JPH05277491A - Water system treatment method - Google Patents

Water system treatment method

Info

Publication number
JPH05277491A
JPH05277491A JP7385692A JP7385692A JPH05277491A JP H05277491 A JPH05277491 A JP H05277491A JP 7385692 A JP7385692 A JP 7385692A JP 7385692 A JP7385692 A JP 7385692A JP H05277491 A JPH05277491 A JP H05277491A
Authority
JP
Japan
Prior art keywords
water treatment
treatment agent
water
concentration
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7385692A
Other languages
Japanese (ja)
Other versions
JPH0763713B2 (en
Inventor
Kenichi Ito
賢一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP4073856A priority Critical patent/JPH0763713B2/en
Publication of JPH05277491A publication Critical patent/JPH05277491A/en
Publication of JPH0763713B2 publication Critical patent/JPH0763713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To ensure that a water treatment agent for inhibition of metal corrosion or scale generation is maintained at an optimal water treatment density for inhibition of metal corrosion or scale generation by measuring the density directly and rapidly with ease and accuracy. CONSTITUTION:The density of a water treatment agent is controlled by adding a water treatment agent which is itself a fluorescent molecule to a held water and measuring an intensity of fluorescence in a water system treatment method for inhibiting metal corrosion or scale generation in the water system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却水系、ボイラー
系、温水系、ブライン系、集塵水系等の水系における金
属の腐食あるいはスケールを防止する水系処理方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment method for preventing metal corrosion or scale in a water system such as a cooling water system, a boiler system, a hot water system, a brine system and a dust collection water system.

【0002】[0002]

【従来の技術】水系における金属の腐食あるいはスケー
ルを防止するため、各種の腐食防止剤、スケール防止剤
及び分散剤が使用されている。これら水処理剤は、水中
における濃度が一定範囲内に維持されていないと、充分
な効果を発揮できない。実用上は水中でのこれら水処理
剤の濃度を測定し、該水処理剤が適正濃度保持されてい
ることを確認しつつ運転を行っている。この際、水処理
剤濃度の測定方法としては、水処理剤中の特定原子、あ
るいは特定官能基に着目し、その濃度を測定するのが一
般的である。例えば、重金属を含む水処理剤では、その
重金属の濃度を測定することにより目的を達成すること
ができ、有機リン酸類、重合リン酸類等のリン酸系水処
理剤では、試料水を酸化剤及び酸の共存下で煮沸して含
まれているリン原子をリン酸イオンに変換させてから、
モリブデン青法により比色分析する方法(例えば、日本
工業規格 JIS K0101)が実施されている。しかし、
このような方法はいずれも操作が煩雑で、時間を要する
ことになる。工業用水系では、水処理剤濃度の測定値が
重要な運転指針であるので、特に迅速な応答が望まれ
る。
2. Description of the Related Art Various corrosion inhibitors, scale inhibitors and dispersants are used to prevent metal corrosion or scale in an aqueous system. These water treatment agents cannot exert sufficient effects unless the concentration in water is maintained within a certain range. In practice, the concentrations of these water treatment agents in water are measured, and operation is performed while confirming that the water treatment agents are maintained at appropriate concentrations. At this time, as a method for measuring the concentration of the water treatment agent, it is general to focus on a specific atom or a specific functional group in the water treatment agent and measure the concentration. For example, in a water treatment agent containing a heavy metal, the objective can be achieved by measuring the concentration of the heavy metal, and in a phosphoric acid-based water treatment agent such as organic phosphoric acid or polymerized phosphoric acid, sample water is used as an oxidizing agent and an oxidizing agent. After boiling in the coexistence of an acid to convert the contained phosphorus atoms into phosphate ions,
A method for colorimetric analysis by the molybdenum blue method (for example, Japanese Industrial Standard JIS K0101) is implemented. But,
All of these methods are complicated in operation and require time. In industrial water systems, the measured value of the water treatment agent concentration is an important operating guideline, and therefore a particularly quick response is desired.

【0003】この改善策としては、一定比率のリチウム
塩をトレーサーとして水処理剤に添加する方法(特公昭
55−3668号公報)、一定比率の蛍光物質をトレーサーと
して水処理剤に添加する方法(特開平2−115093号公
報)が開示されている。しかし、このようなトレーサー
を用いる方法はトレーサーと水処理剤が混合されている
だけであるので、水系での挙動が同じにならず、例えば
水処理剤のみが沈澱、吸着等により系内で消費された場
合、トレーサー濃度より換算して水処理濃度を求めても
真の水処理剤濃度とならないことになる。
As a remedy for this, a method of adding a fixed proportion of a lithium salt as a tracer to a water treatment agent (Japanese Patent Publication Sho
55-3668), a method of adding a fixed ratio of a fluorescent substance to a water treatment agent as a tracer (Japanese Patent Laid-Open No. 2-115093). However, in the method using such a tracer, since the tracer and the water treatment agent are only mixed, the behavior in the water system is not the same, and for example, only the water treatment agent is consumed in the system due to precipitation, adsorption, etc. In that case, the true water treatment agent concentration will not be obtained even if the water treatment concentration is calculated from the tracer concentration.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、水処
理剤の濃度を直接的かつ迅速、簡便に正確に測定して、
金属の腐食あるいはスケールを防止する最適の水処理剤
濃度に維持できる水系処理方法を提供することにある。
The object of the present invention is to measure the concentration of a water treatment agent directly, quickly, simply and accurately,
An object of the present invention is to provide a water treatment method capable of maintaining an optimum water treatment agent concentration that prevents metal corrosion or scale.

【0005】[0005]

【課題を解決するための手段】本発明者は、かかる水処
理剤の濃度を直接的かつ迅速、簡便に正確に測定して、
最適の水処理濃度に維持する水系処理方法を開発するた
めに鋭意研究を重ねた結果、それ自身が蛍光性分子であ
る水処理剤を用いることにより、その目的を達成しうる
ことを見いだし、この知見に基づいて本発明をなすに至
った。
Means for Solving the Problems The present inventor directly and quickly, simply and accurately measures the concentration of such a water treatment agent,
As a result of intensive studies to develop a water treatment method for maintaining an optimum water treatment concentration, it was found that the purpose can be achieved by using a water treatment agent which is itself a fluorescent molecule. The present invention has been completed based on the findings.

【0006】すなわち、本発明は水系における金属の腐
食あるいはスケールを防止する水系処理方法において、
それ自身が蛍光性分子である水処理剤(以下、「蛍光性
水処理剤」と云う。)を保有水に注入して蛍光強度を測定
することにより、水処理剤の濃度を管理することを特徴
とする水系処理方法に関するものである。
That is, the present invention relates to an aqueous treatment method for preventing metal corrosion or scale in an aqueous system,
It is possible to control the concentration of the water treatment agent by injecting a water treatment agent which is itself a fluorescent molecule (hereinafter referred to as “fluorescent water treatment agent”) into the water held and measuring the fluorescence intensity. The present invention relates to a characteristic water treatment method.

【0007】本発明に使用する蛍光性水処理剤は、それ
自身が蛍光性分子であり、なおかつ金属の腐食あるいは
スケールを防止する作用を有するものである。ここで蛍
光性分子とは光を吸収して蛍光を発する分子であり、例
えば2個以上の環がπ電子共役してなる構造単位を含む
有機化合物が挙げられる。
The fluorescent water treatment agent used in the present invention is itself a fluorescent molecule and has an action of preventing metal corrosion or scale. Here, the fluorescent molecule is a molecule that absorbs light and emits fluorescence, and examples thereof include an organic compound containing a structural unit in which two or more rings are conjugated with π electrons.

【0008】上記π電子共役系は、例えば2個以上の環
が縮環することにより共役系を形成してもよく、又は2
個以上の環が共役結合(例えば、共役2重結合)若しく
は孤立電子対を介して共役系を形成してもよい。このよ
うな構造単位を有機化合物が有することにより、有機化
合物は蛍光を発することが出来る。
The π-electron conjugated system may form a conjugated system by, for example, condensing two or more rings, or 2
One or more rings may form a conjugated system via a conjugated bond (for example, a conjugated double bond) or a lone electron pair. When the organic compound has such a structural unit, the organic compound can emit fluorescence.

【0009】本発明の蛍光性水処理剤の製造方法は、水
処理剤として公知の化合物に上記構造単位を導入するこ
とにより達成できる。例えば、アクリル酸、マレイン
酸、イタコン酸等の不飽和カルボン酸や2-アクリルアミ
ド-2-メチルプロパンスルホン酸、スチレンスルホン
酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸、
共役ジエンのスルホン化合物等の不飽和スルホン酸を含
む重合体は、水処理剤として公知であるが、これらの不
飽和カルボン酸及び/又は不飽和スルホン酸と蛍光性ビ
ニルモノマーとを共重合させることにより蛍光性水処理
剤が製造できる。この場合の蛍光性ビニルモノマーの例
として、ビニルカルバソール、ビニルナフタレン、ビニ
ルアントラセン、ビニルアクリジン、アセナフチレン等
が挙げられる。また、後述の水酸基及び/又はアミノ基
を有する蛍光性化合物をグリシジルメタクリレート、ア
リルグリシジルエーテル、アクリル酸クロライド等の反
応性モノマーと反応させて蛍光性ビニルモノマーとする
こともできる。
The method for producing a fluorescent water treatment agent of the present invention can be achieved by introducing the above structural unit into a compound known as a water treatment agent. For example, acrylic acid, maleic acid, unsaturated carboxylic acids such as itaconic acid and 2-acrylamido-2-methylpropanesulfonic acid, styrenesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid,
A polymer containing an unsaturated sulfonic acid such as a conjugated diene sulfone compound is known as a water treatment agent, but it is preferable to copolymerize these unsaturated carboxylic acid and / or unsaturated sulfonic acid with a fluorescent vinyl monomer. Thus, a fluorescent water treatment agent can be manufactured. Examples of the fluorescent vinyl monomer in this case include vinylcarbazole, vinylnaphthalene, vinylanthracene, vinylacridine, acenaphthylene, and the like. Further, a fluorescent compound having a hydroxyl group and / or an amino group, which will be described later, may be reacted with a reactive monomer such as glycidyl methacrylate, allyl glycidyl ether and acrylic acid chloride to give a fluorescent vinyl monomer.

【0010】重合開始剤としては、例えばラジカル重合
開始剤(具体的には、パーオキシ化合物等)が挙げられ
る。その他、共重合に際しては添加剤として重合鎖末端
封鎖剤(具体的には、チオグリコール酸エステル等)な
どを加えてよい。重合条件は適宜選択されるが、例えば
重合温度50〜150℃、重合時間1〜10時間である。共重
合組成において、不飽和カルボン酸と不飽和スルホン酸
の合量100重量部に対し、蛍光性ビニルモノマー0.1〜30
重量部、重合開始剤0.05〜10重量部であってよい。上記
のようにして得られる共重合体は、ブロックでもランダ
ムでもよい。共重合体の物性において、重量平均分子量
500〜50,000が好ましい。
Examples of the polymerization initiator include radical polymerization initiators (specifically, peroxy compounds and the like). In addition, at the time of copolymerization, a polymer chain end blocking agent (specifically, thioglycolic acid ester or the like) may be added as an additive. Although the polymerization conditions are appropriately selected, for example, the polymerization temperature is 50 to 150 ° C. and the polymerization time is 1 to 10 hours. In the copolymer composition, 100 parts by weight of the total amount of unsaturated carboxylic acid and unsaturated sulfonic acid, fluorescent vinyl monomer 0.1 ~ 30
The amount of the polymerization initiator may be 0.05 to 10 parts by weight. The copolymer obtained as described above may be block or random. Weight average molecular weight in the physical properties of the copolymer
500 to 50,000 is preferable.

【0011】また、本発明に使用する蛍光性水処理剤
は、水処理剤として公知の化合物に蛍光性化合物を直接
反応させ、水処理剤を変性することによっても製造する
ことができる。即ち、公知水処理剤分子中の適当な官能
基(例えば、酸無水物基、カルボン酸基、スルホン酸
基、遊離エステル基、水酸基、イソシアナート基、アミ
ノ基等)と結合し得る官能基(例えば、水酸基、アミノ
基、イソシアナート基、エポキシ基等)を有する蛍光性
化合物にて、上記公知水処理剤を変性することにより分
子中に蛍光性化合物が導入され、従って公知水処理剤を
蛍光性水処理剤とすることが出来る。この例として、無
水マレイン酸重合体(共重合体を含む)に、水酸基又は
アミノ基を有する蛍光性化合物を非水溶媒中で反応させ
て、重合体中の酸無水物基の少なくとも一部をエステル
化、アミド化及び/又はイミド化して蛍光性化合物を導
入し、蛍光性水処理剤を得ることができる。ここで水酸
基及び/又はアミノ基を有する蛍光性化合物の好ましい
例として、分子中に少なくとも一個以上の水酸基及び/
又はアミノ基を有し、2個以上の環がπ電子共役系を形
成した有機化合物が挙げられ、そのような化合物の例と
して、フルオレセイン、カルバゾール、アクリジン、ア
クリドン等の誘導体、あるいは水酸基及び/又はアミノ
基を置換基として有するナフタレン、アントラセン、ペ
リレン、フルオレイン、スチルベン、クマリン等の誘導
体が挙げられる。ここで蛍光性化合物としてこれらのス
ルホン酸誘導体を用いると、重合体中にスルホン酸基が
導入されるため、スケール分散効果が向上する。水処理
剤として公知の化合物に蛍光性分子を導入する場合に、
蛍光性分子の混合割合は特に限定されるものではない
が、水処理剤本来の機能を損なわないことが重要であ
り、その為には0.1〜40重量%程度である。
The fluorescent water treatment agent used in the present invention can also be produced by directly reacting a compound known as a water treatment agent with a fluorescent compound to modify the water treatment agent. That is, a functional group (eg, an acid anhydride group, a carboxylic acid group, a sulfonic acid group, a free ester group, a hydroxyl group, an isocyanate group, an amino group, etc.) capable of binding to an appropriate functional group in a molecule of a known water treatment agent ( For example, with a fluorescent compound having a hydroxyl group, an amino group, an isocyanate group, an epoxy group, etc.), a fluorescent compound is introduced into the molecule by modifying the above-mentioned known water treatment agent, and thus the known water treatment agent is fluorescent. It can be used as a water treatment agent. As an example of this, a maleic anhydride polymer (including a copolymer) is reacted with a fluorescent compound having a hydroxyl group or an amino group in a non-aqueous solvent, and at least a part of the acid anhydride group in the polymer is reacted. A fluorescent water treatment agent can be obtained by introducing a fluorescent compound by esterification, amidation and / or imidation. Here, as a preferred example of the fluorescent compound having a hydroxyl group and / or an amino group, at least one hydroxyl group and / or
Or, an organic compound having an amino group and having two or more rings forming a π-electron conjugated system can be given. Examples of such a compound include derivatives such as fluorescein, carbazole, acridine, and acridone, or a hydroxyl group and / or Examples include derivatives of naphthalene, anthracene, perylene, fluorein, stilbene, coumarin and the like, which have an amino group as a substituent. When these sulfonic acid derivatives are used as the fluorescent compound here, the sulfonic acid group is introduced into the polymer, so that the scale dispersion effect is improved. When introducing a fluorescent molecule into a compound known as a water treatment agent,
The mixing ratio of the fluorescent molecule is not particularly limited, but it is important not to impair the original function of the water treatment agent, and for that purpose, it is about 0.1 to 40% by weight.

【0012】上記のようにして得られる変性重合体の物
性において、重量平均分子量500〜50,000が好ましい。
In the physical properties of the modified polymer obtained as described above, a weight average molecular weight of 500 to 50,000 is preferable.

【0013】また、ナフタレン、アントラセン等の縮合
環を有する化合物を硫酸存在下でスルホン化したのち、
ホルマリン、メチラール、クロラール等と反応させて得
た縮合ポリマーはスケール分散作用を有し、かつ強い蛍
光強度を示すので本発明に蛍光性水処理剤としてそのま
ま用いることができる。
Further, after a compound having a condensed ring such as naphthalene and anthracene is sulfonated in the presence of sulfuric acid,
Since the condensation polymer obtained by reacting with formalin, methylal, chloral, etc. has a scale-dispersing action and exhibits a strong fluorescence intensity, it can be used as it is as a fluorescent water treatment agent in the present invention.

【0014】上記のようにして得られる縮合ポリマー
は、重量平均分子量500〜50,000が好ましい。
The condensation polymer obtained as described above preferably has a weight average molecular weight of 500 to 50,000.

【0015】本発明に係わる蛍光性水処理剤は、腐食あ
るいはスケールの抑制が達成できる十分な濃度を維持す
るために、連続的に又は間欠的に投入される。本発明に
係わる蛍光性水処理剤の添加量は、通常0.1〜1000ppm、
特に0.5〜500ppmが好ましい。
The fluorescent water treatment agent according to the present invention is continuously or intermittently added in order to maintain a sufficient concentration at which corrosion or scale inhibition can be achieved. The amount of the fluorescent water treatment agent according to the present invention is usually 0.1 to 1000 ppm,
Particularly, 0.5 to 500 ppm is preferable.

【0016】本発明に係わる蛍光性水処理剤は、公知の
他の水処理剤と組み合わせて用いる事ができる。水処理
剤の例として、ホスホン酸、アクリル酸及び/又はマレ
イン酸と次亜リン酸の重合体、無機リン酸塩、亜鉛塩、
モリブデン酸塩、アクリル酸系重合体及び共重合体、マ
レイン酸系重合体及び共重合体、アゾール類等が挙げら
れる。これらの水処理剤は、本発明の水処理剤と予め混
合して用いてもよい。その他、本発明の処理方法におい
ては添加剤としてスライムコントロール剤として公知の
化合物等を投入してよい。
The fluorescent water treatment agent according to the present invention can be used in combination with other known water treatment agents. Examples of water treatment agents include phosphonic acid, acrylic acid and / or polymers of maleic acid and hypophosphorous acid, inorganic phosphates, zinc salts,
Examples thereof include molybdate, acrylic acid-based polymers and copolymers, maleic acid-based polymers and copolymers, and azoles. These water treatment agents may be used in advance by mixing with the water treatment agent of the present invention. In addition, in the treatment method of the present invention, compounds known as slime control agents may be added as additives.

【0017】蛍光性水処理剤を添加した処理水の蛍光強
度は、市販の蛍光光度計あるいは分光蛍光光度計を用い
て測定することができる。具体的には、処理水を入れた
ガラスセルに励起光を照射して発光させた蛍光を励起光
と直角の方向にフィルター又は分光器を設置して、一定
領域の波長を取り出して光検出器により蛍光強度を測定
する。蛍光強度の測定波長は、通常蛍光スペクトルの測
定により蛍光強度が最大となる波長、例えば250〜850nm
を選択するのが好ましい。励起側波長は、例えば200〜4
00nmで、励起光のスカッター波長と蛍光測定波長が重複
しない波長を選択するのが好ましい。また、励起波長を
選択することにより処理水を希釈することなく、蛍光強
度を調節したり、妨害成分の影響を除去することができ
る。予め既知濃度の蛍光性水処理剤を添加した水につい
て、濃度と蛍光強度の関係(即ち、濃度─蛍光強度の検
量線)を求めておくことにより、処理水の蛍光強度から
処理水に含まれている蛍光性水処理剤の濃度を容易に換
算することができる。蛍光性水処理剤の濃度が、腐食防
止あるいはスケール防止を達成するのに十分な濃度を維
持できるように、蛍光性水処理剤をバッチ投入するか、
あるいは蛍光性水処理剤の注入ポンプのストロークを調
節する。蛍光測定用セルに処理水を連続的に通水するこ
とにより、蛍光性水処理剤濃度を連続的に監視する事が
できる。また、蛍光光度計あるいは蛍光分光光度計から
の出力信号を調節計に送り、調節計からの操作出力によ
り水処理剤注入ポンプを作動させることにより、蛍光性
水処理剤の濃度を自動制御することができる。
The fluorescence intensity of the treated water containing the fluorescent water treatment agent can be measured by using a commercially available fluorescence photometer or a spectrofluorometer. Specifically, a filter or spectroscope is installed in the direction perpendicular to the excitation light by irradiating the glass cell containing the treated water with the excitation light and causing the emitted light to emit light, and a wavelength of a certain region is extracted to obtain a photodetector. To measure the fluorescence intensity. The measurement wavelength of the fluorescence intensity is usually the wavelength at which the fluorescence intensity is maximum by the measurement of the fluorescence spectrum, for example 250 to 850 nm
Is preferably selected. The excitation side wavelength is, for example, 200 to 4
It is preferable to select a wavelength of 00 nm at which the scatter wavelength of the excitation light and the fluorescence measurement wavelength do not overlap. Further, by selecting the excitation wavelength, it is possible to adjust the fluorescence intensity or remove the influence of the interfering component without diluting the treated water. For the water to which a known concentration of the fluorescent water treatment agent has been added, the relationship between the concentration and the fluorescence intensity (that is, the concentration-fluorescence intensity calibration curve) is obtained in advance, so that the fluorescence intensity of the treated water is included in the treated water. The concentration of the fluorescent water treatment agent present can be easily converted. Batch the fluorescent water treatment agent so that the concentration of the fluorescent water treatment agent can be maintained at a concentration sufficient to achieve corrosion inhibition or scale inhibition, or
Alternatively, the stroke of the fluorescent water treatment agent infusion pump is adjusted. By continuously passing the treated water through the cell for measuring fluorescence, the concentration of the fluorescent water treatment agent can be continuously monitored. Also, the concentration of the fluorescent water treatment agent is automatically controlled by sending the output signal from the fluorescence photometer or the fluorescence spectrophotometer to the controller and operating the water treatment agent injection pump by the operation output from the controller. You can

【0018】[0018]

【作用】それ自身が蛍光性分子であり、なおかつ金属の
腐食あるいはスケールを防止する作用を有する水処理剤
であり、蛍光性分子と水処理剤が混合でなく合体・結合
しており、水処理剤が沈澱、吸着等により系内で消費さ
れた場合でも、消費量と蛍光強度の低下が常に一致し、
従って蛍光強度のみから常に真の水処理剤濃度を求める
ことができる。
[Function] A water treatment agent which is a fluorescent molecule itself and has an action of preventing metal corrosion or scale. The fluorescent molecule and the water treatment agent are not mixed but are combined and combined, Even when the agent is consumed in the system due to precipitation, adsorption, etc., the consumption and the decrease in fluorescence intensity always match,
Therefore, the true concentration of the water treatment agent can always be obtained only from the fluorescence intensity.

【0019】[0019]

【実施例】以下に本発明を具体的に説明するが、本発明
はこれらの実施例に限定されるものではない。
EXAMPLES The present invention will be specifically described below, but the present invention is not limited to these examples.

【0020】(1) 水処理剤の製造 重合体A:500mlの5口フラスコにアクリル酸18g、N-
ビニルカルバゾール2g、イソプロパノール80mlを加
え、冷却管、攪拌機、温度計、窒素導入管、滴下ロート
を取り付けた。窒素を流しつつ溶液を60℃に加熱した
後、チオグリコール酸-2-エチルヘキシル0.25gをイソ
プロパノール10mlで溶解した液を、次いでt-ブチルパー
オキシピバレート1.0gをイソプロパノール10mlに溶解
した液を滴下ロートより滴下した。80℃で5時間還流加
熱した。イソプロパノール留去後、水50g及び50%水酸
化ナトリウム20.0g加えて水溶液とした。不溶分を濾過
後、固型分34.9%、pH5.7、20℃におけるブルックフィ
ールド粘度154cpの反応物水溶液を得た。反応物水溶液
をメタノール中に加え、重合体を析出させ、これを乾燥
して重合体Aを得た。重合体Aの重量平均分子量は、約
5,000であった。図1に重合体Aの蛍光スペクトルを示
す。このときの励起波長は264nmであった。図2に重合
体Aの濃度と蛍光強度の関係を示す。励起波長264nmで
の最大蛍光波長は363nmであった。
(1) Production of water treatment agent Polymer A: 18 g of acrylic acid and N- in a 500 ml five-necked flask.
2 g of vinylcarbazole and 80 ml of isopropanol were added, and a cooling pipe, a stirrer, a thermometer, a nitrogen introducing pipe and a dropping funnel were attached. After heating the solution to 60 ° C while flowing nitrogen, a solution of 0.25 g of 2-ethylhexyl thioglycolate dissolved in 10 ml of isopropanol, and then a solution of 1.0 g of t-butylperoxypivalate dissolved in 10 ml of isopropanol were added dropwise. It was dripped from the funnel. The mixture was heated at reflux at 80 ° C for 5 hours. After distilling off isopropanol, 50 g of water and 20.0 g of 50% sodium hydroxide were added to obtain an aqueous solution. After filtering the insoluble matter, an aqueous solution of a reactant having a solid content of 34.9%, a pH of 5.7, and a Brookfield viscosity of 154 cp at 20 ° C. was obtained. The reactant aqueous solution was added to methanol to precipitate a polymer, which was dried to obtain a polymer A. The weight average molecular weight of the polymer A is about
It was 5,000. The fluorescence spectrum of polymer A is shown in FIG. The excitation wavelength at this time was 264 nm. FIG. 2 shows the relationship between the concentration of polymer A and the fluorescence intensity. The maximum fluorescence wavelength at the excitation wavelength of 264 nm was 363 nm.

【0021】重合体B:500mlの3口フラスコに、無水
マレイン酸−スチレン共重合体(共重合比1:1モル、
分子量1600)10.1g、2-ナフトール-6,8-ジスルホン酸
カリウム4.76g、ジオキサン110ml、酢酸1.5gを加え
た。フラスコに冷却管、攪拌機、温度計を取り付けた。
100℃で3.5時間還流加熱した。ジオキサンを留出除去し
た後、水70g、50%水酸化ナトリウム11.3gを加えて、
共重合体中の未反応の無水マレイン酸単位を加水分解し
て水溶液とした。反応水溶液中の不溶分を濾過して除い
た後、メタノール中に加えて重合体を析出させ、これを
乾燥して重合体Bを得た。図3に重合体Bの100ppm水溶
液の蛍光スペクトルを示す。このときの励起波長は259n
mであった。図4に重合体Bの濃度と蛍光強度の関係を
示す。このときの励起波長は259nm、蛍光波長は460nmで
あった。
Polymer B: Maleic anhydride-styrene copolymer (copolymerization ratio 1: 1 mol, in a 500 ml three-necked flask,
A molecular weight of 1600) 10.1 g, potassium 2-naphthol-6,8-disulfonate 4.76 g, dioxane 110 ml, and acetic acid 1.5 g were added. The flask was equipped with a condenser, a stirrer, and a thermometer.
The mixture was heated at 100 ° C. under reflux for 3.5 hours. After distilling off dioxane, 70 g of water and 11.3 g of 50% sodium hydroxide were added,
The unreacted maleic anhydride unit in the copolymer was hydrolyzed to give an aqueous solution. After the insoluble matter in the reaction aqueous solution was removed by filtration, the mixture was added to methanol to precipitate a polymer, which was dried to obtain a polymer B. FIG. 3 shows the fluorescence spectrum of a 100 ppm aqueous solution of polymer B. The excitation wavelength at this time is 259n
It was m. FIG. 4 shows the relationship between the concentration of the polymer B and the fluorescence intensity. At this time, the excitation wavelength was 259 nm and the fluorescence wavelength was 460 nm.

【0022】(2) 腐食防止効果の評価 厚さ1mmの一般構造用圧延鋼材(日本工業規格 JIS
SPCC)から外径50mmの円板に切り出し、中心に8mm
の固定取り付け用穴をあけた試験片とした。試験片表面
の汚れを除き、全表面を400番研磨紙で研磨し、アセト
ンで洗浄脱脂して乾燥後0.1mgまで正確に秤量した。試
験水として四日市市の市水を用い、この試験水500ml中
に重合体Aを添加し、試験片を浸漬して100rpmで回転さ
せながら40℃で18時間維持した。試験終了後、0.1mgま
で正確に秤量した。試験片の試験前後の重量比較から腐
食減量を求めた。結果を表1に示した。
(2) Evaluation of corrosion prevention effect Rolled steel for general structure with a thickness of 1 mm (Japanese Industrial Standard JIS
From SPCC), cut into a disc with an outer diameter of 50 mm, and 8 mm at the center
The test piece was provided with a hole for fixing and fixing. After removing stains on the surface of the test piece, the entire surface was polished with No. 400 polishing paper, washed and degreased with acetone, dried, and accurately weighed to 0.1 mg. Using test water of Yokkaichi City, polymer A was added to 500 ml of the test water, and the test piece was immersed and kept at 40 ° C. for 18 hours while rotating at 100 rpm. After the test, it was weighed accurately to 0.1 mg. The corrosion weight loss was determined by comparing the weights of the test pieces before and after the test. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】この結果より、重合体Aにより大幅に腐食
抑制が達成されることが認められた。
From these results, it was confirmed that the polymer A achieves significant corrosion inhibition.

【0025】(3) 炭酸カルシウムに対するスケール防止
効果の評価 脱イオン水に塩化カルシウム及び炭酸水素ナトリウムを
溶解して、カルシウム硬度370ppm、H2CO3 360ppm
(CaCO3として)の試験水を調整した。試験水に下記
に示す水処理剤をそれぞれ添加し、試験水のpHを水酸化
ナトリウムにより8.6に調整した。試験水を密閉容器に
入れ、50℃の恒温槽中に18時間静置した後、試験水を定
量用濾紙No.6で濾過し、濾液中のカルシウム硬度をED
TA滴定法(日本工業規格 JIS−K0101)により測
定した。スケール抑止率を下記式により算出した。
(3) Evaluation of scale preventive effect on calcium carbonate Calcium hardness 370 ppm, H 2 CO 3 360 ppm by dissolving calcium chloride and sodium hydrogen carbonate in deionized water.
Test water (as CaCO 3 ) was prepared. The water treatment agents shown below were added to the test water, and the pH of the test water was adjusted to 8.6 with sodium hydroxide. Put the test water in a closed container and leave it in a constant temperature bath at 50 ° C for 18 hours, then filter the test water with a quantitative filter paper No. 6 to determine the calcium hardness in the filtrate by ED.
It was measured by the TA titration method (Japanese Industrial Standard JIS-K0101). The scale inhibition rate was calculated by the following formula.

【0026】スケール抑止率(%)=100×(CI−C
B)/(CS−CB) ここで、CS:加熱保持前のカルシウム濃度 CB:水処理剤無添加時の加熱保持後のカルシウム濃度 CI:水処理剤添加時の加熱保持後のカルシウム濃度
Scale inhibition rate (%) = 100 × (CI-C
B) / (CS-CB) where CS: calcium concentration before heating and holding CB: calcium concentration after heating and holding without addition of water treatment agent CI: calcium concentration after heating and holding when water treatment agent is added

【0027】同時に濾液の蛍光強度を測定して、予め作
成した濃度対蛍光強度の関係により処理剤濃度を求め
た。結果を表2に示す。
At the same time, the fluorescence intensity of the filtrate was measured, and the treatment agent concentration was determined from the relationship between the concentration and the fluorescence intensity prepared in advance. The results are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】表2より、蛍光強度の測定から、重合体A
は結晶粒子への吸着により水中の残留濃度の低下がある
ことが認められ、水系の運転条件として重合体Aの残留
濃度を6.1〜12.9ppmの範囲に管理するようにして最高の
スケール防止効果が得られることが分かった。一方、比
較例では蛍光強度測定による処理剤濃度は添加した濃度
を示しており、重合体の真の残留濃度を知ることができ
なかった。
From Table 2, from the measurement of the fluorescence intensity, the polymer A
It was observed that the residual concentration in water decreased due to adsorption to crystalline particles, and the maximum scale prevention effect was obtained by controlling the residual concentration of Polymer A within the range of 6.1 to 12.9 ppm as an operating condition of the water system. It turned out to be obtained. On the other hand, in the comparative example, the concentration of the treating agent measured by the fluorescence intensity shows the concentration added, and the true residual concentration of the polymer could not be known.

【0030】(4) リン酸カルシウムに対するスケール防
止及び分散効果の評価 脱イオン水に水処理剤を加え、更に塩化カルシウム及び
リン酸三ナトリウムを溶解してpH11.6、Ca硬度1000pp
m、PO4 900ppmの試験水を調整した。試験水を密閉容
器に入れ、70℃の恒温槽中に24時間静置した後、試験水
をよく攪拌して、透過光濁度を測定した(日本工業規格
JIS−K0101)。スケール抑止率を下記式により求
めた。
(4) Evaluation of Scale Preventing and Dispersing Effect on Calcium Phosphate A water treatment agent was added to deionized water, and calcium chloride and trisodium phosphate were further dissolved to obtain pH 11.6 and Ca hardness 1000 pp.
Test water of m, PO 4 900 ppm was prepared. The test water was placed in a closed container and allowed to stand in a constant temperature bath at 70 ° C. for 24 hours, and then the test water was thoroughly stirred to measure the transmitted light turbidity (Japanese Industrial Standard JIS-K0101). The scale inhibition rate was calculated by the following formula.

【0031】 スケール抑止率(%)=100×(TB−TI)/TB ここで、TB:水処理剤無添加時の濁度 TI:水処理剤添加時の濁度Scale inhibition rate (%) = 100 × (TB−TI) / TB where TB: Turbidity when no water treatment agent is added TI: Turbidity when water treatment agent is added

【0032】次いで、試験水を2時間静置した後、上澄
液の透過光濁度を同様にして測定した。下記式によりス
ケール分散率を求めた。
Then, after allowing the test water to stand for 2 hours, the transmitted light turbidity of the supernatant was measured in the same manner. The scale dispersion rate was calculated by the following formula.

【0033】スケール分散率(%)=100×TD/TI ここで、TD:2時間静置後の上澄液の濁度Scale dispersion rate (%) = 100 × TD / TI where TD: turbidity of supernatant after standing for 2 hours

【0034】また、試験液を濾過した濾液について蛍光
強度を測定し、予め作成した濃度対蛍光強度の関係よ
り、蛍光物質濃度を求めた。結果を表3に示す。
Further, the fluorescence intensity of the filtrate obtained by filtering the test solution was measured, and the concentration of the fluorescent substance was determined from the relationship between the concentration prepared in advance and the fluorescence intensity. The results are shown in Table 3.

【0035】[0035]

【表3】 [Table 3]

【0036】重合体Bは、無水マレイン酸−スチレン共
重合体と2-ナフトール-6,8-ジスルホン酸との反応物で
あり、スケール抑制効果が大きく、また蛍光強度より水
中の残留濃度が追跡できることがわかった。比較例で
は、重合体と2-ナフトール-6,8-ジスルホン酸を単なる
混合物として用いたが、スケール防止効果及びスケール
分散効果が充分でない。蛍光強度が減少しているが、こ
れは蛍光物質である2-ナフトール-6,8-ジスルホン酸が
吸着され、系内残留濃度が減少していることを示してい
る。従って、蛍光強度の測定は重合体濃度と全く関係が
なくなり、意味を持たなくなっている。
Polymer B is a reaction product of a maleic anhydride-styrene copolymer and 2-naphthol-6,8-disulfonic acid, and has a large scale-inhibiting effect, and the residual concentration in water is traced by fluorescence intensity. I knew I could do it. In the comparative example, the polymer and 2-naphthol-6,8-disulfonic acid were used as a simple mixture, but the scale preventing effect and the scale dispersing effect are not sufficient. The fluorescence intensity decreased, which indicates that the fluorescent substance 2-naphthol-6,8-disulfonic acid was adsorbed and the residual concentration in the system decreased. Therefore, the measurement of the fluorescence intensity has nothing to do with the polymer concentration and has no meaning.

【0037】[0037]

【発明の効果】本発明の水処理方法は、冷却水等を含む
水系の腐食防止あるいはスケール防止用水処理剤の濃度
を、直接的かつ迅速、簡便に正確に測定して、金属の腐
食あるいはスケールを防止する最適の水処理剤濃度を維
持することができ、装置材料の長寿命化、操業の安定化
に奏する効果が大きい。
Industrial Applicability The water treatment method of the present invention is capable of directly, quickly, simply and accurately measuring the concentration of a water treatment agent for preventing corrosion or scale of a water system containing cooling water or the like, and corroding metal or scale. It is possible to maintain the optimum concentration of the water treatment agent for preventing the above, and it is effective in prolonging the life of the equipment material and stabilizing the operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における重合体Aの蛍光スペクトル図で
ある。
FIG. 1 is a fluorescence spectrum diagram of a polymer A in an example.

【図2】実施例における重合体Aの濃度と蛍光強度の相
関図である。
FIG. 2 is a correlation diagram between the concentration of polymer A and the fluorescence intensity in Examples.

【図3】実施例における重合体Bの蛍光スペクトル図で
ある。
FIG. 3 is a fluorescence spectrum diagram of a polymer B in an example.

【図4】実施例における重合体Bの濃度と蛍光強度の相
関図である。
FIG. 4 is a correlation diagram between the concentration of polymer B and the fluorescence intensity in Examples.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水系における金属の腐食あるいはスケー
ルを防止する水系処理方法において、それ自身が蛍光性
分子である水処理剤を保有水に注入して、蛍光強度を測
定することにより水処理剤の濃度を管理する事を特徴と
する水系処理方法
1. In a water treatment method for preventing metal corrosion or scale in a water treatment system, a water treatment agent which itself is a fluorescent molecule is injected into retained water and the fluorescence intensity is measured to measure the water treatment agent. Water treatment method characterized by controlling concentration
【請求項2】 2個以上の環がπ電子共役してなる構造
単位を含む有機化合物を蛍光性分子とする請求項1記載
の水系処理方法
2. The water-based treatment method according to claim 1, wherein an organic compound containing a structural unit in which two or more rings are conjugated with π electrons is used as a fluorescent molecule.
JP4073856A 1992-03-30 1992-03-30 Water treatment method Expired - Lifetime JPH0763713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4073856A JPH0763713B2 (en) 1992-03-30 1992-03-30 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4073856A JPH0763713B2 (en) 1992-03-30 1992-03-30 Water treatment method

Publications (2)

Publication Number Publication Date
JPH05277491A true JPH05277491A (en) 1993-10-26
JPH0763713B2 JPH0763713B2 (en) 1995-07-12

Family

ID=13530224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4073856A Expired - Lifetime JPH0763713B2 (en) 1992-03-30 1992-03-30 Water treatment method

Country Status (1)

Country Link
JP (1) JPH0763713B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647596A3 (en) * 1993-10-07 1995-05-17 Kurita Water Ind Ltd A polymer containing agent for water treatment and process for producing said polymer.
US5736405A (en) * 1996-03-21 1998-04-07 Nalco Chemical Company Monitoring boiler internal treatment with fluorescent-tagged polymers
CN102774969A (en) * 2012-07-24 2012-11-14 浙江浙能能源技术有限公司 Biodegradable non-phosphorous anti-scale corrosion inhibitor and preparation method thereof
CN104310602A (en) * 2014-11-06 2015-01-28 马鞍山市鸿伟环化有限公司 Efficient phosphine-free compound type corrosion and scale inhibitor and preparation method thereof
JP2018517844A (en) * 2015-05-28 2018-07-05 エコラボ ユーエスエー インコーポレイティド 2-substituted imidazole and benzimidazole corrosion inhibitors
WO2021113621A1 (en) * 2019-12-05 2021-06-10 Kemira Oyj Methods and systems for monitoring or controlling anti-scalant concentration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326978A (en) * 1991-03-20 1992-11-16 Nalco Chem Co Monitor for indicator polymer in cooling water system and adjustment of dosing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326978A (en) * 1991-03-20 1992-11-16 Nalco Chem Co Monitor for indicator polymer in cooling water system and adjustment of dosing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647596A3 (en) * 1993-10-07 1995-05-17 Kurita Water Ind Ltd A polymer containing agent for water treatment and process for producing said polymer.
US5635575A (en) * 1993-10-07 1997-06-03 Kurita Water Industries Ltd. Agent for water treatment containing a polymer for water treatment and a process for producing said polymer
US5736405A (en) * 1996-03-21 1998-04-07 Nalco Chemical Company Monitoring boiler internal treatment with fluorescent-tagged polymers
CN102774969A (en) * 2012-07-24 2012-11-14 浙江浙能能源技术有限公司 Biodegradable non-phosphorous anti-scale corrosion inhibitor and preparation method thereof
CN104310602A (en) * 2014-11-06 2015-01-28 马鞍山市鸿伟环化有限公司 Efficient phosphine-free compound type corrosion and scale inhibitor and preparation method thereof
CN104310602B (en) * 2014-11-06 2016-02-24 马鞍山市鸿伟环化有限公司 A kind of without the compound corrosion inhibiting and descaling agent of phosphine
JP2018517844A (en) * 2015-05-28 2018-07-05 エコラボ ユーエスエー インコーポレイティド 2-substituted imidazole and benzimidazole corrosion inhibitors
US11306400B2 (en) 2015-05-28 2022-04-19 Ecolab Usa Inc. 2-substituted imidazole and benzimidazole corrosion inhibitors
WO2021113621A1 (en) * 2019-12-05 2021-06-10 Kemira Oyj Methods and systems for monitoring or controlling anti-scalant concentration

Also Published As

Publication number Publication date
JPH0763713B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
JP4678644B2 (en) Fluorescent monomer for use in industrial water systems and polymers containing the same
Popov et al. Synthesis and properties of novel fluorescent‐tagged polyacrylate‐based scale inhibitors
KR100196966B1 (en) Simultaneous use of water soluble polymers with ozone in cooling water systems
US5948268A (en) Method for preventing scale formation and corrosion in circulating water
AU2017214842B2 (en) Method for producing acrylic acid polymers
JPH05277491A (en) Water system treatment method
JP2020528959A (en) Water-soluble pyranine polymer and manufacturing method
WO2019027608A1 (en) Fluorescent polymers for monitoring antiscalant concentrations in industrial water systems
US11319231B2 (en) Method for monitoring fluorescent polymer antiscalants in industrial water systems
JP6192640B2 (en) Method for producing maleic acid-isoprenol copolymer
CN112867920B (en) Method for controlling scale formation in water systems
CN114174809A (en) Fluorescent naphthalimide polymers and solutions thereof for water system scale control
JP2000171397A (en) Concentration management method for water treating chemical
WO2019027611A1 (en) Tagged treatment polymers for monitoring antiscalant concentrations in industrial water systems
WO2019027609A1 (en) Monitoring and dosage control of tagged treatment polymers in industrial water systems
JPS58174295A (en) Used of polyitaconic acid as critical scale inhibitor
JPH05163591A (en) Polymer for water treatment and treatment of water
JP3983833B2 (en) Water treatment agent
US20220267181A1 (en) Fluorescent-Tagged Treatment Polymers
US20100171070A1 (en) PROCESS AND POLYMER FOR PREVENTING Ba/Sr SCALE WITH A DETECTABLE PHOSPHORUS FUNCTIONALITY
JPH0420005B2 (en)
RU2752736C1 (en) Method for producing polymer scaling inhibitor for water recycling systems
ES2355651T3 (en) PROCEDURE AND POLYMER TO AVOID THE INCRUSTATIONS OF Ba / Sr, WITH INTEGRATED DETECTABLE PHOSPHOR FUNCTIONALITY.
CN116710524A (en) Fluorescent polymers and solutions thereof for scale control in aqueous systems
JPS63236600A (en) Scale inhibitor