JPH05275377A - Plasma treatment method and apparatus thereof - Google Patents

Plasma treatment method and apparatus thereof

Info

Publication number
JPH05275377A
JPH05275377A JP6740392A JP6740392A JPH05275377A JP H05275377 A JPH05275377 A JP H05275377A JP 6740392 A JP6740392 A JP 6740392A JP 6740392 A JP6740392 A JP 6740392A JP H05275377 A JPH05275377 A JP H05275377A
Authority
JP
Japan
Prior art keywords
electrode
gas
sample substrate
plasma processing
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6740392A
Other languages
Japanese (ja)
Inventor
Osamu Morioka
収 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6740392A priority Critical patent/JPH05275377A/en
Publication of JPH05275377A publication Critical patent/JPH05275377A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the cooling efficiency of the temperature of a sample substrate by increasing the efficiency of heat transfer from a cooling gas for the sample substrate without increasing the size of an electrode in the plasma treatment for applying a plasma bean to the sample substrate mounted on the electrode within a vacuum container and performing etching and the like with the sample substrate being cooled from the electrode side. CONSTITUTION:This is constituted in such an arrangement that a gas channel groove 2a is provided in the upper surface of an electrode 2 arranged within a vacuum treatment chamber 1 and at the same time interconnected with a liquefied gas bomb for inactive gas 6 and an exhaust pump 8 arranged outside the vacuums treatment chamber 1 through a gas introduction and exhaust hole 2b, 2c and a gas introduction and exhaust pipe 7, 9. A low-temperature inactive gas is introduced between a sample substrate W, the circumferential part of which is pushed against the upper surface of the electrode 2 to adhere close thereto with the presser hook 3a of a sample presser 3 and the gas channel groove 2a, thereby cooling the sample substrate W by direct contact and heat exchange with the inactive gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラズマ処理方法およ
び装置に関し、詳細には、半導体製造分野におけるシリ
コンウェハ等の試料基板の乾式エッチングやCVD処理
などに適用されるプラズマ処理方法および装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing method and apparatus, and more particularly to a plasma processing method and apparatus applied to dry etching or CVD processing of a sample substrate such as a silicon wafer in the semiconductor manufacturing field. Is.

【0002】[0002]

【従来の技術】プラズマ処理方法としては、乾式エッチ
ング、スパッタリング、CVDなどの方法が知られてい
るが、これらプラズマ処理では、照射するプラズマ中の
イオン、電子およびラジカルのエネルギーより試料基板
の温度が上昇する。一方、乾式エッチングやCVD処理
などにおける処理速度と副反応の速度は、プラズマパラ
メータの関数と共に、試料基板温度の関数になっている
ため、これら処理を行うプラズマ処理装置では、シリコ
ンウェハ等の試料基板を載置する電極に冷却手段を設
け、冷却された電極から試料基板に熱伝達させること
で、プラズマビームの照射による試料基板の温度上昇を
抑制する方法が採られている。また、これらプラズマ装
置では、試料基板に対して電極から十分に熱伝達させて
確実な温度制御を行うために、処理される試料基板を電
極面に密着させて拘持する機構が必要とされ、静電気力
を利用する静電チャッキング機構ないしは機械的手段に
よるメカニカルチャッキング機構が採用されている。
2. Description of the Related Art As a plasma processing method, methods such as dry etching, sputtering, and CVD are known. In these plasma processing, the temperature of the sample substrate depends on the energy of ions, electrons and radicals in the plasma to be irradiated. To rise. On the other hand, since the processing speed and the side reaction speed in dry etching and CVD processing are both a function of the plasma parameter and a function of the sample substrate temperature, a plasma processing apparatus that performs these processes uses a sample substrate such as a silicon wafer. A method of suppressing the temperature rise of the sample substrate due to the irradiation of the plasma beam is provided by providing a cooling means on the electrode on which the substrate is mounted and transferring heat from the cooled electrode to the sample substrate. Further, in these plasma devices, in order to sufficiently transfer heat from the electrodes to the sample substrate and perform reliable temperature control, a mechanism for closely holding the sample substrate to be processed in contact with the electrode surface is required, An electrostatic chucking mechanism utilizing electrostatic force or a mechanical chucking mechanism using mechanical means is adopted.

【0003】そして近来では、処理速度および精度向上
の観点から、これらプラズマ処理における試料基板温度
は、常温以下の低温、更には極低温に制御されるように
なり、そのため、これら装置では、電極内に冷媒液槽を
設け、その内部に液化窒素を導入してより低温に制御で
きる構成とされている。また、静電チャッキング機構で
は、セラミックス系のチャックシートを用いるため熱伝
導率が低く、かつ零℃以下の温度で絶縁性が低下するこ
とから、これら低温条件下での処理が必要なプラズマ処
理装置では、一般にメカニカルチャッキング機構が採用
されている。このような構成を採る従来のプラズマ処理
装置の1例を、その概要説明図である〔図4〕に示す。
In recent years, from the viewpoint of improving the processing speed and accuracy, the sample substrate temperature in these plasma processes has been controlled to a low temperature below room temperature, or even an extremely low temperature. A refrigerant liquid tank is provided in the tank, and liquefied nitrogen can be introduced into the tank to control the temperature to a lower temperature. In addition, since the electrostatic chucking mechanism uses a ceramic-based chuck sheet, its thermal conductivity is low, and its insulating properties decrease at temperatures below 0 ° C, so plasma treatment that requires treatment under these low-temperature conditions is required. The device generally employs a mechanical chucking mechanism. An example of a conventional plasma processing apparatus having such a configuration is shown in a schematic explanatory view of FIG.

【0004】〔図4〕に示す従来のプラズマ処理装置で
は、その内部を脱気可能とされた真空処理室(41)の内下
部に、高周波電源(46)に接続された電極(42)を配置する
一方、ウェハ押え(43)を上下動可能に設けて、電極(42)
上に載置されたウェハWの外周縁部を、ウェハ押え(43)
の押え爪(43a) にて電極(42)上面に押し付けることで、
ウェハWを電極(42)上面に密着させて拘持する構成が採
られている。また、その電極(42)は、給電手段(47)に接
続されたヒータ(44)と、液化窒素供給源(48)およびガス
排出手段(49)に連結された液化窒素槽(45)とを内部に有
して温度制御可能とされ、この構成のもとで、その上面
に密着・拘持されたウェハWの温度を所定の低温に制御
するものとされている。
In the conventional plasma processing apparatus shown in FIG. 4, an electrode (42) connected to a high frequency power source (46) is provided inside and below a vacuum processing chamber (41) whose inside is degassable. While arranging it, a wafer retainer (43) is provided so that it can move up and down, and the electrode (42)
The outer peripheral edge portion of the wafer W placed on the wafer W is held (43)
By pressing it against the upper surface of the electrode (42) with the holding claw (43a) of
A configuration is adopted in which the wafer W is held in close contact with the upper surface of the electrode (42). Further, the electrode (42) includes a heater (44) connected to the power supply means (47) and a liquefied nitrogen tank (45) connected to the liquefied nitrogen supply source (48) and the gas discharge means (49). The temperature of the wafer W can be controlled by being provided inside, and under this configuration, the temperature of the wafer W that is in close contact with and held on the upper surface thereof is controlled to a predetermined low temperature.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来のプラズマ処理装置のように、電極内に液化窒素を冷
媒として導入し、冷却された電極からの熱伝達によって
試料基板を間接的に冷却する構成では、試料基板温度の
冷却効率が悪くて処理速度に対する即応性に劣り、加え
て電極も大型なものになるという問題点がある。
However, like the above-mentioned conventional plasma processing apparatus, liquefied nitrogen is introduced as a refrigerant into the electrode, and the sample substrate is indirectly cooled by heat transfer from the cooled electrode. Then, there is a problem that the cooling efficiency of the sample substrate temperature is poor and the responsiveness to the processing speed is poor, and in addition, the electrode becomes large.

【0006】これは、試料基板への電極からの伝熱量
が、これらの間の接触面積によって左右されるに対し
て、メカニカルチャッキング機構では、プラズマビーム
の照射の関係から、試料基板の外周縁部を電極面に向け
て押し付けることで、この試料基板の全面を電極面に密
着させなければならず、しかも、シリコンウェハ等の試
料基板は、薄くて強度が弱いため、押付力をあまり高め
ることができず( 60g/cm2程度が限界)、これがため、
試料基板の全面を確実に電極面に密着させることが実質
的に困難で、結果として、冷媒から試料基板に対して効
率良く熱伝達できなくなるからである。また、静電チャ
ッキング機構では、試料基板を比較的均等に密着させる
ことができるものの、前述の理由で適用し難い。一方、
液化窒素を冷媒として用いる場合、比較的経済的に極低
温が得られるものの、その冷却効果を得るには気化潜熱
を利用するので、電極に内設する液化窒素槽に気化空間
を設ける必要があり、また、窒素ガスは通常、乾式エッ
チングやCVD処理に対して活性であるため真空処理室
内への漏洩を確実に防止する必要があり、これがため電
極が複雑かつ大型なものとなる。
This is because the amount of heat transferred from the electrodes to the sample substrate depends on the contact area between them, whereas in the mechanical chucking mechanism, the outer peripheral edge of the sample substrate is affected by the plasma beam irradiation. The entire surface of the sample substrate must be brought into close contact with the electrode surface by pressing the part toward the electrode surface. Moreover, since the sample substrate such as a silicon wafer is thin and weak, it is necessary to increase the pressing force too much. Cannot be done (60g / cm 2 is the limit), and because of this,
This is because it is substantially difficult to surely adhere the entire surface of the sample substrate to the electrode surface, and as a result, heat cannot be efficiently transferred from the coolant to the sample substrate. Further, although the electrostatic chucking mechanism can bring the sample substrates into contact with each other relatively evenly, it is difficult to apply the electrostatic chucking mechanism for the above reason. on the other hand,
When liquefied nitrogen is used as a refrigerant, cryogenic temperature can be obtained relatively economically, but latent heat of vaporization is used to obtain the cooling effect, so it is necessary to provide a vaporization space in the liquefied nitrogen tank inside the electrode. Moreover, since nitrogen gas is usually active for dry etching and CVD processing, it is necessary to reliably prevent leakage into the vacuum processing chamber, which makes the electrode complicated and large.

【0007】本発明は、上記従来技術の問題点を解消す
べくなされたものであって、試料基板を載置する電極を
大型化させることなく、試料基板に対する冷媒ガスから
の熱伝達率を高めて、試料基板温度の冷却効率を向上さ
せることができるプラズマ処理方法および装置の提供を
目的とする。
The present invention has been made to solve the above-mentioned problems of the prior art, and enhances the heat transfer coefficient from the refrigerant gas to the sample substrate without increasing the size of the electrode on which the sample substrate is placed. Thus, it is an object of the present invention to provide a plasma processing method and apparatus capable of improving the cooling efficiency of the sample substrate temperature.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成とされている。すなわち、本
発明に係るプラズマ処理方法は、排気手段を備える真空
容器内の電極上面に密接して載置された試料基板にプラ
ズマビームを照射する一方、この試料基板を電極側から
冷却してビーム照射による温度上昇を抑制しながらエッ
チング等のプラズマ処理を行うプラズマ処理方法におい
て、電極上面に設けた凹部と試料基板との間に低温な不
活性ガスを導入して流し、この不活性ガスとの直接的な
接触・熱交換により試料基板を冷却することを特徴とす
るものである。
In order to achieve the above object, the present invention has the following constitution. That is, the plasma processing method according to the present invention irradiates the sample substrate placed in close contact with the upper surface of the electrode in the vacuum container provided with the exhaust means with the plasma beam, and cools the sample substrate from the electrode side to produce the beam. In a plasma processing method in which a plasma processing such as etching is performed while suppressing a temperature rise due to irradiation, a low temperature inert gas is introduced and flowed between a concave portion provided on the upper surface of the electrode and the sample substrate. The feature is that the sample substrate is cooled by direct contact and heat exchange.

【0009】また、本発明に係るプラズマ処理装置は、
排気手段を備える真空容器と、この真空容器内に配設さ
れ、上面に試料基板を載置する電極と、試料基板を電極
面に密着させて拘持するチャッキング機構とを備えてな
り、電極上面に密着・拘持された試料基板にプラズマビ
ームを照射する一方、この試料基板を電極側から冷却し
てビーム照射による温度上昇を抑制しながらエッチング
等のプラズマ処理を行うプラズマ処理装置において、電
極が、その外周縁部を除く上面にガスを流通させる凹部
を有すると共に、この凹部と真空容器外とを連通するガ
ス導入孔および排出孔を有してなり、かつ、この電極の
ガス導入孔および排出孔が、真空容器外に配された不活
性ガスの供給および排出手段に連結されてなることを特
徴とするものである。
Further, the plasma processing apparatus according to the present invention is
A vacuum container provided with an evacuation unit, an electrode provided in the vacuum container for mounting a sample substrate on an upper surface thereof, and a chucking mechanism for holding the sample substrate in close contact with the electrode surface. In a plasma processing apparatus that irradiates a plasma beam onto a sample substrate that is in close contact with and is held on the upper surface, and cools this sample substrate from the electrode side to perform plasma processing such as etching while suppressing the temperature rise due to beam irradiation, Has a recess for allowing gas to flow therethrough on the upper surface excluding the outer peripheral edge thereof, and has a gas introduction hole and a discharge hole for communicating the recess with the outside of the vacuum container, and the gas introduction hole of the electrode and The discharge hole is connected to an inert gas supply and discharge means arranged outside the vacuum container.

【0010】[0010]

【作用】本発明方法では、従来技術のように電極を内部
から冷却し、冷却された電極との接触により試料基板を
冷却する間接的な冷却でなく、電極を電極上面に設けた
凹部と試料基板との間に低温な不活性ガスを導入して流
し、この不活性ガスとの直接的な接触・熱交換により試
料基板を冷却するので、低温な不活性ガスすなわち冷媒
ガスとの接触熱伝抵抗を減少させて熱伝達率を高め、こ
れにより試料基板温度の冷却効率を向上させることがで
きる。また、冷媒ガスとして不活性ガスを用いるので、
これらガスが電極と試料基板との間から多少漏洩して真
空容器内に流れ込んだ場合でも、エッチング等のプラズ
マ処理に影響を及ぼすことなく、真空容器が備える排気
手段によって系外に排出させることができる。
In the method of the present invention, the electrode is internally cooled as in the prior art, and the sample substrate is cooled by the contact with the cooled electrode, rather than the indirect cooling. A low temperature inert gas is introduced between the substrate and the substrate, and the sample substrate is cooled by direct contact and heat exchange with this inert gas. The resistance can be reduced to increase the heat transfer coefficient, which can improve the cooling efficiency of the sample substrate temperature. Moreover, since an inert gas is used as the refrigerant gas,
Even if some of these gas leaks between the electrode and the sample substrate and flows into the vacuum container, the gas can be discharged to the outside of the system by the exhaust means provided in the vacuum container without affecting plasma processing such as etching. it can.

【0011】また、本発明装置では、電極が、その外周
縁部を除く上面にガスを流通させる凹部を有すると共
に、この凹部と真空容器外とを連通するガス導入孔およ
び排出孔を有してなり、かつそのガス導入孔および排出
孔が、真空容器外に配された不活性ガスの供給および排
出手段に連結されているので、この電極上に試料基板を
載置し、チャッキング機構により試料基板を電極面に密
着させて拘持する一方で、電極上面の凹部と試料基板と
の間に低温な不活性ガスを導入して流し、この不活性ガ
スとの直接的な接触・熱交換により試料基板を効率良く
冷却できる。また、その電極の構造を、従来技術のよう
に内部に液化窒素槽等を設けたものに比べて、格段に簡
易なものとすることができる。
Further, in the apparatus of the present invention, the electrode has a concave portion for allowing gas to flow therethrough except the outer peripheral edge portion thereof, and has a gas introduction hole and a discharge hole for communicating the concave portion with the outside of the vacuum container. Since the gas introduction hole and discharge hole are connected to the inert gas supply and discharge means arranged outside the vacuum container, the sample substrate is placed on this electrode and the chucking mechanism is used to While holding the substrate in close contact with the electrode surface, a low temperature inert gas is introduced and flowed between the recess on the upper surface of the electrode and the sample substrate, and direct contact and heat exchange with this inert gas are performed. The sample substrate can be cooled efficiently. In addition, the structure of the electrode can be remarkably simpler than that of the prior art in which a liquefied nitrogen tank or the like is provided inside.

【0012】なお、本発明における不活性ガスとは、零
族の元素のガスであって、ヘリウム(He)、アルゴン(A
r)、キセノン(Xe)等のガスである。
The inert gas in the present invention is a gas of a zero group element and includes helium (He) and argon (A).
r) and gases such as xenon (Xe).

【0013】[0013]

【実施例】以下に、本発明の実施例を図面を参照して説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】〔図1〕は、本発明の1実施例のプラズマ
処理装置の概要構成を示す図面であって、 (a)図は正断
面図、 (b)図は (a)図のA−A断面図である。
FIG. 1 is a diagram showing a schematic configuration of a plasma processing apparatus according to one embodiment of the present invention, in which (a) is a front sectional view and (b) is A- of FIG. FIG.

【0015】〔図1〕において、(1) は真空処理室であ
って、この真空処理室(1) は、ここでは図示を省略した
脱気手段により内部を真空引きできると共に、同様図示
を省略したマイクロ波発生手段からのマイクロ波を上方
から導入して内部にプラズマを生成できるものとされて
いる。
In FIG. 1, (1) is a vacuum processing chamber, and the inside of this vacuum processing chamber (1) can be evacuated by deaeration means (not shown), and is also not shown. The microwave from the microwave generating means is introduced from above to generate plasma inside.

【0016】(2) は電極であって、この電極(2) は、真
空処理室(1) 内に断熱部材(4) を介して立設されると共
に、負の高周波電圧を印加する高周波電源(5) に接続さ
れている。また、この電極(2) の上面には、その外周縁
部を除いて (b)図に示すように、中心部で連なる二重螺
旋状のガス流路溝(2a)が設けられてあり、また、そのガ
ス流路溝(2a)の始端部および終端部には、下方に貫通し
て真空処理室(1) 外に連通するガス導入孔(2b)およびガ
ス排出孔(2c)が設けられている。
Reference numeral (2) is an electrode, and this electrode (2) is erected in the vacuum processing chamber (1) via a heat insulating member (4), and a high frequency power source for applying a negative high frequency voltage. It is connected to (5). The upper surface of the electrode (2) is provided with a double spiral gas passage groove (2a) continuous at the center, as shown in FIG. In addition, a gas introduction hole (2b) and a gas discharge hole (2c) penetrating downward and communicating with the outside of the vacuum processing chamber (1) are provided at the start end and the end of the gas flow channel (2a). ing.

【0017】また、この電極(2) のガス導入孔(2b)は、
流量調整機能を有する弁(7a)を介装したガス供給管(7)
を介して、真空処理室(1) 外に配された液化ガスボンベ
(6)に連結され、一方、ガス排出孔(2c)は、弁(9a)を介
装したガス排出管(9) を介して、真空処理室(1) 外に配
された排気ポンプ(8) に連結さている。なお、液化ガス
ボンベ(6) は、減圧弁(6a)を備えると共に、その内部に
Heガス等の不活性ガスを液化充填したものとされ、一
方、排気ポンプ(8) は、ここでは図示を省略したガス回
収手段に連結される。
The gas introduction hole (2b) of this electrode (2) is
Gas supply pipe (7) with a valve (7a) having a flow rate adjustment function
Via a liquefied gas cylinder outside the vacuum processing chamber (1)
On the other hand, the gas discharge hole (2c) is connected to (6), and the gas discharge hole (2c) is connected to the exhaust pump (8) outside the vacuum processing chamber (1) via the gas discharge pipe (9) equipped with the valve (9a). ). The liquefied gas cylinder (6) is equipped with a pressure reducing valve (6a) and
An inert gas such as He gas is liquefied and filled, while the exhaust pump (8) is connected to a gas recovery means (not shown).

【0018】(3) は試料押えであって、この試料押え
(3) は、電極(2) を等円周ピッチにて包囲して配された
柱状の3本の脚(3c)と、これら脚(3c)の上端に連結され
た支持リング(3b)と、この支持リング(3b)上に取り付け
られ、その内径を電極(2) の外径より小さくした環板状
の押え爪(3a)とを備えてなる。
(3) is a sample holder.
(3) is composed of three columnar legs (3c) surrounding the electrode (2) at an equal circumferential pitch, and a support ring (3b) connected to the upper ends of these legs (3c). The support ring (3b) is provided with an annular plate-shaped pressing claw (3a) having an inner diameter smaller than the outer diameter of the electrode (2).

【0019】また、この試料押え(3) の脚(3c)下端部
は、真空処理室(1) の底部を貫通し、それぞれの下端を
真空処理室(1) の下方に配設された円盤状の支持板(10)
に連結されている。また、支持板(10)は、絶縁部材(11)
を介してシリンダ(12)に連結されてあり、試料押え(3)
は、このシリンダ(12)の作動にて上下動させられる。ま
た、この試料押え(3) の脚(3c)下端部は、真空処理室
(1) の底部と非接触状態で貫通する一方、その貫通部の
真空処理室(1) 下面と支持板(10)との間は、それぞれの
脚(3c)を囲撓するベローズ継手(13)を介して連結されて
あり、これら脚(3c)の貫通部における気密維持を図るも
のとされている。
The lower ends of the legs (3c) of the sample holder (3) penetrate the bottom of the vacuum processing chamber (1), and the lower ends of the disks are arranged below the vacuum processing chamber (1). Shaped Support Plate (10)
Is linked to. The support plate (10) is an insulating member (11).
It is connected to the cylinder (12) via the sample holder (3)
Is moved up and down by the operation of this cylinder (12). The lower end of the leg (3c) of the sample holder (3) is
While penetrating the bottom of (1) in a non-contact state, between the lower surface of the vacuum processing chamber (1) and the support plate (10) at the penetrating part, bellows joints (13) that surround and flex each leg (3c) are provided. ), And is intended to maintain airtightness at the penetrating portions of these legs (3c).

【0020】なお、 (a)図において、Wはシリコンウェ
ハ等の試料基板であって、ここでは電極(2) 上に載置さ
れると共に、その外周縁部を、試料押え(3) の押え爪(3
a)にて、電極(2) 上面に押付けられて密着・拘持された
状態を示す。
In FIG. 1 (a), W is a sample substrate such as a silicon wafer, which is placed on the electrode (2) and its outer peripheral edge is held by the sample holder (3). Nail (3
In a), the state of being pressed against the upper surface of the electrode (2) and closely contacted and held is shown.

【0021】上記構成の本実施例のプラズマ処理装置で
は、減圧した真空処理室(1) 内でプラズマを生成させる
と共に、電極(2) に負の高周波電圧を印加することで、
生成したプラズマを電極(2) 上に載置した試料基板Wに
照射させる一方、次に述べる手順に基づいて、この試料
基板Wを冷却してプラズマビームの照射による温度上昇
を抑制しながらエッチング等のプラズマ処理を行う。
In the plasma processing apparatus of this embodiment having the above structure, plasma is generated in the vacuum processing chamber (1) whose pressure is reduced, and a negative high frequency voltage is applied to the electrode (2),
While irradiating the sample substrate W placed on the electrode (2) with the generated plasma, the sample substrate W is cooled according to the procedure described below to suppress the temperature rise due to the irradiation of the plasma beam while performing etching or the like. Plasma treatment is performed.

【0022】まず、電極(2) のガス導入孔(2b)とガス排
出孔(2c)とに連結されたガス供給管(7) およびガス排出
管(9) それぞれの弁(7a),(9a) を閉鎖し、この状態で、
真空処理室(1) 内を所定の真空度(10-3torr程度)に減
圧する。
First, the valves (7a) and (9a) of the gas supply pipe (7) and the gas discharge pipe (9) connected to the gas introduction hole (2b) and the gas discharge hole (2c) of the electrode (2), respectively. ) Is closed and in this state,
The inside of the vacuum processing chamber (1) is depressurized to a predetermined vacuum degree (about 10 -3 torr).

【0023】次いで、電極(2) 上にシリコンウェハ等の
試料基板Wを載置すると共に、この試料基板Wを、試料
押え(3) の環板状の押え爪(3a)にて電極(2) 上面に押し
付けて密着させる。なお、この際の押え爪(3a)の押付力
は 60g/cm2以下とされる。このとき、試料基板Wの外周
縁部下面が、電極(2) の外周縁部上面に密着させられ、
この電極(2) のガス流路溝(2a)の上開口が試料基板Wに
て閉塞される。
Next, a sample substrate W such as a silicon wafer is placed on the electrode (2), and the sample substrate W is attached to the electrode (2) by the ring-plate-shaped holding claw (3a) of the sample holder (3). ) Press on the top surface to make it adhere. The pressing force of the pressing claw (3a) at this time is 60 g / cm 2 or less. At this time, the lower surface of the outer peripheral edge of the sample substrate W is brought into close contact with the upper surface of the outer peripheral edge of the electrode (2),
The upper opening of the gas flow channel (2a) of the electrode (2) is closed by the sample substrate W.

【0024】この状態から、プラズマビームの照射を開
始させる一方で、ガス供給管(7) およびガス排出管(9)
の弁(7a),(9a) を開放して、液化ガスボンベ(6) からの
低温なHeガス等の不活性ガスを、電極(2) 上面のガス流
路溝(2a)内に導入して流し、この不活性ガスとの直接的
な接触・熱交換により試料基板Wを冷却する。このと
き、液化ガスボンベ(6) からの不活性ガスは、この液化
ガスボンベ(6)の減圧弁(6a)にて所定の圧力(0.01〜0.0
50kg/cm2)に減圧した上で、ガス供給管(7) の弁(7a)に
て流量を調整しながら、このガス供給管(7) を介して電
極(2) のガス流路溝(2a)内に供給する。そして、その供
給量の制御により試料基板Wからの抜き熱量を調整して
試料基板温度を制御する。一方、電極(2) のガス流路溝
(2a)内に導入されて流れる不活性ガスは、試料基板Wか
ら熱を受取って温度上昇し、それに伴って体積膨張して
内圧を高めるので、この温度上昇した不活性ガスは、ガ
ス排出管(9) に連結された排気ポンプ(8)によって吸引
排出させ、これにより電極(2) のガス流路溝(2a)内のガ
ス内圧を、10torr〜50torrの範囲内に止まるように調整
する。
From this state, while the irradiation of the plasma beam is started, the gas supply pipe (7) and the gas discharge pipe (9)
Open the valves (7a), (9a) and introduce the low temperature inert gas such as He gas from the liquefied gas cylinder (6) into the gas channel groove (2a) on the upper surface of the electrode (2). Then, the sample substrate W is cooled by direct contact and heat exchange with this inert gas. At this time, the inert gas from the liquefied gas cylinder (6) has a predetermined pressure (0.01 to 0.0) by the pressure reducing valve (6a) of the liquefied gas cylinder (6).
After reducing the pressure to 50 kg / cm 2 ) and adjusting the flow rate with the valve (7a) of the gas supply pipe (7), through this gas supply pipe (7) the gas flow channel groove ( Supply in 2a). Then, by controlling the supply amount, the amount of heat removed from the sample substrate W is adjusted to control the sample substrate temperature. On the other hand, the gas channel groove of the electrode (2)
The inert gas introduced and flowing into (2a) receives heat from the sample substrate W and its temperature rises, and accordingly the volume expands to increase the internal pressure. The exhaust pump (8) connected to (9) sucks and discharges the gas, so that the gas internal pressure in the gas flow channel (2a) of the electrode (2) is adjusted to stop within the range of 10 torr to 50 torr.

【0025】所定のプラズマ処理が終了すると、ガス供
給管(7) の弁(7a)を閉塞して不活性ガスの供給を停止す
る一方で、排気ポンプ(8) による吸引を暫時続けて電極
(2)のガス流路溝(2a)内の不活性ガスを排出させ、この
ガス流路溝(2a)内の圧力が真空処理室(1) 内の圧力と略
等圧になった時点で、ガス排出管(9) の弁(9a)を閉塞す
ると共に、排気ポンプ(8) を停止させ、しかる後に処理
された試料基板Wを取り出して次の処理に移行するので
ある。
When the predetermined plasma treatment is completed, the valve (7a) of the gas supply pipe (7) is closed to stop the supply of the inert gas, while the exhaust pump (8) continues suction for a while.
When the inert gas in the gas flow channel (2a) of (2) is discharged and the pressure in this gas flow channel (2a) becomes approximately equal to the pressure in the vacuum processing chamber (1), The valve (9a) of the gas discharge pipe (9) is closed, the exhaust pump (8) is stopped, and then the processed sample substrate W is taken out and the next process is performed.

【0026】このようにして、処理中の試料基板温度を
制御する本実施例のプラズマ処理装置では、不活性ガス
すなわち冷媒ガスとの接触熱伝抵抗を減少させて熱伝達
率を高め、これにより試料基板温度の冷却効率を向上さ
せることができる。一方、試料基板の外周縁部下面と、
電極(2) の外周縁部上面との間は機械的な押付力により
密着ささせられているので、これらの間の気体封止は、
必ずしも確実なものとはなり難いが、本実施例では、冷
媒ガスとしてHeガス等の不活性ガスを用いるので、これ
らガスが電極と試料基板との間から多少漏洩して真空容
器内に流れ込んだ場合でも、エッチング等のプラズマ処
理に影響を及ぼすことなく、真空容器が備える排気手段
によって系外に排出させることができる。
In this way, in the plasma processing apparatus of this embodiment for controlling the temperature of the sample substrate during processing, the contact heat transfer resistance with the inert gas, that is, the refrigerant gas is decreased to increase the heat transfer coefficient, and The cooling efficiency of the sample substrate temperature can be improved. On the other hand, the lower surface of the outer peripheral edge of the sample substrate,
The outer peripheral edge of the electrode (2) and the upper surface of the outer peripheral edge are in close contact with each other by a mechanical pressing force.
Although not necessarily reliable, in the present embodiment, since an inert gas such as He gas is used as the refrigerant gas, these gases leaked somewhat between the electrode and the sample substrate and flowed into the vacuum container. Even in this case, the gas can be discharged to the outside of the system by the exhaust means provided in the vacuum container without affecting the plasma processing such as etching.

【0027】また、その電極としては、上面のガス流路
溝と、このガス流路溝と外部とを連通するガス導入孔お
よび排出孔とを設けたもので良く、従来技術のように内
部に液化窒素槽等を設けたものに比べて、格段に簡易な
構造とすることができるので、装置全体のコンパクト化
も図ることができる。
Further, the electrode may be provided with a gas passage groove on the upper surface and a gas introduction hole and a discharge hole for communicating the gas passage groove with the outside. Compared with the one provided with a liquefied nitrogen tank or the like, the structure can be remarkably simple, so that the entire apparatus can be made compact.

【0028】〔図2〕は、本発明の別の実施例のプラズ
マ処理装置の要部を示す図面であって、 (a)図は要部正
断面図、 (b)図は (a)図のA−A断面図である。なお、
本実施例のプラズマ処理装置は、電極に設けるガス流路
の構成が異なる点以外は、〔図1〕に示したものと基本
的に同じであり、ここでは、要部のみを図示すると共
に、等価な各部に同符号を付して説明を省略し、その差
異点について要約説明するものとする。
FIG. 2 is a drawing showing a main part of a plasma processing apparatus according to another embodiment of the present invention, in which (a) is a front sectional view of the main part and (b) is (a). FIG. In addition,
The plasma processing apparatus of the present embodiment is basically the same as that shown in [FIG. 1] except that the configuration of the gas flow path provided in the electrode is different. Here, only the main parts are shown and Equivalent parts will be denoted by the same reference numerals, description thereof will be omitted, and the differences will be summarized.

【0029】本実施例のプラズマ処理装置では、試料基
板Wを載置する電極(22)の上面に、二重螺旋状のガス流
路溝を設ける代わりに、外周縁部を除く上面全域にわた
る円形状とされた深さの浅い(0.1mm 以下)ガス流路凹
部(22a) を設けている。
In the plasma processing apparatus of this embodiment, instead of providing the double spiral gas passage groove on the upper surface of the electrode (22) on which the sample substrate W is placed, a circle over the entire upper surface except the outer peripheral edge portion is formed. A gas channel recess (22a) having a shallow shape (0.1 mm or less) is provided.

【0030】また、この電極(22)は、その下部の中央部
に平円盤状空間に形成されたガス分配室(24)を設けると
共に、このガス分配室(24)と上面のガス流路凹部(22a)
の中央寄り部位とを上下方向に連通する複数のガス導入
孔(22b) を設けている。また、その下部のガス分配室(2
4)を囲撓する部位に平円環状空間に形成されたガス集合
室(25)を設けると共に、このガス集合室(24)と上面のガ
ス流路凹部(22a) の外周寄り部位とを上下方向に連通す
る複数のガス排出孔(22c) を設けている。
Further, the electrode (22) is provided with a gas distribution chamber (24) formed in a flat disk-shaped space in the lower central portion thereof, and the gas distribution chamber (24) and the gas flow path concave portion on the upper surface. (22a)
A plurality of gas introduction holes (22b) are provided to vertically communicate with a portion near the center of the. In addition, the gas distribution chamber (2
4) A gas collecting chamber (25) formed in a flat annular space is provided in the area surrounding the flexible space (4), and this gas collecting chamber (24) and the area near the outer periphery of the upper gas flow passage recess (22a) are moved up and down. A plurality of gas discharge holes (22c) communicating with each other are provided.

【0031】ここで、この電極(22)のガス導入孔(22b)
は、 (b)図に示すように、ガス流路凹部(22a) の中央部
の同ピッチ円上において円周方向に等ピッチに開口させ
られ、また、そのガス排出孔(22c) は、ガス流路凹部(2
2a) の外周部の同ピッチ円上において円周方向に等ピッ
チに開口させられている。なお、本実施例では、ガス排
出孔(22c) の数は、ガス導入孔(22b) の数の3倍とされ
ている。一方、この電極(22)のガス分配室(24)はガス供
給管(7) に、ガス集合室(24)はガス排出管(9) にそれぞ
れ連結されてあり、この構成のもとで、試料押え(3) に
て電極(22)上に密着・拘持された試料基板Wとガス流路
凹部(22a) との間に低温な不活性ガスを導入し、この不
活性ガスを(b) 図中の矢印で示すように半径方向に分散
させながら流して当該試料基板Wを冷却する。
Here, the gas introduction hole (22b) of the electrode (22)
As shown in Fig. (B), the gas passage recesses (22a) are opened at equal pitches in the circumferential direction on the same pitch circle in the central portion of the gas flow passage recesses (22a). Channel recess (2
On the same pitch circle of the outer peripheral part of 2a), openings are made at equal pitch in the circumferential direction. In this embodiment, the number of gas discharge holes (22c) is three times the number of gas introduction holes (22b). On the other hand, the gas distribution chamber (24) of the electrode (22) is connected to the gas supply pipe (7), and the gas collection chamber (24) is connected to the gas discharge pipe (9). A low temperature inert gas is introduced between the sample substrate W and the gas flow channel recess (22a), which are adhered and held on the electrode (22) by the sample retainer (3), and the inert gas (b ) As shown by the arrow in the figure, the sample substrate W is cooled by flowing while being dispersed in the radial direction.

【0032】上記構成の本実施例のプラズマ処理装置で
は、電極に設けるガス流路を加工が容易な構成としてな
お、試料基板と不活性ガスとの接触面積をより広くして
熱伝達率を高めて、試料基板温度の冷却効率をより向上
させることができる。
In the plasma processing apparatus of the present embodiment having the above-described structure, the gas flow path provided in the electrode is configured to be easily processed, and the contact area between the sample substrate and the inert gas is further increased to enhance the heat transfer coefficient. Therefore, the cooling efficiency of the sample substrate temperature can be further improved.

【0033】〔図3〕は、本発明のまた別の実施例のプ
ラズマ処理装置の要部を示す図面であって、 (a)図は要
部正断面図、 (b)図は (a)図のA−A断面図である。な
お、本実施例のプラズマ処理装置は、メカニカルな構成
の試料押えの代わりに静電チャックを用いる点で大きく
異なるが、その他は〔図1〕および〔図2〕に示したも
のと基本的に同じであり、ここでは、等価な各部に同符
号を付して説明を省略し、その差異点について要約説明
するものとする。
FIG. 3 is a drawing showing a main part of a plasma processing apparatus according to still another embodiment of the present invention, where (a) is a front sectional view of the main part and (b) is (a). It is an AA sectional view of a figure. The plasma processing apparatus of the present embodiment is largely different in that an electrostatic chuck is used instead of the mechanical sample holder, but other than that, it is basically the same as that shown in FIGS. 1 and 2. It is the same, and here, equivalent parts will be denoted by the same reference numerals, description thereof will be omitted, and the difference will be briefly described.

【0034】本実施例のプラズマ処理装置では、試料基
板Wを載置する電極(32)は、上部に静電チャック(33)を
取着してなるものとされている。そして、その静電チャ
ック(33)の上面に、〔図2〕に示した電極と同様に、外
周縁部を除く上面全域にわたる円形状とされた深さの浅
いガス流路凹部(33a) を設けている。
In the plasma processing apparatus of this embodiment, the electrode (32) on which the sample substrate W is mounted has an electrostatic chuck (33) attached to the upper part thereof. Then, on the upper surface of the electrostatic chuck (33), as in the case of the electrode shown in FIG. 2, a circular shallow gas flow channel recess (33a) is formed over the entire upper surface except the outer peripheral edge. It is provided.

【0035】また、この電極(32)は、〔図2〕に示した
電極と同様に、その下部の中央部にガス分配室(34)を設
けると共に、このガス分配室(34)と静電チャック(33)上
面のガス流路凹部(33a) の中央寄り部位とを連通する複
数のガス導入孔(33b) を設けている。また、その下部の
ガス分配室(34)を囲撓する部位にガス集合室(35)を設け
ると共に、このガス集合室(35)と静電チャック(33)上面
のガス流路凹部(33a)の外周寄り部位とを連通する複数
のガス排出孔(33c) を設けている。
Further, like the electrode shown in FIG. 2, this electrode (32) is provided with a gas distribution chamber (34) in the central portion of the lower part thereof and at the same time as the gas distribution chamber (34) and electrostatic discharge. A plurality of gas introduction holes (33b) communicating with the central portion of the gas channel recess (33a) on the upper surface of the chuck (33) are provided. Further, a gas collecting chamber (35) is provided in a portion surrounding the gas distribution chamber (34) below the gas collecting chamber (35) and the electrostatic chuck (33) and a gas passage recess (33a) on the upper surface of the electrostatic chuck (33). A plurality of gas discharge holes (33c) communicating with a portion near the outer periphery of is provided.

【0036】また、この電極(32)のガス分配室(34)はガ
ス供給管(7) に連結され、ガス集合室(34)はガス排出管
(9) に連結されてあり、この構成のもとで、上部の静電
チャック(33)にて吸着・拘持された試料基板Wと該静電
チャック(33)上面のガス流路凹部(33a) との間に低温な
不活性ガスを導入し、この不活性ガスを(b) 図中の矢印
で示すように半径方向に分散させながら流して当該試料
基板Wを冷却する。
The gas distribution chamber (34) of the electrode (32) is connected to the gas supply pipe (7), and the gas collection chamber (34) is connected to the gas discharge pipe.
(9), and under this structure, the sample substrate W attracted and held by the electrostatic chuck (33) on the upper side and the gas flow channel concave portion (upper surface of the electrostatic chuck (33) ( A low temperature inert gas is introduced between the sample substrate W and 33a), and the sample substrate W is cooled by flowing this inert gas while being dispersed in the radial direction as shown by the arrow in (b).

【0037】上記構成の本実施例のプラズマ処理装置で
は、試料基板と不活性ガスとの接触面積を広くして熱伝
達率を高め、これにより試料基板温度の冷却効率を向上
させることができるに加え、その装置構成を格段に簡易
なものとすることができる。
In the plasma processing apparatus of this embodiment having the above-mentioned structure, the contact area between the sample substrate and the inert gas is widened to increase the heat transfer coefficient, whereby the cooling efficiency of the sample substrate temperature can be improved. In addition, the device configuration can be remarkably simple.

【0038】なお、以上に述べた3実施例では、空心コ
イルにて磁場を供給するECR型処理装置に本発明を適
用したが、これは一例であって、本発明は、真空容器内
の電極上に試料基板を載置し、この試料基板にプラズマ
ビームを照射して乾式エッチング等のプラズマ処理を行
うものであれば、例えば対向配置した磁石にて磁場を供
給するECR型処理装置、平行平板型処理装置および対
向電極型処理装置などの他の形態のプラズマ処理装置に
適用して同様な効果を得ることができる。また、これら
実施例では、冷媒ガスとしてヘリウム(He)ガスを用いた
が、この他に、アルゴン(Ar)、キセノン(Xe)などの零族
の元素のガスを用いることができる。
In the above-mentioned three embodiments, the present invention is applied to the ECR type processing apparatus for supplying the magnetic field by the air-core coil, but this is an example, and the present invention is directed to the electrodes in the vacuum container. If a sample substrate is placed on the sample substrate and the sample substrate is irradiated with a plasma beam to perform plasma processing such as dry etching, for example, an ECR type processing device that supplies a magnetic field with magnets arranged opposite to each other, a parallel plate The same effect can be obtained by applying it to other types of plasma processing apparatuses such as a mold processing apparatus and a counter electrode type processing apparatus. Further, in these examples, helium (He) gas was used as the refrigerant gas, but in addition to this, gases of zero-group elements such as argon (Ar) and xenon (Xe) can be used.

【0039】[0039]

【発明の効果】以上に述べたように、本発明に係るプラ
ズマ処理方法および装置によれば、試料基板を載置する
電極を大型化させることなく、試料基板に対する冷媒ガ
スからの熱伝達率を高めて、試料基板温度の冷却効率を
向上させることができ、もって、その処理効率を高めて
生産性を向上できると共に、装置を簡易化して設備費を
低減することができる。
As described above, according to the plasma processing method and apparatus of the present invention, the heat transfer coefficient from the refrigerant gas to the sample substrate can be increased without increasing the size of the electrode on which the sample substrate is placed. It is possible to improve the cooling efficiency of the sample substrate temperature by increasing the temperature, thereby increasing the processing efficiency to improve the productivity and simplifying the apparatus to reduce the equipment cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例のプラズマ処理装置の概要構
成を示す図面であって、 (a)図は正断面図、 (b)図は
(a)図のA−A断面図である。
FIG. 1 is a diagram showing a schematic configuration of a plasma processing apparatus according to an embodiment of the present invention, in which (a) is a front sectional view and (b) is a diagram.
It is an AA sectional view of a figure.

【図2】本発明の別の実施例のプラズマ処理装置の要部
を示す図面であって、 (a)図は要部正断面図、 (b)図は
(a)図のA−A断面図である。
2A and 2B are views showing a main part of a plasma processing apparatus according to another embodiment of the present invention, wherein FIG. 2A is a front sectional view of the main part, and FIG.
It is an AA sectional view of a figure.

【図3】本発明のまた別の実施例のプラズマ処理装置の
概要構成を示す図面であって、(a)図は正断面図、 (b)
図は (a)図のA−A断面図である。
3A and 3B are diagrams showing a schematic configuration of a plasma processing apparatus according to still another embodiment of the present invention, wherein FIG. 3A is a front sectional view, and FIG.
The figure is a cross-sectional view taken along the line AA of FIG.

【図4】従来のプラズマ処理装置の概要説明図である。FIG. 4 is a schematic explanatory diagram of a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

(1) --真空処理室 (2) --電極 (2a)--ガス流路溝 (2b)--ガス導入孔 (2c)--ガス排出孔 (3) --試料押え (3a)--押え爪 (3b)--支持リング (3c)--脚 (5) --高周波電源 (6) --液化ガスボンベ (6a)--減圧弁 (7) --ガス供給管 (7a)--弁 (8) --排気ポンプ (9) --ガス排出管 (9a)--弁 (12)--シリンダ W -- 試料基板 (1) --Vacuum processing chamber (2) --Electrode (2a) --Gas channel groove (2b) --Gas inlet (2c) --Gas outlet (3) --Sample holder (3a)- -Holder claw (3b)-Support ring (3c)-Leg (5)-High frequency power supply (6)-Liquefied gas cylinder (6a)-Reducing valve (7)-Gas supply pipe (7a)- Valve (8) --Exhaust pump (9) --Gas exhaust pipe (9a) --Valve (12) --Cylinder W --Sample substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 排気手段を備える真空容器内の電極上面
に密接して載置された試料基板にプラズマビームを照射
する一方、この試料基板を電極側から冷却してビーム照
射による温度上昇を抑制しながらエッチング等のプラズ
マ処理を行うプラズマ処理方法において、電極上面に設
けた凹部と試料基板との間に低温な不活性ガスを導入し
て流し、この不活性ガスとの直接的な接触・熱交換によ
り試料基板を冷却することを特徴とするプラズマ処理方
法。
1. A sample substrate placed in close contact with the upper surface of an electrode in a vacuum container equipped with an evacuation unit is irradiated with a plasma beam, and the sample substrate is cooled from the electrode side to suppress a temperature rise due to beam irradiation. However, in a plasma processing method that performs plasma processing such as etching, a low-temperature inert gas is introduced and flowed between the concave portion provided on the upper surface of the electrode and the sample substrate to directly contact and heat the inert gas. A plasma processing method characterized in that the sample substrate is cooled by replacement.
【請求項2】 排気手段を備える真空容器と、この真空
容器内に配設され、上面に試料基板を載置する電極と、
試料基板を電極面に密着させて拘持するチャッキング機
構とを備えてなり、電極上面に密着・拘持された試料基
板にプラズマビームを照射する一方、この試料基板を電
極側から冷却してビーム照射による温度上昇を抑制しな
がらエッチング等のプラズマ処理を行うプラズマ処理装
置において、電極が、その外周縁部を除く上面にガスを
流通させる凹部を有すると共に、この凹部と真空容器外
とを連通するガス導入孔および排出孔を有してなり、か
つ、この電極のガス導入孔および排出孔が、真空容器外
に配された不活性ガスの供給および排出手段に連結され
てなることを特徴とするプラズマ処理装置。
2. A vacuum container provided with an evacuation unit, an electrode arranged in the vacuum container and having a sample substrate mounted on an upper surface thereof,
It comprises a chucking mechanism that holds the sample substrate in close contact with the electrode surface and irradiates it with a plasma beam, while cooling the sample substrate from the electrode side. In a plasma processing apparatus that performs plasma processing such as etching while suppressing a temperature rise due to beam irradiation, an electrode has a recess for allowing gas to flow on the upper surface excluding its outer peripheral edge, and this recess communicates with the outside of a vacuum container. The gas introduction hole and the discharge hole of the electrode are connected, and the gas introduction hole and the discharge hole of the electrode are connected to an inert gas supply and discharge means arranged outside the vacuum container. Plasma processing apparatus.
JP6740392A 1992-03-25 1992-03-25 Plasma treatment method and apparatus thereof Withdrawn JPH05275377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6740392A JPH05275377A (en) 1992-03-25 1992-03-25 Plasma treatment method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6740392A JPH05275377A (en) 1992-03-25 1992-03-25 Plasma treatment method and apparatus thereof

Publications (1)

Publication Number Publication Date
JPH05275377A true JPH05275377A (en) 1993-10-22

Family

ID=13343944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6740392A Withdrawn JPH05275377A (en) 1992-03-25 1992-03-25 Plasma treatment method and apparatus thereof

Country Status (1)

Country Link
JP (1) JPH05275377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087584A (en) * 2002-08-23 2004-03-18 Nec Kyushu Ltd Dry etching device and its dry etching method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087584A (en) * 2002-08-23 2004-03-18 Nec Kyushu Ltd Dry etching device and its dry etching method

Similar Documents

Publication Publication Date Title
TWI236086B (en) Plasma processing apparatus, focus ring, and susceptor
CN101527262B (en) Electrode unit, substrate processing apparatus, and temperature control method for electrode unit
KR0129663B1 (en) Method and apparatus for etching process
JP4186536B2 (en) Plasma processing equipment
JP4176848B2 (en) Substrate support and processing apparatus
JP4745958B2 (en) Processing system and method for heat treating a substrate
US20080014363A1 (en) Electro-Static Chucking Mechanism and Surface Processing Apparatus
TW202027162A (en) Plasma processing apparatus
TW201222659A (en) Apparatus for radial delivery of gas to a chamber and methods of use thereof
JPH11330215A (en) Method and device for controlling temperature of substrate
JP2002043404A (en) Tray for vacuum processing equipment and vacuum processing equipment
JP3253002B2 (en) Processing equipment
US7905109B2 (en) Rapid cooling system for RTP chamber
JP2000252261A (en) Plasma process equipment
JP2697432B2 (en) Etching equipment
JPH07321184A (en) Processing device
JPH09289201A (en) Plasma treating apparatus
JPH07147311A (en) Transfer arm
JP2002305188A (en) Apparatus and method for processing
JPH05275377A (en) Plasma treatment method and apparatus thereof
JPH07102372A (en) Vacuum treatment of material and device therefor
JP3996002B2 (en) Vacuum processing equipment
JP2001338914A (en) Gas introducing mechanism, method for gas introduction, method for detecting gas leakage, and vacuum processing equipment
JPH1027784A (en) Apparatus for low-pressure processing
KR100734016B1 (en) Receiving substrate and plasma processing apparatus having the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608