JPH05277080A - Bioelectric phenomenon detector - Google Patents

Bioelectric phenomenon detector

Info

Publication number
JPH05277080A
JPH05277080A JP4108642A JP10864292A JPH05277080A JP H05277080 A JPH05277080 A JP H05277080A JP 4108642 A JP4108642 A JP 4108642A JP 10864292 A JP10864292 A JP 10864292A JP H05277080 A JPH05277080 A JP H05277080A
Authority
JP
Japan
Prior art keywords
electrodes
differential amplifier
living body
dummy
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4108642A
Other languages
Japanese (ja)
Other versions
JP3103427B2 (en
Inventor
Soichiro Sasamori
壮一郎 笹森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Medical System Co Ltd
Original Assignee
Dia Medical System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Medical System Co Ltd filed Critical Dia Medical System Co Ltd
Priority to JP04108642A priority Critical patent/JP3103427B2/en
Publication of JPH05277080A publication Critical patent/JPH05277080A/en
Application granted granted Critical
Publication of JP3103427B2 publication Critical patent/JP3103427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a corrector which enables accurate measurement of a DC or low frequency bioelectric signal. CONSTITUTION:This apparatus includes a dummy organism 20 which has a plurality of electrodes for bioelectric detection mounted thereon and a correction means which detects a potential difference between the paired electrodes mounted on the dummy organism 20 to be corrected to a specified voltage. Polarization voltages generated in the electrodes are sent to a first differential amplifier 31 at the correction means and are outputted as positive or negative potentials to be inputted into one hand of a second differential amplifier 32. A voltage rising gradually is inputted from a correction circuit 35 into the other hand of the second differential amplifier 32. The second differential amplifier 32 detects a difference between the outputs of the voltages and difference outputs obtained are compared by a comparator 36. When O potential results, the outputs of the correction circuit 35 are fixed, the condition which continues as intact at the value given. Thus, after the correction of the polarization potentials of the electrodes, the electrodes are taken off the dummy organism 20 and mounted on an organism to perform a measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、脳波、筋電位、その他
の直流または超低周波の生体電気現象を検出する場合に
おいて、電極に発生する不要な電位の悪影響を除去する
ようにした生体電気現象検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to bioelectricity for eliminating adverse effects of unnecessary electric potentials generated in electrodes when detecting electroencephalograms, myoelectric potentials, and other bioelectrical phenomena of direct current or ultra-low frequency. The present invention relates to a phenomenon detection device.

【0002】[0002]

【従来の技術】脳波を検出するための電極には、図5に
示すような生体電気検出用電極10が最も広く使用され
てきている。この電極10は、皿状の銀塩化銀電極部1
1を下面が開口したケース14で包囲し、リード線12
を外部へ導出したもので、生体16に取付けるときに
は、ペースト13を介在し、両面粘着カラー15で固定
するなどの方法が取られている。
2. Description of the Related Art A bioelectric detection electrode 10 as shown in FIG. 5 has been most widely used as an electrode for detecting an electroencephalogram. This electrode 10 is a dish-shaped silver-silver chloride electrode part 1
1 is surrounded by a case 14 having an opened lower surface, and the lead wire 12
When it is attached to the living body 16, the paste 13 is interposed and the double-sided adhesive collar 15 is used for fixing.

【0003】脳波は、その信号レベルが数μV〜300
μV程度の極めて小さな信号であり、これを検出すると
きに最もやっかいなのは、電極10の取付けである。電
極10の取付けが安定していないと、ノイズや筋電位が
混入して正確な測定をすることができない。電極10の
取付け位置には、種々の方法があるが、現在最も多く使
われているのは、図4に示すような国際脳波学会が標準
法として認めているモントリオール法である。このよう
に多数の電極10を頭皮上に取付け、図6の双極法、ま
たは、図7の単極法にて、電極間の電位変化を多チャン
ネル同時計測をする。
The electroencephalogram has a signal level of several μV to 300 μV.
An extremely small signal of the order of μV, and the most troublesome when detecting this is the attachment of the electrode 10. If the attachment of the electrode 10 is not stable, noise and myoelectric potential are mixed and accurate measurement cannot be performed. There are various methods for attaching the electrode 10, but the most widely used at present is the Montreal method, which is recognized as a standard method by the International EEG Society as shown in FIG. In this way, a large number of electrodes 10 are mounted on the scalp, and the potential change between the electrodes is simultaneously measured on multiple channels by the bipolar method shown in FIG. 6 or the monopolar method shown in FIG.

【0004】脳波は、頭皮上に電極10をペースト13
を介して装着して測定するが、この脳波は、一般的に1
〜4Hz帯域(δ波)、4〜8Hz帯域(θ波)、8〜
12Hz帯域(α波)、12〜25Hz帯域(β波)と
分類して論じられてきた。そのため、従来は、測定電極
間に発生した直流成分は、銀塩化銀電極部11とペース
ト13との間に発生した分極電圧と考え、CR増幅器を
用いて直流または超低周波成分を除去していた。
The electroencephalogram is obtained by pasting the electrode 10 on the scalp 13
The brain wave is generally 1
~ 4 Hz band (δ wave), 4 ~ 8 Hz band (θ wave), 8 ~
It has been categorized and discussed as the 12 Hz band (α wave) and the 12 to 25 Hz band (β wave). Therefore, conventionally, the direct current component generated between the measurement electrodes is considered to be the polarization voltage generated between the silver-silver chloride electrode portion 11 and the paste 13, and the direct current or the super low frequency component is removed by using a CR amplifier. It was

【0005】しかるに、近年、コンピュータ技術が普及
するにつれ、その研究内容が脳波成分中の1Hz以下の
帯域、すなわち、超低周波帯であるδ0領域にもおよ
び、かつδ0帯域にも有効な生体情報成分の存在が論じ
られるに至った。そのためには、増幅器の帯域を交流増
幅器(CR)のまま、その時定数を大きくするのみでな
く、積極的に直流増幅器化することが考えられている。
However, as computer technology has become widespread in recent years, the content of research is effective not only in the band of 1 Hz or less in the electroencephalogram component, that is, in the δ 0 region, which is an extremely low frequency band, and also in the δ 0 band. The existence of bioinformation components has been discussed. For that purpose, it is considered that not only the time constant is increased while the band of the amplifier remains the AC amplifier (CR) but the amplifier is positively converted to the DC amplifier.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、生体電
気現象検出は、前述のように、電極を生体に装着して計
測するが、電極自体が電池であり、絶対ゼロ電位の電極
は存在せず、かつ、各電極の電池電圧は個別差を有して
いる。直流成分の生体電気現象の検出には、電極電池電
圧が存在しても変動なく安定であることが条件で、その
ための工夫は種々実施されているが、生体電位計測を完
全に実施するためには、ここの電極電池電圧を補正して
肝心の脳波そのものを測定する必要がある。この場合、
δ0波を分極電圧として除去すると、肝心の脳波情報を
測定することができないという問題があった。
However, as described above, bioelectric phenomenon detection is performed by mounting electrodes on a living body, but the electrodes themselves are batteries, and there are no electrodes of absolute zero potential. In addition, the battery voltage of each electrode has an individual difference. The detection of the bioelectric phenomenon of the direct current component is required to be stable without fluctuation even if the electrode battery voltage is present, and various measures have been taken to achieve it. , It is necessary to correct the electrode battery voltage here and measure the essential EEG itself. in this case,
If the δ 0 wave is removed as a polarization voltage, there is a problem that the essential EEG information cannot be measured.

【0007】本発明は、生体電気現象の中で極めて重要
なδ0波を正確に測定するために、直流増幅方式により
構成される脳波計などの生体電気現象計測装置におい
て、生体電気現象計測の前に個別の電極電池電圧を、ダ
ミー生体を用いて計測し、電極電池電圧差を予め補正
し、その後、生体電気現象を計測することにより生体の
直流成分より計測可能とする補正装置を提供することを
目的とするものである。
In order to accurately measure the δ 0 wave, which is extremely important in bioelectric phenomena, the present invention provides a bioelectric phenomenon measuring device such as an electroencephalograph configured by a direct current amplification method. Provided is a correction device capable of measuring an individual electrode battery voltage using a dummy living body, correcting the electrode battery voltage difference in advance, and then measuring a bioelectric phenomenon from a DC component of the living body. The purpose is that.

【0008】[0008]

【課題を解決するための手段】本発明は、複数の生体電
気検出用電極10を装着するダミー生体20と、このダ
ミー生体20に装着された対をなす電極10間の電位差
を検出して所定の電圧に補正する補正手段とからなり、
この補正手段は、ダミー生体20に装着された対をなす
電極10間の電位差を検出する第1の差動増幅器31
と、この第1の差動増幅器31の出力と補正回路35か
ら帰還された出力との電位差を検出する第2の差動増幅
器32と、順次出力電位を変化せしめて、前記第1の差
動増幅器31の出力電位と所定の関係値に達したとき固
定的な電圧を出力する補正回路35とを具備してなるこ
とを特徴とする生体電気現象検出用電極の補正装置であ
る。
According to the present invention, a predetermined potential is detected by detecting a potential difference between a dummy living body 20 on which a plurality of bioelectricity detecting electrodes 10 are mounted and a pair of electrodes 10 mounted on the dummy living body 20. Compensation means for compensating to the voltage of
This correction means is a first differential amplifier 31 for detecting a potential difference between the pair of electrodes 10 mounted on the dummy living body 20.
A second differential amplifier 32 for detecting a potential difference between the output of the first differential amplifier 31 and the output fed back from the correction circuit 35, and the first differential amplifier 32 for sequentially changing the output potential. A correction device for a bioelectric phenomenon detection electrode, comprising: a correction circuit 35 that outputs a fixed voltage when the output potential of the amplifier 31 reaches a predetermined relational value.

【0009】[0009]

【作用】(1)ペースト13を塗布して電極10をダミ
ー生体20に装着する。 (2)各電極10とペースト13の間で発生した分極電
圧が、第1の差動増幅器31へ送られる。 (3)電極10で発生した電位差は、第1の差動増幅器
31で正または負の電位として出力し、第2の差動増幅
器32の一方へ入力する。 (4)調整のためのトリガ信号によってカウンタ39の
データをすべてクリアするとともに、発振器38の発振
を開始させ、クロック信号をカウンタ39にてカウント
する。
(1) The paste 13 is applied and the electrode 10 is attached to the dummy living body 20. (2) The polarization voltage generated between each electrode 10 and the paste 13 is sent to the first differential amplifier 31. (3) The potential difference generated at the electrode 10 is output as a positive or negative potential by the first differential amplifier 31 and input to one of the second differential amplifiers 32. (4) All the data of the counter 39 is cleared by the trigger signal for adjustment, the oscillation of the oscillator 38 is started, and the clock signal is counted by the counter 39.

【0010】(5)カウンタ39の徐々にカウントアッ
プするディジタル信号がアナログ値に変換されて第2の
差動増幅器32の他方に入力する。 (6)第2の差動増幅器32では、第1の差動増幅器3
1とD/A変換器40の出力との差を検出して、増幅器
33で増幅する。 (7)この増幅器33の差の出力は、比較器36で0電
位と比較され、増幅器33の出力が0電位になると、フ
リップフロップ回路37をリセットし、D/A変換器4
0の出力は、そのまま保持した状態となる。 (8)このようにして各電極10の分極電位を補正した
後、ダミー生体20から外して生体16に装着して測定
する。
(5) The digital signal that is gradually counted up by the counter 39 is converted into an analog value and input to the other of the second differential amplifiers 32. (6) In the second differential amplifier 32, the first differential amplifier 3
The difference between 1 and the output of the D / A converter 40 is detected and amplified by the amplifier 33. (7) The difference output of the amplifier 33 is compared with 0 potential by the comparator 36, and when the output of the amplifier 33 becomes 0 potential, the flip-flop circuit 37 is reset and the D / A converter 4
The output of 0 is kept as it is. (8) After the polarization potential of each electrode 10 is corrected in this way, it is detached from the dummy living body 20 and mounted on the living body 16 for measurement.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面に基づき説明
する。20は、ダミー生体で、このダミー生体20は、
頭部と同様の形状となるような絶縁体芯材に、その表面
にやはり絶縁体の吸湿性物質で被覆し、生体と同様の性
質を有するような生理食塩水、グレブス液などを含浸さ
せたものである。ヘルメット状の電極ホルダー18の内
側には、多数の生体電気検出用電極10が取付けられて
いる。これらの電極10は、銀塩化銀などの高安定性を
有するものからなり、前述した図4の取付け位置に対応
しており、顎バンドなどでペースト13を介してダミー
生体20の表面に密着させて装着される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 20 is a dummy living body, and this dummy living body 20 is
An insulator core material with a shape similar to that of the head was coated with a hygroscopic substance that is also an insulator on its surface, and was impregnated with physiological saline or Grubb's solution having the same properties as those of the living body. It is a thing. A large number of bioelectric detection electrodes 10 are attached to the inside of the helmet-shaped electrode holder 18. These electrodes 10 are made of a material having high stability such as silver-silver chloride, and correspond to the mounting position of FIG. 4 described above. Be installed.

【0012】例えば、図6の双極法で測定するものとす
ると、左脳と右脳との中心線に対する左右対称点の生体
電気検出用電極10を1対とする。具体的には、Fp1
とFp2、F3とF4、F7とF8、C3とC4、T3
とT4、P3とP4、T5とT6、O1とO2とが対を
なす。なお、A1とA2は不関電極である。
For example, if the measurement is performed by the bipolar method shown in FIG. 6, a pair of bioelectric detection electrodes 10 at left and right symmetry points with respect to the center lines of the left and right brains are used. Specifically, Fp1
And Fp2, F3 and F4, F7 and F8, C3 and C4, T3
And T4, P3 and P4, T5 and T6, and O1 and O2 form a pair. A1 and A2 are indifferent electrodes.

【0013】前記各1対と不関電極A1(またはA2)
とは、第1チャンネル補正手段30aから第nチャンネ
ル補正手段30nまでの第1の差動増幅器31にそれぞ
れ接続される。各第1の差動増幅器31は、第2の差動
増幅器32、多段の増幅器33を介して出力端子34に
接続されるとともに、補正回路35に接続される。この
補正回路35は、比較器36、フリップフロップ回路3
7、発振器38を介してカウンタ39に接続され、この
カウンタ39は、D/A変換器40を介して前記第2の
差動増幅器32の他方の出力側に接続されている。
Each pair and the indifferent electrode A1 (or A2)
Are respectively connected to the first differential amplifiers 31 from the first channel correction means 30a to the nth channel correction means 30n. Each first differential amplifier 31 is connected to the output terminal 34 via the second differential amplifier 32 and the multistage amplifier 33, and is also connected to the correction circuit 35. The correction circuit 35 includes a comparator 36 and a flip-flop circuit 3.
7. A counter 39 is connected via an oscillator 38, and the counter 39 is connected to the other output side of the second differential amplifier 32 via a D / A converter 40.

【0014】以上のような構成おける動作を説明する。 (1)ヘルメット状電極ホルダー18に取付けられた電
極10を、ペースト13を塗布してダミー生体20に被
せ、脳波検出と同一状態に装着する。 (2)電極10では、銀塩化銀などの電極部11とペー
スト13との間にブラウン現象にて分極電圧が発生し、
この電圧が第1の差動増幅器31へ送られる。
The operation of the above configuration will be described. (1) The electrode 10 attached to the helmet-shaped electrode holder 18 is coated with the paste 13 and covered with the dummy living body 20, and is mounted in the same state as the brain wave detection. (2) In the electrode 10, a polarization voltage is generated by the Brown phenomenon between the electrode portion 11 such as silver-silver chloride and the paste 13,
This voltage is sent to the first differential amplifier 31.

【0015】(3)ここで、P3に装着された電極10
とP4に装着された電極10とは、電極の状態、ペース
ト13の塗布状態等で違いが生じ、全く同一の電位が発
生することはありえないので、P3とP4の電極10で
発生した電位差は、第1の差動増幅器31で正または負
の電位として出力し、第2の差動増幅器32の一方へ入
力する。 (4)第1チャンネル補正手段30aのトリガ入力端子
41に外部から調整のためのトリガ信号を入力する。
(3) Here, the electrode 10 attached to P3
Since the electrodes 10 mounted on P4 and P4 are different from each other in the state of the electrodes, the coating state of the paste 13, and the like, the same potential cannot be generated. Therefore, the potential difference generated between the electrodes 10 of P3 and P4 is The first differential amplifier 31 outputs it as a positive or negative potential and inputs it to one of the second differential amplifiers 32. (4) A trigger signal for adjustment is externally input to the trigger input terminal 41 of the first channel correction means 30a.

【0016】(5)このトリガ信号によってカウンタ3
9のデータをすべてクリアするとともに、フリップフロ
ップ回路37のセット端子に入力して発振器38の発振
を開始させ、クロック信号をカウンタ39に送り、新た
にカウントを開始する。 (6)カウンタ39の徐々にカウントアップするディジ
タル信号がD/A変換器40でアナログ値に変換され
て、第2の差動増幅器32の他方に入力する。この場
合、D/A変換器40の出力は、1対の電極間に発生す
る電位より負側に充分大きな電位、例えば−500mV
から正側に次第に増加するものとする。
(5) The counter 3 is activated by this trigger signal.
While clearing all the data of 9, the data is input to the set terminal of the flip-flop circuit 37 to start the oscillation of the oscillator 38, the clock signal is sent to the counter 39, and the counting is newly started. (6) The digital signal of the counter 39 which is gradually counted up is converted into an analog value by the D / A converter 40 and input to the other of the second differential amplifiers 32. In this case, the output of the D / A converter 40 is a potential sufficiently larger on the negative side than the potential generated between the pair of electrodes, for example, -500 mV.
From the positive side to the positive side.

【0017】(7)第2の差動増幅器32では、第1の
差動増幅器31とD/A変換器40の出力との差を検出
して、増幅器33で増幅する。 (8)この差の出力は、比較器36へ送られる。そし
て、この比較器36で0電位と比較し、増幅器33の出
力も0電位になると、比較器36から出力があらわれ
て、フリップフロップ回路37をリセットする。このと
き、D/A変換器40の出力は、そのときの出力電圧の
まま保持した状態となる。
(7) The second differential amplifier 32 detects the difference between the first differential amplifier 31 and the output of the D / A converter 40, and the amplifier 33 amplifies the difference. (8) The output of this difference is sent to the comparator 36. Then, the comparator 36 compares with 0 potential, and when the output of the amplifier 33 also becomes 0 potential, an output appears from the comparator 36 to reset the flip-flop circuit 37. At this time, the output of the D / A converter 40 is kept at the output voltage at that time.

【0018】(9)第2チャンネル補正手段30bから
第nチャンネル補正手段30nまでも同時に、または、
順次、同様の動作が行なわれる。 (10)このようにして各電極の分極電位を補正した
後、ダミー生体20から外して生体に装着して測定す
る。
(9) From the second channel correcting means 30b to the nth channel correcting means 30n at the same time, or
Similar operations are sequentially performed. (10) After the polarization potential of each electrode is corrected in this manner, the electrode is removed from the dummy living body 20 and mounted on the living body for measurement.

【0019】前記実施例では、補正手段30aないし3
0nは、補正回路35により自動的に補正するようにし
たが、これに限られるものではなく、この補正回路35
は、手動によりボリュームのつまみを回動して補正する
ものであってもよい。前記実施例では、電極10をヘル
メット状電極ホルダー18に装着したままで補正できる
ようにするため、ダミー生体20を頭部と同様の形状と
したが、これに限られるものではなく、図3に示すよう
に、電極10の数が少ない場合には、ヘルメット状電極
ホルダー18から外して筐体21に設けたダミー生体2
0に1個ずつ並べて1対毎に組み合わせて調整するよう
にしてもよい。
In the above embodiment, the correction means 30a to 3
0n is automatically corrected by the correction circuit 35, but the present invention is not limited to this.
Alternatively, the knob of the volume may be manually rotated for correction. In the above-described embodiment, the dummy living body 20 has the same shape as the head so that the electrode 10 can be corrected while being attached to the helmet-shaped electrode holder 18. However, the shape of the dummy living body 20 is not limited to this. As shown, when the number of electrodes 10 is small, the dummy living body 2 removed from the helmet-shaped electrode holder 18 and provided in the housing 21
It is also possible to arrange them one by one and adjust them by combining them one by one.

【0020】前記実施例では、双極法の場合について説
明したが、単極法の場合でも同様である。前記実施例で
は、脳波検出用電極の場合について説明したが、その他
の生体電気現象検出用電極の場合でも同様である。
In the above embodiment, the case of the bipolar method has been described, but the same applies to the case of the unipolar method. In the above-described embodiment, the case of the electroencephalogram detection electrode has been described, but the same applies to the case of other bioelectric phenomenon detection electrodes.

【0021】[0021]

【発明の効果】本発明は、複数の生体電気検出用電極1
0を装着するダミー生体20と、このダミー生体20に
装着された対をなす電極10間の電位差を検出して所定
の電圧に補正する補正手段とを具備してなるので、最近
注目されてきている直流または超低周波信号が正確に検
出できるとともに、多数の生体電気検出用電極10が有
する固有の分極電位を簡単に調整できるものである。
INDUSTRIAL APPLICABILITY The present invention has a plurality of bioelectrical detection electrodes 1.
Since it is equipped with a dummy living body 20 to which 0 is attached and a correction unit that detects a potential difference between the pair of electrodes 10 attached to the dummy living body 20 and corrects it to a predetermined voltage, it has recently been noticed. It is possible to accurately detect a direct current or an ultra-low frequency signal that is present and to easily adjust the peculiar polarization potential of many bioelectric detection electrodes 10.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による生体電気現象検出装置の一実施例
を示す電気回路図である。
FIG. 1 is an electric circuit diagram showing an embodiment of a bioelectrical phenomenon detection device according to the present invention.

【図2】ダミー生体への電極の装着状態を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing a state in which electrodes are attached to a dummy living body.

【図3】ダミー生体の他の例を示す断面図である。FIG. 3 is a cross-sectional view showing another example of a dummy living body.

【図4】電極の装着方法の説明図である。FIG. 4 is an explanatory diagram of a method of mounting electrodes.

【図5】皿状電極の断面図である。FIG. 5 is a cross-sectional view of a dish-shaped electrode.

【図6】双極法の説明図である。FIG. 6 is an explanatory diagram of a bipolar method.

【図7】単極法の説明図である。FIG. 7 is an explanatory diagram of a monopolar method.

【符号の説明】[Explanation of symbols]

10…生体電気検出用電極、11…銀塩化銀などの電極
部、12…リード線、13…ペースト、14…ケース、
15…両面粘着カラー、16…生体、18…ヘルメット
状電極ホルダー、20…ダミー生体、21…筐体、30
n…第nチャンネル補正手段、31…第1の差動増幅
器、32…第2の差動増幅器、33…増幅器、34…出
力端子、35…補正回路、36…比較器、37…フリッ
プフロップ回路、38…発振器、39…カウンタ、40
…D/A変換器、41…トリガ入力端子。
10 ... Electrode for bioelectricity detection, 11 ... Electrode part such as silver-silver chloride, 12 ... Lead wire, 13 ... Paste, 14 ... Case,
15 ... Double-sided adhesive color, 16 ... Living body, 18 ... Helmet-shaped electrode holder, 20 ... Dummy living body, 21 ... Housing, 30
n ... Channel correction means, 31 ... First differential amplifier, 32 ... Second differential amplifier, 33 ... Amplifier, 34 ... Output terminal, 35 ... Correction circuit, 36 ... Comparator, 37 ... Flip-flop circuit , 38 ... Oscillator, 39 ... Counter, 40
... D / A converter, 41 ... Trigger input terminal.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の生体電気検出用電極10を装着す
るダミー生体20と、このダミー生体20に装着された
対をなす電極10間の電位差を検出して所定の電圧に補
正する補正手段とを具備してなることを特徴とする生体
電気現象検出装置。
1. A dummy living body 20 to which a plurality of bioelectricity detecting electrodes 10 are attached, and a correction means for detecting a potential difference between a pair of electrodes 10 attached to the dummy living body 20 and correcting the potential difference to a predetermined voltage. A bioelectric phenomenon detection device comprising:
【請求項2】 補正手段は、ダミー生体20に装着され
た対をなす電極10間の電位差を検出する第1の差動増
幅器31と、この第1の差動増幅器31の出力と補正回
路35から帰還された出力との電位差を検出する第2の
差動増幅器32と、順次出力電位を変化せしめて、前記
第1の差動増幅器31の出力電位と所定の関係値に達し
たとき固定的な電圧を出力する補正回路35とからなる
請求項1記載の生体電気現象検出装置。
2. The correcting means includes a first differential amplifier 31 for detecting a potential difference between a pair of electrodes 10 mounted on a dummy living body 20, an output of the first differential amplifier 31, and a correcting circuit 35. A second differential amplifier 32 for detecting a potential difference from the output fed back from the first differential amplifier 32, and the output potential of the first differential amplifier 31 is changed to a fixed value when a predetermined relation value is reached. The bioelectric phenomenon detection device according to claim 1, further comprising a correction circuit 35 that outputs a different voltage.
【請求項3】 複数の生体電気検出用電極10はヘルメ
ット状電極ホルダー18に取付けたまま、頭部形状のダ
ミー生体20に装着するようにした請求項1または2記
載の生体電気現象検出装置。
3. The bioelectrical phenomenon detection device according to claim 1, wherein the plurality of bioelectrical detection electrodes 10 are attached to the head-shaped dummy living body 20 while being attached to the helmet-shaped electrode holder 18.
JP04108642A 1992-04-01 1992-04-01 Bioelectricity detector Expired - Fee Related JP3103427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04108642A JP3103427B2 (en) 1992-04-01 1992-04-01 Bioelectricity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04108642A JP3103427B2 (en) 1992-04-01 1992-04-01 Bioelectricity detector

Publications (2)

Publication Number Publication Date
JPH05277080A true JPH05277080A (en) 1993-10-26
JP3103427B2 JP3103427B2 (en) 2000-10-30

Family

ID=14489979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04108642A Expired - Fee Related JP3103427B2 (en) 1992-04-01 1992-04-01 Bioelectricity detector

Country Status (1)

Country Link
JP (1) JP3103427B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078326A1 (en) * 2017-10-20 2019-04-25 パナソニック株式会社 Evaluation system, evaluation method, program, and non-temporary recording medium for brain activity measurement device
WO2019099758A1 (en) * 2017-11-17 2019-05-23 Ctrl-Labs Corporation Dual-supply analog circuitry for sensing surface emg signals
US10460455B2 (en) 2018-01-25 2019-10-29 Ctrl-Labs Corporation Real-time processing of handstate representation model estimates
US10489986B2 (en) 2018-01-25 2019-11-26 Ctrl-Labs Corporation User-controlled tuning of handstate representation model parameters
US10496168B2 (en) 2018-01-25 2019-12-03 Ctrl-Labs Corporation Calibration techniques for handstate representation modeling using neuromuscular signals
US10504286B2 (en) 2018-01-25 2019-12-10 Ctrl-Labs Corporation Techniques for anonymizing neuromuscular signal data
US10592001B2 (en) 2018-05-08 2020-03-17 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US10656711B2 (en) 2016-07-25 2020-05-19 Facebook Technologies, Llc Methods and apparatus for inferring user intent based on neuromuscular signals
US10684692B2 (en) 2014-06-19 2020-06-16 Facebook Technologies, Llc Systems, devices, and methods for gesture identification
US10687759B2 (en) 2018-05-29 2020-06-23 Facebook Technologies, Llc Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
US10772519B2 (en) 2018-05-25 2020-09-15 Facebook Technologies, Llc Methods and apparatus for providing sub-muscular control
US10817795B2 (en) 2018-01-25 2020-10-27 Facebook Technologies, Llc Handstate reconstruction based on multiple inputs
US10842407B2 (en) 2018-08-31 2020-11-24 Facebook Technologies, Llc Camera-guided interpretation of neuromuscular signals
US10905383B2 (en) 2019-02-28 2021-02-02 Facebook Technologies, Llc Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces
US10921764B2 (en) 2018-09-26 2021-02-16 Facebook Technologies, Llc Neuromuscular control of physical objects in an environment
US10937414B2 (en) 2018-05-08 2021-03-02 Facebook Technologies, Llc Systems and methods for text input using neuromuscular information
US10970374B2 (en) 2018-06-14 2021-04-06 Facebook Technologies, Llc User identification and authentication with neuromuscular signatures
US10970936B2 (en) 2018-10-05 2021-04-06 Facebook Technologies, Llc Use of neuromuscular signals to provide enhanced interactions with physical objects in an augmented reality environment
US10990174B2 (en) 2016-07-25 2021-04-27 Facebook Technologies, Llc Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors
US11000211B2 (en) 2016-07-25 2021-05-11 Facebook Technologies, Llc Adaptive system for deriving control signals from measurements of neuromuscular activity
US11045137B2 (en) 2018-07-19 2021-06-29 Facebook Technologies, Llc Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device
US11069148B2 (en) 2018-01-25 2021-07-20 Facebook Technologies, Llc Visualization of reconstructed handstate information
US11079846B2 (en) 2013-11-12 2021-08-03 Facebook Technologies, Llc Systems, articles, and methods for capacitive electromyography sensors
US11179066B2 (en) 2018-08-13 2021-11-23 Facebook Technologies, Llc Real-time spike detection and identification
US11216069B2 (en) 2018-05-08 2022-01-04 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US11331045B1 (en) 2018-01-25 2022-05-17 Facebook Technologies, Llc Systems and methods for mitigating neuromuscular signal artifacts
US11337652B2 (en) 2016-07-25 2022-05-24 Facebook Technologies, Llc System and method for measuring the movements of articulated rigid bodies
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
US11481031B1 (en) 2019-04-30 2022-10-25 Meta Platforms Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
US11567573B2 (en) 2018-09-20 2023-01-31 Meta Platforms Technologies, Llc Neuromuscular text entry, writing and drawing in augmented reality systems
US11635736B2 (en) 2017-10-19 2023-04-25 Meta Platforms Technologies, Llc Systems and methods for identifying biological structures associated with neuromuscular source signals
US11666264B1 (en) 2013-11-27 2023-06-06 Meta Platforms Technologies, Llc Systems, articles, and methods for electromyography sensors
US11797087B2 (en) 2018-11-27 2023-10-24 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113412B1 (en) 1999-12-27 2014-05-21 Japan Display Inc. Liquid crystal display apparatus and method for driving the same
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US11079846B2 (en) 2013-11-12 2021-08-03 Facebook Technologies, Llc Systems, articles, and methods for capacitive electromyography sensors
US11666264B1 (en) 2013-11-27 2023-06-06 Meta Platforms Technologies, Llc Systems, articles, and methods for electromyography sensors
US10684692B2 (en) 2014-06-19 2020-06-16 Facebook Technologies, Llc Systems, devices, and methods for gesture identification
US10990174B2 (en) 2016-07-25 2021-04-27 Facebook Technologies, Llc Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors
US11337652B2 (en) 2016-07-25 2022-05-24 Facebook Technologies, Llc System and method for measuring the movements of articulated rigid bodies
US10656711B2 (en) 2016-07-25 2020-05-19 Facebook Technologies, Llc Methods and apparatus for inferring user intent based on neuromuscular signals
US11000211B2 (en) 2016-07-25 2021-05-11 Facebook Technologies, Llc Adaptive system for deriving control signals from measurements of neuromuscular activity
US11635736B2 (en) 2017-10-19 2023-04-25 Meta Platforms Technologies, Llc Systems and methods for identifying biological structures associated with neuromuscular source signals
WO2019078326A1 (en) * 2017-10-20 2019-04-25 パナソニック株式会社 Evaluation system, evaluation method, program, and non-temporary recording medium for brain activity measurement device
WO2019099758A1 (en) * 2017-11-17 2019-05-23 Ctrl-Labs Corporation Dual-supply analog circuitry for sensing surface emg signals
US11361522B2 (en) 2018-01-25 2022-06-14 Facebook Technologies, Llc User-controlled tuning of handstate representation model parameters
US11163361B2 (en) 2018-01-25 2021-11-02 Facebook Technologies, Llc Calibration techniques for handstate representation modeling using neuromuscular signals
US10460455B2 (en) 2018-01-25 2019-10-29 Ctrl-Labs Corporation Real-time processing of handstate representation model estimates
US10489986B2 (en) 2018-01-25 2019-11-26 Ctrl-Labs Corporation User-controlled tuning of handstate representation model parameters
US10496168B2 (en) 2018-01-25 2019-12-03 Ctrl-Labs Corporation Calibration techniques for handstate representation modeling using neuromuscular signals
US11587242B1 (en) 2018-01-25 2023-02-21 Meta Platforms Technologies, Llc Real-time processing of handstate representation model estimates
US10950047B2 (en) 2018-01-25 2021-03-16 Facebook Technologies, Llc Techniques for anonymizing neuromuscular signal data
US10504286B2 (en) 2018-01-25 2019-12-10 Ctrl-Labs Corporation Techniques for anonymizing neuromuscular signal data
US11331045B1 (en) 2018-01-25 2022-05-17 Facebook Technologies, Llc Systems and methods for mitigating neuromuscular signal artifacts
US10817795B2 (en) 2018-01-25 2020-10-27 Facebook Technologies, Llc Handstate reconstruction based on multiple inputs
US11127143B2 (en) 2018-01-25 2021-09-21 Facebook Technologies, Llc Real-time processing of handstate representation model estimates
US11069148B2 (en) 2018-01-25 2021-07-20 Facebook Technologies, Llc Visualization of reconstructed handstate information
US11216069B2 (en) 2018-05-08 2022-01-04 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US11036302B1 (en) 2018-05-08 2021-06-15 Facebook Technologies, Llc Wearable devices and methods for improved speech recognition
US10592001B2 (en) 2018-05-08 2020-03-17 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US10937414B2 (en) 2018-05-08 2021-03-02 Facebook Technologies, Llc Systems and methods for text input using neuromuscular information
US10772519B2 (en) 2018-05-25 2020-09-15 Facebook Technologies, Llc Methods and apparatus for providing sub-muscular control
US11129569B1 (en) 2018-05-29 2021-09-28 Facebook Technologies, Llc Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
US10687759B2 (en) 2018-05-29 2020-06-23 Facebook Technologies, Llc Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
US10970374B2 (en) 2018-06-14 2021-04-06 Facebook Technologies, Llc User identification and authentication with neuromuscular signatures
US11045137B2 (en) 2018-07-19 2021-06-29 Facebook Technologies, Llc Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device
US11179066B2 (en) 2018-08-13 2021-11-23 Facebook Technologies, Llc Real-time spike detection and identification
US10842407B2 (en) 2018-08-31 2020-11-24 Facebook Technologies, Llc Camera-guided interpretation of neuromuscular signals
US10905350B2 (en) 2018-08-31 2021-02-02 Facebook Technologies, Llc Camera-guided interpretation of neuromuscular signals
US11567573B2 (en) 2018-09-20 2023-01-31 Meta Platforms Technologies, Llc Neuromuscular text entry, writing and drawing in augmented reality systems
US10921764B2 (en) 2018-09-26 2021-02-16 Facebook Technologies, Llc Neuromuscular control of physical objects in an environment
US10970936B2 (en) 2018-10-05 2021-04-06 Facebook Technologies, Llc Use of neuromuscular signals to provide enhanced interactions with physical objects in an augmented reality environment
US11797087B2 (en) 2018-11-27 2023-10-24 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US11941176B1 (en) 2018-11-27 2024-03-26 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US10905383B2 (en) 2019-02-28 2021-02-02 Facebook Technologies, Llc Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
US11481031B1 (en) 2019-04-30 2022-10-25 Meta Platforms Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof

Also Published As

Publication number Publication date
JP3103427B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
JP3103427B2 (en) Bioelectricity detector
EP0617917B1 (en) Receiver for differential signals
Burke et al. A micropower dry-electrode ECG preamplifier
Metting van Rijn et al. High-quality recording of bioelectric events: part 1 interference reduction, theory and practice
US6934579B2 (en) Anaesthesia control system
Scheer et al. The influence of amplifier, interface and biological noise on signal quality in high-resolution EEG recordings
US9603542B2 (en) Electro-physiological measurement with reduced motion artifacts
US7161362B2 (en) System and method for measuring bioelectric impedance in the presence of interference
US8923956B2 (en) Electrodynamic sensors and applications thereof
US20020038092A1 (en) Capacitively coupled electrode system for sensing voltage potentials at the surface of tissue
Guerrero et al. A two-wired ultra-high input impedance active electrode
CN108209914B (en) Compensation and calibration for low power bioimpedance measurement devices
CA2835767A1 (en) Multi-channel ecg measurement
JP2005511174A (en) Electrodynamic sensors and their applications
Haberman et al. A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL
EP1364614B1 (en) Voltage measuring device comprising fixing member, electrode and transmitter
CN110840454A (en) Electroencephalogram signal acquisition device and method
Matsuo et al. A barium-titanate-ceramics capacitive-type EEG electrode
Gondran et al. Noise of surface bio-potential electrodes based on NASICON ceramic and Ag− AgCl
EP0778002B1 (en) Heart monitoring system with reduced signal acquisition range
JPH09289978A (en) Sensitivity setting device and electrocardiograph provided with the same
US20230210430A1 (en) Measurement station with electrocardiogram measurement
JP3207941B2 (en) Bioelectric phenomenon detection device
Haberman et al. A digital driven right leg circuit
KR102628113B1 (en) Apparatus for Processing Biological Signal with Dual Positive Feedback

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees