスに及ぼす〔w
t%Ti〕/〔wt%Nb〕の影響を示す図面である。
FIG. 2 affects the balance between mean-r value and n value [w
It is drawing which shows the influence of t% Ti] / [wt% Nb].

【図3】Ti添加IF鋼のスラブ表面におけるピンホー
ル個数(2mmスカーフ後)に及ぼす微量Nb添加の影
響を示す図面である。
FIG. 3 is a drawing showing the effect of addition of a trace amount of Nb on the number of pinholes (after 2 mm scarf) on the slab surface of Ti-added IF steel.

【図4】mean−r値とn値のバランスに及ぼす微量
Nb添加と熱延巻取り温度の影響を示す図面である。
FIG. 4 is a drawing showing the effect of addition of a trace amount of Nb and hot rolling temperature on the balance between mean-r value and n value.

【図5】mean−r値と深絞り脆化遷移温度(Tt
h)のバランスに及ぼすスラブ加熱温度、巻取り温度お
よび冷圧率の影響を示す図面である。
FIG. 5: mean-r value and deep drawing embrittlement transition temperature (Tt
It is drawing which shows the influence of the slab heating temperature, the coiling temperature, and the cold pressure rate which act on the balance of h).

【図6】mean−r値とΔr値に及ぼすTi量とTi
*/〔C〕のバランスの影響を示す図面である。
FIG. 6 Ti amount and Ti that affect mean-r value and Δr value
It is a figure which shows the influence of the balance of * / [C].

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金藤 秀司 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 若狭 浩 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Kanto 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Hiroshi Wakasa 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Date Inside the steel pipe company

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C≦0.0030wt%、Si≦0.0
5wt%、0.05wt%≦Mn≦0.50wt%、P
≦0.02wt%、S≦0.02wt%、0.03wt
%≦Sol.Al≦0.06wt%、N≦0.0040
wt%、0.005wt%≦Nb≦0.015wt%、
0.04wt%≦Ti≦0.14wt%を含有し、且
つ、 (Ti*/〔C〕)≧7 但し、 Ti*/〔C〕=〔wt%Ti*〕/4〔wt
%C〕 〔wt%Ti*〕=〔wt%Ti〕−{(48/14)
・〔wt%N〕+(48/32)・〔wt%S〕} 〔wt%C〕 :C含有量(wt%) 〔wt%Ti〕:Ti含有量(wt%) 〔wt%N〕 :N含有量(wt%) 〔wt%S〕 :S含有量(wt%) 7≦(〔wt%Ti〕/〔wt%Nb〕)≦18 但し、 〔wt%Ti〕:Ti含有量(wt%) 〔wt%Nb〕:Nb含有量(wt%) を満足し、残部Feおよび不可避的不純物からなる鋼組
成を有する、下式で定義されるランクフォード値の面内
平均値〔mean−r〕が2.8以上、10%〜20%
の引張り歪域で評価した加工硬化指数nが0.26以上
である極めて優れた深絞り成形性と張出し成形性を有す
る冷延鋼板。 〔mean−r〕=(〔r0〕+2〔r45〕+〔r90〕)/4 但し、 〔r0〕 :鋼板圧延方向でのr値 〔r45〕:鋼板圧延方向に対し45°方向でのr値 〔r90〕:鋼板圧延方向に対し90°方向でのr値
1. C ≦ 0.0030 wt%, Si ≦ 0.0
5 wt%, 0.05 wt% ≤ Mn ≤ 0.50 wt%, P
≦ 0.02 wt%, S ≦ 0.02 wt%, 0.03 wt
% ≦ Sol. Al ≦ 0.06 wt%, N ≦ 0.0040
wt%, 0.005 wt% ≤ Nb ≤ 0.015 wt%,
0.04 wt% ≦ Ti ≦ 0.14 wt% and (Ti * / [C]) ≧ 7, where Ti * / [C] = [wt% Ti *] / 4 [wt
% C] [wt% Ti *] = [wt% Ti]-{(48/14)
-[Wt% N] + (48/32)-[wt% S]} [wt% C]: C content (wt%) [wt% Ti]: Ti content (wt%) [wt% N] : N content (wt%) [wt% S]: S content (wt%) 7 ≦ ([wt% Ti] / [wt% Nb]) ≦ 18 However, [wt% Ti]: Ti content ( wt%) [wt% Nb]: Nb content (wt%) is satisfied, and the steel composition is composed of the balance Fe and unavoidable impurities. r] is 2.8 or more, 10% to 20%
The cold-rolled steel sheet having extremely excellent deep drawing formability and stretch formability, which has a work hardening index n of 0.26 or more evaluated in the tensile strain range. [Mean-r] = ([r 0] +2 [r 45] + [r 90]) / 4 where [r 0]: r value of steel plate rolling direction [r 45]: 45 ° with respect to the steel sheet rolling direction Value in the direction [r 90 ]: r value in the 90 ° direction with respect to the rolling direction of the steel sheet
【請求項2】 C≦0.0030wt%、Si≦0.0
5wt%、0.05wt%≦Mn≦0.50wt%、P
≦0.02wt%、S≦0.02wt%、0.03wt
%≦Sol.Al≦0.06wt%、N≦0.0040
wt%、0.005wt%≦Nb≦0.015wt%、
0.04wt%≦Ti≦0.14wt%を含有し、且
つ、 (Ti*/〔C〕)≧7 但し、 Ti*/〔C〕=〔wt%Ti*〕/4〔wt
%C〕 〔wt%Ti*〕=〔wt%Ti〕−{(48/14)
・〔wt%N〕+(48/32)・〔wt%S〕} 〔wt%C〕 :C含有量(wt%) 〔wt%Ti〕:Ti含有量(wt%) 〔wt%N〕 :N含有量(wt%) 〔wt%S〕 :S含有量(wt%) 7≦(〔wt%Ti〕/〔wt%Nb〕)≦18 但し、 〔wt%Ti〕:Ti含有量(wt%) 〔wt%Nb〕:Nb含有量(wt%) を満足し、残部Feおよび不可避的不純物からなる組成
を有する鋼を、常法にて熱間圧延、冷間圧延および連続
焼鈍することを特徴とする、下式で定義されるランクフ
ォード値の面内平均値〔mean−r〕が2.8以上、
10%〜20%の引張り歪域で評価した加工硬化指数n
が0.26以上である極めて優れた深絞り成形性と張出
し成形性を有する冷延鋼板の製造方法。 〔mean−r〕=(〔r0〕+2〔r45〕+〔r90〕)/4 但し、 〔r0〕 :鋼板圧延方向でのr値 〔r45〕:鋼板圧延方向に対し45°方向でのr値 〔r90〕:鋼板圧延方向に対し90°方向でのr値
2. C ≦ 0.0030 wt%, Si ≦ 0.0
5 wt%, 0.05 wt% ≤ Mn ≤ 0.50 wt%, P
≦ 0.02 wt%, S ≦ 0.02 wt%, 0.03 wt
% ≦ Sol. Al ≦ 0.06 wt%, N ≦ 0.0040
wt%, 0.005 wt% ≤ Nb ≤ 0.015 wt%,
0.04 wt% ≦ Ti ≦ 0.14 wt% and (Ti * / [C]) ≧ 7, where Ti * / [C] = [wt% Ti *] / 4 [wt
% C] [wt% Ti *] = [wt% Ti]-{(48/14)
-[Wt% N] + (48/32)-[wt% S]} [wt% C]: C content (wt%) [wt% Ti]: Ti content (wt%) [wt% N] : N content (wt%) [wt% S]: S content (wt%) 7 ≦ ([wt% Ti] / [wt% Nb]) ≦ 18 However, [wt% Ti]: Ti content ( wt%) [wt% Nb]: Steel that satisfies the Nb content (wt%) and has a composition consisting of balance Fe and unavoidable impurities is hot-rolled, cold-rolled and continuously annealed by a conventional method. The in-plane average value [mean-r] of the Rank Ford value defined by the following equation is 2.8 or more,
Work hardening index n evaluated in the tensile strain region of 10% to 20%
Is 0.26 or more, which is a method for producing a cold-rolled steel sheet having extremely excellent deep drawing formability and stretch formability. [Mean-r] = ([r 0] +2 [r 45] + [r 90]) / 4 where [r 0]: r value of steel plate rolling direction [r 45]: 45 ° with respect to the steel sheet rolling direction Value in the direction [r 90 ]: r value in the 90 ° direction with respect to the rolling direction of the steel sheet
【請求項3】 スラブ加熱温度≦1200℃、熱延巻取
温度:580〜640℃で熱間圧延した後、圧延率:7
6〜84%で冷間圧延し、次いで800℃〜880℃で
連続焼鈍することを特徴とする請求項2に記載の極めて
優れた深絞り成形性と張出し成形性を有する冷延鋼板の
製造方法。
3. A slab heating temperature ≦ 1200 ° C., a hot rolling coiling temperature: 580 to 640 ° C., and a rolling ratio of 7 after hot rolling.
The method for producing a cold-rolled steel sheet having extremely excellent deep drawing formability and stretch formability according to claim 2, wherein cold rolling is performed at 6 to 84%, and then continuous annealing is performed at 800 ° C to 880 ° C. ..
JP01136791A 1991-01-07 1991-01-07 Manufacturing method of cold rolled steel sheet having extremely excellent deep drawability and stretch formability Expired - Fee Related JP3185227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01136791A JP3185227B2 (en) 1991-01-07 1991-01-07 Manufacturing method of cold rolled steel sheet having extremely excellent deep drawability and stretch formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01136791A JP3185227B2 (en) 1991-01-07 1991-01-07 Manufacturing method of cold rolled steel sheet having extremely excellent deep drawability and stretch formability

Publications (2)

Publication Number Publication Date
JPH05279797A true JPH05279797A (en) 1993-10-26
JP3185227B2 JP3185227B2 (en) 2001-07-09

Family

ID=11776055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01136791A Expired - Fee Related JP3185227B2 (en) 1991-01-07 1991-01-07 Manufacturing method of cold rolled steel sheet having extremely excellent deep drawability and stretch formability

Country Status (1)

Country Link
JP (1) JP3185227B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732412A2 (en) * 1995-03-16 1996-09-18 Kawasaki Steel Corporation Cold rolled steel sheet exhibiting excellent press workability and method of manufacturing the same
JP2008184661A (en) * 2007-01-30 2008-08-14 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet, and its production method
JP2017534758A (en) * 2014-10-09 2017-11-24 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Cold rolled and recrystallized annealed flat steel product and method for producing the same
WO2021151896A1 (en) * 2020-01-29 2021-08-05 Tata Steel Ijmuiden B.V. Ultra low carbon interstitial free steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732412A2 (en) * 1995-03-16 1996-09-18 Kawasaki Steel Corporation Cold rolled steel sheet exhibiting excellent press workability and method of manufacturing the same
EP0732412A3 (en) * 1995-03-16 1997-07-09 Kawasaki Steel Co Cold rolled steel sheet exhibiting excellent press workability and method of manufacturing the same
JP2008184661A (en) * 2007-01-30 2008-08-14 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet, and its production method
JP2017534758A (en) * 2014-10-09 2017-11-24 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Cold rolled and recrystallized annealed flat steel product and method for producing the same
US10683560B2 (en) 2014-10-09 2020-06-16 Thyssenkrupp Steel Europe Ag Cold-rolled and recrystallization annealed flat steel product, and method for the production thereof
WO2021151896A1 (en) * 2020-01-29 2021-08-05 Tata Steel Ijmuiden B.V. Ultra low carbon interstitial free steel

Also Published As

Publication number Publication date
JP3185227B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
EP0608430B1 (en) Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same
US4544419A (en) Method for producing high tensile strength cold rolled steel sheets having excellent formability and high tensile strength hot-dip galvanized steel sheets having excellent formability
KR20010013524A (en) Steel sheet for can and manufacturing method thereof
US5846343A (en) Cold rolled steel sheet exhibiting excellent press workability and method of manufacturing the same
JP4177478B2 (en) Cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in formability, panel shape, and dent resistance, and methods for producing them
JP4177477B2 (en) Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
JPH05279797A (en) Cold rolled steel sheet having extremely superior deep drawability and bulging property and its production
JP2864966B2 (en) Continuously annealed cold rolled steel sheet with excellent balance between deep drawability and deep draw resistance
JP2616257B2 (en) Alloyed galvanized steel sheet excellent in formability and method for producing the same
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JP2830745B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent surface properties
JPS6048571B2 (en) Manufacturing method of alloyed galvanized steel sheet for deep drawing
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JP2755014B2 (en) Method for producing high-strength cold-rolled steel sheet for deep drawing with excellent secondary work brittleness resistance
JP2519131B2 (en) Method for producing cold rolled steel sheet with excellent formability
KR940007274B1 (en) Making method of cold rolling steel sheet
JP3508654B2 (en) High-strength cold-rolled steel sheet for press forming excellent in material uniformity in coil and method for producing the same
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
KR20110046653A (en) Cold-rolled steel sheet having excellent surface quality, and method for producing the same
JPS6164852A (en) Non-aging cold rolled steel sheet for press forming having extremely low anisotropy in plane
JP3528717B2 (en) High-strength cold-rolled steel sheet excellent in surface distortion resistance and press formability and method for producing the same
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
JPH0525949B2 (en)
JP3534022B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet excellent in surface distortion resistance and press formability, and manufacturing method thereof
JPH07113123A (en) Production of continuously annealed cold rolled steel sheet well balanced between deep drawability and deep drawing brittleness resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees