JPH05277430A - Method for charging and applying liquid particles - Google Patents

Method for charging and applying liquid particles

Info

Publication number
JPH05277430A
JPH05277430A JP10935292A JP10935292A JPH05277430A JP H05277430 A JPH05277430 A JP H05277430A JP 10935292 A JP10935292 A JP 10935292A JP 10935292 A JP10935292 A JP 10935292A JP H05277430 A JPH05277430 A JP H05277430A
Authority
JP
Japan
Prior art keywords
liquid
charging
liquid particles
gas
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10935292A
Other languages
Japanese (ja)
Other versions
JP3232356B2 (en
Inventor
Masabumi Matsunaga
正文 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson KK
Original Assignee
Nordson KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson KK filed Critical Nordson KK
Priority to JP10935292A priority Critical patent/JP3232356B2/en
Publication of JPH05277430A publication Critical patent/JPH05277430A/en
Application granted granted Critical
Publication of JP3232356B2 publication Critical patent/JP3232356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

PURPOSE:To safely, inexpensively and effectively obtain charged particles of a liquid by mixing at least one of air, liquefied gas, a solvent, water and a super-critical fluid with the liquid in a liquid passage before the liquid is granulated and charging the formed liquid granules on the downstream side of the mixing part and/or after granulation. CONSTITUTION:A liquid is supplied from a liquid tank 10 by a pump 13 and the passage 7 sending the liquid under pressure is connected to the nozzle 3 of a spray gun 2 being a granulating device. A pin 5 is provided in the nozzle orifice 4 of the nozzle 3 as an internal charging electrode and connected to a high voltage generator 12 by a cable 9 to charge the liquid granules. A means mixing at least one fluid among air, liquefied gas, a solvent, water or a super- critical fluid with the liquid is provided in the liquid passage 7 to mix said fluid with the liquid and the liquid granules are charged with static electricity on the downstream side of the passage 7 and/or after the granulation of the liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体粒子の帯電方法に
係わる。
FIELD OF THE INVENTION The present invention relates to a method for charging liquid particles.

【0002】[0002]

【従来の技術】従来、導電性の液体を帯電させて塗布す
る場合、ノズル付近で高電圧をかけても、液体タンクか
らノズルまでの液体の流路を通じて静電気がリークして
しまい、液体粒子の帯電は難しかった。これは、電導性
の液体、例えば金属粒子や電導性の粒子(カーボン粒
子、繊維など)を含むコーティング剤又は接着剤、水性
塗料、エマルジョン系接着剤、水分散ワックス等の電気
抵抗値は一般的に108 Ω・cm以下と抵抗値が低いた
めに静電気が液体供給側にリークし易くなるためであ
る。この為、粒子化工程即ちスプレイノズルや回転霧化
用カップ等により液体を粒子化した後、静電気を帯電さ
せる方法が種々検討されているが、やはり液体タンクか
らノズル(又はカップ)までの間の液体流路に静電気が
流れてしまい、充分な粒子の帯電効果は得られなかった
のである。
2. Description of the Related Art Conventionally, when a conductive liquid is charged and applied, static electricity leaks through the liquid flow path from the liquid tank to the nozzle even if a high voltage is applied in the vicinity of the nozzle. Charging was difficult. This is because the electric resistance value of a conductive liquid, such as a coating agent or adhesive containing metal particles or conductive particles (carbon particles, fibers, etc.), an aqueous paint, an emulsion adhesive, a water-dispersed wax, etc. This is because static electricity easily leaks to the liquid supply side due to the low resistance value of 10 8 Ω · cm or less. For this reason, various methods have been studied in which the liquid is made into particles by a spraying process, that is, a spray nozzle, a rotary atomizing cup, or the like, and then electrostatically charged. The static electricity flowed in the liquid channel, and a sufficient particle charging effect was not obtained.

【0003】これらの理由から、現在は上記液体流路全
体を絶縁して、静電気のリークを防ぐ方法が取られてい
るが、液体タンク、ポンプ、流路、ノズル等全てを絶縁
することは、それだけ大規模な設備が要求されるだけで
なく、絶縁された静電容量は、15〜100KVの高電
圧が蓄積され多大になるため、人身事故につながる危険
性も心配されていたのである。
For these reasons, at present, the method of insulating the entire liquid flow path to prevent the leakage of static electricity is taken. However, insulating all the liquid tanks, pumps, flow paths, nozzles, etc. Not only is such a large-scale facility required, but the insulated capacitance is also large because a high voltage of 15 to 100 KV is accumulated, and there is a concern that it may lead to personal injury.

【0004】[0004]

【発明が解決しようとする課題】上述のようなコストの
増大と、危険性とを含んだ流路全体絶縁手段を採用する
ことなく、液体粒子の帯電効果を、より簡単な手段によ
り完全絶縁と同程度の効果を得る方法を提供することが
本発明の動機であった。
The charging effect of the liquid particles can be completely insulated by a simpler means without adopting the entire flow path insulating means including the increase in cost and the danger as described above. The motivation of the present invention was to provide a method of obtaining the same effect.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、液体タ
ンクから液体が供給され、粒子化されるまでの間に、液
体の流路内において、気体、液化ガス、溶剤、水、超臨
界性流体の内少なくとも1つを混入させ、上記混入され
た流路の下流側にて又は/及び液体の粒子化後に静電気
を帯電させる方法である。つまりは、液体流路内の抵抗
値を高くすることにより、静電気のリークを防ぎ、帯電
効果を高めることである。よって液体の圧力や気体等の
圧力の範囲は限定しない。
Means for Solving the Problems The gist of the present invention is to supply gas from a liquid tank to particles, and in the flow path of the liquid, gas, liquefied gas, solvent, water, supercritical This is a method in which at least one of the sexual fluids is mixed and electrostatically charged at the downstream side of the mixed flow path or / and after the liquid is made into particles. That is, by increasing the resistance value in the liquid flow path, the leakage of static electricity is prevented and the charging effect is enhanced. Therefore, the range of the pressure of the liquid or the pressure of the gas is not limited.

【0006】本発明の方法を図面によって説明する。図
1を参照されたい。液体タンク(10)からポンプ(1
3)等により液体を供給し、上記液体を圧送する流路
(7)は、粒子化装置、図面にてはスプレイガン(2)
のノズル(3)へと続いている。また、該ノズル(3)
のノズル孔(4)内には内部帯電用の電極即ちピン
(5)を設け、該ピンを高電圧発生装置(12)からの
ケーブル(9)に接続させ、液体粒子に帯電させるもの
とする。又は/及びノズルの外部に広く用いられる外部
帯電用のコロンナピン(9)を設けてもよい。ここで液
体流路(7)の中に気体、液化ガス、溶剤、水、超臨界
性流体の内少なくとも1つを混入する手段を設けるので
ある。その混入方法としては、電磁弁操作などにより、
間欠的に混入させることが望ましい(図2参照)。する
と、図3に示す如く、気体を混入させた場合は、流路内
には液体(Li1)、気体(G1)、液体(Li2)、
気体(G2)、…の配列をもって流れることになる。ま
た、気体類の混入された流路が長くなる程、即ち混入す
る量が多くなる程、該流路内の電気抵抗値は上がり、上
記液体又はその粒子への帯電時における、静電気のリー
ク防止効果を増大せしめることは言うまでもない。本発
明では液体と、気体とを厳密に限定するものではない、
つまり液体と、液体中への気体の混合されたフォーム
(泡)流、更にはフォーム流と、気体の配列まで含まれ
るものである。
The method of the present invention will be described with reference to the drawings. See FIG. From liquid tank (10) to pump (1
The flow path (7) for supplying the liquid by means of 3) or the like and for feeding the liquid under pressure is a particle-forming device, a spray gun (2) in the drawing.
To the nozzle (3). Also, the nozzle (3)
An electrode or pin (5) for internal charging is provided in the nozzle hole (4) of the device, and the pin is connected to the cable (9) from the high voltage generator (12) to charge the liquid particles. .. Alternatively, a colonna pin (9) for external charging, which is widely used outside the nozzle, may be provided. Here, means for mixing at least one of gas, liquefied gas, solvent, water and supercritical fluid is provided in the liquid flow path (7). The mixing method is as follows:
It is desirable to mix them intermittently (see FIG. 2). Then, as shown in FIG. 3, when gas is mixed, liquid (Li1), gas (G1), liquid (Li2),
It will flow with an array of gas (G2), .... In addition, the longer the flow path in which the gas is mixed, that is, the larger the amount of the mixed gas, the higher the electric resistance value in the flow path, and the static electricity leakage prevention at the time of charging the liquid or its particles. It goes without saying that the effect will be increased. In the present invention, the liquid and the gas are not strictly limited,
That is, it includes a liquid, a foam flow in which a gas is mixed into the liquid, a foam flow, and an arrangement of the gas.

【0007】また、本発明方法における液体流路は、そ
の断面積が小さく長い程、より抵抗値が上がり、粒子に
対する帯電は効果的結果が得られる。具体的には、流路
の断面が円の場合には、内径6mm以下が望ましく、具
体的には内径2mm以下、長さは3m以上が望ましい。
液体の種類や加工精度などにより単位時間当りの所望す
る流量を維持できるならば、その直径は0.1mm位で
も良い。また、該流路は図2又は図3に示すようなチュ
ーブ状のものに限らず、所望する形状、例えばオリフィ
ス状に加工されても良く、また二つ以上の加工物、例え
ばシリンダーにスパイラル溝を設けたフルイドパッセー
ジを挿入したものやチューブを組み合わして流路を形成
させても良い。更に、気体類用の流路に液体を混入する
方法も含むものとする。なお液体の圧送法は、加圧タン
ク、ポンプ等の何れの方法でも良い。
Further, the liquid channel in the method of the present invention has a smaller cross-sectional area and a longer length, the higher the resistance value is, and the effective result of charging the particles can be obtained. Specifically, when the flow path has a circular cross section, the inner diameter is preferably 6 mm or less, specifically, the inner diameter is 2 mm or less and the length is preferably 3 m or more.
The diameter may be about 0.1 mm as long as a desired flow rate per unit time can be maintained depending on the type of liquid and processing accuracy. Further, the flow passage is not limited to the tubular shape as shown in FIG. 2 or FIG. 3, and may be processed into a desired shape, for example, an orifice shape, and two or more processed products, for example, a spiral groove in a cylinder. The flow path may be formed by combining a tube in which a fluid passage provided with is inserted or a tube. Furthermore, a method of mixing a liquid in the gas flow path is also included. The liquid may be pumped by any method such as a pressure tank or a pump.

【0008】次に、気体、液化ガス、溶剤、水、超臨界
性流体の混入によるそれぞれの使用例を述べる。先ず、
気体、特に空気は最も安価で簡便な方法である。しか
し、吐出流量を上げるときに流路内に高圧力がかけられ
ると、気体が圧縮されて単位長さ当りの抵抗値が低くな
る。その様な場合は液化ガスが使用出来る。超臨界性流
体の場合についても同様の事が言える。該液体が水性塗
料等の場合には、溶媒として固有抵抗値の高い純水や有
機溶剤等を混入しても良い。
[0008] Next, examples of use of each by mixing gas, liquefied gas, solvent, water and supercritical fluid will be described. First,
Gas, especially air, is the cheapest and most convenient method. However, if a high pressure is applied to the inside of the flow path when increasing the discharge flow rate, the gas is compressed and the resistance value per unit length becomes low. In such a case, liquefied gas can be used. The same applies to the case of supercritical fluids. When the liquid is an aqueous paint or the like, pure water or an organic solvent having a high specific resistance value may be mixed as a solvent.

【0009】なお、これら気体類の混入箇所(8)は、
図面にては開閉バルブを設けたガン(2)より上流側に
あるが、開閉バルブの上流、下流の何れでも良く、要す
るに帯電箇所(4)、(5)よりも上流側にあれば良い
のである。
Incidentally, the mixing point (8) of these gases is
In the drawing, it is located upstream of the gun (2) provided with an opening / closing valve, but it may be located upstream or downstream of the opening / closing valve, that is, it may be located upstream of the charging points (4) and (5). is there.

【0010】上記方法により帯電された液体粒子は、被
塗物に塗布される。又は飛行中に乾燥させて医薬品やト
ナー等向けに造粒するなど種々の用途に提供でき得るも
のである。
The liquid particles charged by the above method are applied to the article to be coated. Alternatively, it can be provided for various uses such as drying during flight and granulating for medicines, toners and the like.

【0011】次に実験の一例につき、そのデータを記述
する。 1)実験装置 シーケンスは図1のとおり。耐高電圧
装置はなし。 2)液体供給管 テフロンチューブ 内径1.5mm
¢、外径9mm¢長さ8m 3)対象液体 水道水 4)液体圧力 1.5kg/cm2 5)使用気体 コンプレッサードライエア 6)気体の吹込時間 ON 10msec. OFF
20msec. 7)ガンノズルよりのバルブ開閉 連続 8)霧化エア 1.5kg/cm2 9)パターンエア 1.0kg/cm2 10)ノズルと被塗物の距離 250mm 11)被塗物のコンベア速度 2.0m/min. 12)電気測定値 (ガンバルブを閉にして測定)
Next, the data will be described for an example of the experiment. 1) Experimental equipment The sequence is shown in Fig. 1. There is no high voltage device. 2) Liquid supply tube Teflon tube, inner diameter 1.5mm
¢, outer diameter 9 mm ¢ length 8 m 3) Target liquid tap water 4) Liquid pressure 1.5 kg / cm 2 5) Gas used Compressor dry air 6) Gas blowing time ON 10 msec. OFF
20 msec. 7) Opening and closing of valve from gun nozzle 8) Atomizing air 1.5kg / cm 2 9) Pattern air 1.0kg / cm 2 10) Distance between nozzle and work piece 250mm 11) Conveyor speed of work piece 2.0m / Min. 12) Electric measurement value (measured with the gun valve closed)

【0012】[0012]

【表1】 [Table 1]

【0013】考察 第12項にみられるように、水の
みの場合には電源であるEPUにおける電圧は30kv
と90kv、たづしコロナピンにおける電圧は何れにお
いても0、即ち殆どがリークし、液体粒子に荷電してい
ない。それに反しエアを混入した場合には、コロナピン
における電圧は22kv、60kvと高く、静電気がリ
ークしにくいことを示している。 両者による塗布物の状態は、水のみの場合、表面の
みしか塗布されなかった。水にエアを混入させた場合は
ウラ面迄まわり込んで塗布されてた。
Discussion As can be seen from the 12th item, the voltage at the EPU, which is the power source, is 30 kv when only water is used.
And 90 kv, the voltage at the tadashi corona pin was 0 in all cases, that is, most leaked and the liquid particles were not charged. On the contrary, when air is mixed, the voltage at the corona pin is high at 22 kv and 60 kv, which shows that static electricity is unlikely to leak. With respect to the state of the coated product by both, when it was only water, only the surface was coated. When air was mixed with the water, it was applied to the back side of the water.

【0014】[0014]

【発明の効果】本発明方法は、簡単な方法により静電気
のリークを防止して液体粒子に帯電することができ、従
来のような大規模な設備が不要になるだけでなく、多大
な絶縁容量の危険性もなく、安全、低コストにて効果的
な液体の帯電粒子が得られるのである。
According to the method of the present invention, it is possible to prevent static electricity from leaking and to charge liquid particles by a simple method, which not only eliminates the need for a large-scale facility as in the prior art but also requires a large insulation capacity. It is possible to obtain effective charged particles of liquid at a low cost with safety without the danger of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の基本方法の説明図FIG. 1 is an explanatory diagram of a basic method of the method of the present invention.

【図2】上記図1上”A”部の拡大図であって、液体流
路内に気体類の混入される状態図
FIG. 2 is an enlarged view of “A” part in FIG. 1 above, showing a state in which gases are mixed in the liquid flow path.

【図3】上記図1上”A”部の拡大図であって、液体流
路内に気体類の混入された状態図
FIG. 3 is an enlarged view of “A” part in FIG. 1 above, showing a state in which gases are mixed in the liquid flow path.

【図4】液体流路気体類の混入のタイミングチャートFIG. 4 is a timing chart of liquid channel gas mixture.

【図5】ガンバルブと気体類バルブの開閉タイミングチ
ャート
[Fig. 5] Timing chart of opening / closing of gun valve and gas valve

【符号の説明】[Explanation of symbols]

1 内部帯電式液体スプレイガン 4 ノズル孔 5 内部帯電用ピン 8 気体混入継手 G,G1 ,G2 気体 Li,Li1 ,Li2 液体1 Internal charging type liquid spray gun 4 Nozzle hole 5 Internal charging pin 8 Gas mixture joint G, G 1 , G 2 gas Li, Li 1 , Li 2 liquid

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 液体粒子を帯電させる方法において、液
体を粒子化させるまでの間に、該液体の流路内に、気
体、液化ガス、溶剤、水、超臨界性流体の内の少なくと
も1つを混入させ、上記混入された流路の下流側にて又
は/及びそれら液体の粒子化後に静電気を帯電させるこ
とを特徴とする液体粒子の帯電方法。
1. A method of charging liquid particles, wherein at least one of a gas, a liquefied gas, a solvent, water and a supercritical fluid is provided in a flow path of the liquid until the liquid is made into particles. And charging static electricity at the downstream side of the mixed flow path or / and after the liquid is made into particles, a method for charging liquid particles.
【請求項2】 液体流路内に気体、液化ガス、溶剤、
水、超臨界性流体のうち少なくとも1つを混入させるこ
とが、間欠的に行われることを特徴とする請求項1記載
の液体粒子の帯電方法。
2. A gas, a liquefied gas, a solvent,
The method for charging liquid particles according to claim 1, wherein mixing at least one of water and a supercritical fluid is performed intermittently.
【請求項3】 液体が、電導性である請求項1記載の液
体粒子の帯電方法。
3. The method for charging liquid particles according to claim 1, wherein the liquid is electrically conductive.
【請求項4】 液体又は溶融体が、水性塗料又は水系接
着剤である請求項1記載の液粒子の帯電方法。
4. The method for charging liquid particles according to claim 1, wherein the liquid or melt is an aqueous paint or a water-based adhesive.
【請求項5】 液体の粒子化が、エアレススプレイ法又
は二流体スプレイ法により行われる事を特徴とする請求
項1記載の液体粒子の帯電方法。
5. The method for charging liquid particles according to claim 1, wherein the liquid particles are formed by an airless spray method or a two-fluid spray method.
【請求項6】 液体の粒子化が、回転霧化法により行わ
れる事を特徴とする請求項1記載の液体粒子の帯電方
法。
6. The method for charging liquid particles according to claim 1, wherein the liquid particles are formed by a rotary atomization method.
【請求項7】 気体、液化ガス、溶剤、水、超臨界性流
体の内の少なくとも一つからなる流路の中に液体を混入
させる事を特徴とする請求項1記載の液体粒子の帯電方
法。
7. The method for charging liquid particles according to claim 1, wherein the liquid is mixed into a flow path formed of at least one of a gas, a liquefied gas, a solvent, water and a supercritical fluid. ..
【請求項8】 液体粒子を帯電させる方法において、液
体を粒子化させるまでの間に、該液体の流路内に、気
体、液化ガス、溶剤、水、超臨界性流体の内少なくとも
1つを混入させ、上記混入された流路の下流側にて又は
/及びそれら液体の粒子化後に静電気を帯電させた後、
それら粒子を被塗物に塗布することを特徴とする液体粒
子の塗布方法。
8. A method of charging liquid particles, wherein at least one of a gas, a liquefied gas, a solvent, water and a supercritical fluid is contained in a flow path of the liquid until the liquid is made into particles. After being mixed and charged with static electricity on the downstream side of the mixed channel or / and after the liquid particles are formed into particles,
A method for applying liquid particles, which comprises applying the particles to an object to be coated.
【請求項9】 液体流路内に気体、液化ガス、溶剤、
水、超臨界性流体のうち少なくとも1つを混入させるこ
とが、間欠的に行われることを特徴とする請求項8記載
の液体粒子の塗布方法。
9. A gas, a liquefied gas, a solvent,
9. The method of applying liquid particles according to claim 8, wherein mixing of at least one of water and a supercritical fluid is intermittently performed.
【請求項10】 液体が、電導性である請求項8記載の
液体粒子の塗布方法。
10. The method for applying liquid particles according to claim 8, wherein the liquid is electrically conductive.
【請求項11】 液体又は溶融体が、水性塗料又は水系
接着剤である請求項8記載の液粒子の塗布方法。
11. The method for applying liquid particles according to claim 8, wherein the liquid or the melt is an aqueous paint or a water-based adhesive.
【請求項12】 液体の粒子化が、エアレススプレイ法
又は二流体スプレイ法により行われる事を特徴とする請
求項8記載の液体粒子の塗布方法。
12. The liquid particle coating method according to claim 8, wherein the liquid particles are formed by an airless spray method or a two-fluid spray method.
【請求項13】 液体の粒子化が、回転霧化法により行
われる事を特徴とする請求項8記載の液体粒子の塗布方
法。
13. The method of applying liquid particles according to claim 8, wherein the liquid particles are formed by a rotary atomization method.
【請求項14】 気体、液化ガス、溶剤、水、超臨界性
流体の内の少なくとも一つからなる流路の中に液体を混
入させる事を特徴とする請求項8記載の液体粒子の塗布
方法。
14. The method for applying liquid particles according to claim 8, wherein the liquid is mixed into a flow path formed of at least one of a gas, a liquefied gas, a solvent, water and a supercritical fluid. ..
JP10935292A 1992-04-02 1992-04-02 Liquid particle charging method Expired - Fee Related JP3232356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10935292A JP3232356B2 (en) 1992-04-02 1992-04-02 Liquid particle charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10935292A JP3232356B2 (en) 1992-04-02 1992-04-02 Liquid particle charging method

Publications (2)

Publication Number Publication Date
JPH05277430A true JPH05277430A (en) 1993-10-26
JP3232356B2 JP3232356B2 (en) 2001-11-26

Family

ID=14508051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10935292A Expired - Fee Related JP3232356B2 (en) 1992-04-02 1992-04-02 Liquid particle charging method

Country Status (1)

Country Link
JP (1) JP3232356B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598252B2 (en) * 2000-05-02 2003-07-29 Stork Prints B.V. Dissolving device and method for dissolving a particulate solid in a supercritical or almost critical fluid and dyeing device
CN115091749A (en) * 2022-06-02 2022-09-23 华中科技大学 Supercritical gas-assisted electrospray device and method
JP2023003354A (en) * 2021-06-23 2023-01-11 株式会社西浦化学 Specimen sampling swab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598252B2 (en) * 2000-05-02 2003-07-29 Stork Prints B.V. Dissolving device and method for dissolving a particulate solid in a supercritical or almost critical fluid and dyeing device
JP2023003354A (en) * 2021-06-23 2023-01-11 株式会社西浦化学 Specimen sampling swab
CN115091749A (en) * 2022-06-02 2022-09-23 华中科技大学 Supercritical gas-assisted electrospray device and method

Also Published As

Publication number Publication date
JP3232356B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
ES2938646T3 (en) Procedure and apparatus for electrostatic painting
CA2001704C (en) Mold release systems
KR101791844B1 (en) Electrode assembly for an electrostatic atomizer
EP3648898B1 (en) Passive electrostatic co2 composite spray applicator and corresponding method
JPS6229100B2 (en)
JPH0783858B2 (en) How to turn a fishtail spray into a feathered spray
US5102046A (en) Color change systems for electrostatic spray coating apparatus
CA1236348A (en) Charge injection device
CN103716974B (en) A kind of electrostatic protection apparatus
JPH0549975A (en) Device and method for electrostatic coating
JPH05277430A (en) Method for charging and applying liquid particles
JP2561529B2 (en) Electrostatic coating head cleaning method and cleaning device
US4139155A (en) Electrostatic spray gun with isolating paint conduit
JPH03137954A (en) Extensible coating hose for electrostatic spray gun
US4691865A (en) Device for chilling stream of gas-suspended particles
CA3018940C (en) Coating device and coating method
US8413914B2 (en) Electrostatic fast-set sprayable polymer system and process
JPH03202166A (en) Atomizing apparatus and painting apparatus
CN114904675B (en) Atomization generating device and atomization method
von Pidoll et al. Flammability characteristics of sprays of water-based paints
KR101009520B1 (en) Electrostatic spray nozzle for shipbuilding painting work
JPS6140471B2 (en)
JPH11267553A (en) Electrostatic coating machine
JPS5855067A (en) Electrostatic spray painting device
PT117317B (en) ELECTROSTATIC SPRAYER BASED ON HIGH VOLTAGE RETRACTABLE PADDLES OR HIGH VOLTAGE ADJUSTABLE CONTROL RING

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20070921

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees