JPH0527485B2 - - Google Patents

Info

Publication number
JPH0527485B2
JPH0527485B2 JP62125956A JP12595687A JPH0527485B2 JP H0527485 B2 JPH0527485 B2 JP H0527485B2 JP 62125956 A JP62125956 A JP 62125956A JP 12595687 A JP12595687 A JP 12595687A JP H0527485 B2 JPH0527485 B2 JP H0527485B2
Authority
JP
Japan
Prior art keywords
distance
pair
rollers
shafts
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62125956A
Other languages
Japanese (ja)
Other versions
JPS63290611A (en
Inventor
Mitsuru Endo
Tatsuya Kutsuwada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kotobuki Sangyo KK
Original Assignee
Kotobuki Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kotobuki Sangyo KK filed Critical Kotobuki Sangyo KK
Priority to JP62125956A priority Critical patent/JPS63290611A/en
Publication of JPS63290611A publication Critical patent/JPS63290611A/en
Publication of JPH0527485B2 publication Critical patent/JPH0527485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/20Adjusting or positioning rolls by moving rolls perpendicularly to roll axis
    • B21B31/22Adjusting or positioning rolls by moving rolls perpendicularly to roll axis mechanically, e.g. by thrust blocks, inserts for removal
    • B21B31/26Adjusting eccentrically-mounted roll bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、偏心軸に支持してあるローラの面間
距離を調整するための装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for adjusting the distance between surfaces of rollers supported on an eccentric shaft.

(従来の技術) 従来より、例えば条鋼圧延装置に適用されてい
るローラの面間調整装置として、特開昭55−
27411号公報記載のものがある。これは、ローラ
を回転自在に軸支している偏心軸をガイドボツク
スに立設し、偏心軸の上部に支持軸部を結合し、
支持軸部にウオームホイルを設け、さらにウオー
ムホイルにはウオームギアが噛合しているもの
で、ウオームギアを回すことによつて、偏心軸の
支持軸部はその回転方向に従つてローラが偏心移
動し、この移動によつてローラの面間距離が調整
されるのである。
(Prior art) Conventionally, for example, as a surface adjustment device for rollers applied to a long steel rolling mill, the Japanese Patent Application Laid-Open No. 1986-
There is one described in Publication No. 27411. In this system, an eccentric shaft that rotatably supports the roller is installed upright in a guide box, and a support shaft is connected to the top of the eccentric shaft.
A worm wheel is provided on the support shaft, and a worm gear is meshed with the worm wheel.By turning the worm gear, the support shaft of the eccentric shaft moves eccentrically in accordance with the rotation direction of the roller. This movement adjusts the distance between the surfaces of the rollers.

例えば線材の仕上圧延工程において、仕上圧延
ロールを通過した圧延材を更に真円度の高い製品
にするために、スキンパスローラを用いて整形圧
延を行う場合、ローラの面間の調整は数値にした
がつて行わなければならない。そこで、従来では
面間距離をゲージバーを用いて測定し、この値に
基づいて面間調整をしていた。
For example, in the finish rolling process of wire rods, when shaping rolling is performed using skin pass rollers in order to make the rolled material that has passed through the finishing roll into a product with even higher roundness, the adjustment between the surfaces of the rollers is done numerically. It must be done accordingly. Therefore, in the past, the distance between the surfaces was measured using a gauge bar, and the distance between the surfaces was adjusted based on this value.

(発明が解決しようとする問題点) ゲージバーを用いて数値を測定し、この測定値
に基づいて調整することは、ゲージバーを差入れ
たり、数値を確認したりする必要があるからロー
ラ面間の調整には手間がかかり、精度が出しにく
い問題がある。また近時、圧延材の仕上り精度を
高めるために、圧延中の圧延材の仕上り寸法を、
オンラインで稼動中のスキンパス装置にフイード
バツクして、ローラの芯間寸法を微調整し、製品
の仕上り精度を高めようとする要求がある。この
ような要求に対して従来例ではローラの面間寸法
を調整してから、再度ローラの間にゲージバーを
挿入して調整しなくてはならないから、調整のた
めに一度圧延ラインを停止しなくてはならず、工
場の操業度を低下させる原因となつていた。その
他にも、ゲージバーによりローラの面間調整を調
整する場合には数値により調整結果を確認するこ
とができないために、作業に熟練を要するなどの
問題があつた。またオンラインにおいて調整した
としても、偏心軸間の距離Wは、支持軸部間の距
離w、偏心量e、および支持軸の回転角θとする
と、次の式、 W=w±(e×Sinθ) により表されるから、使用のローラの面間距離R
は、ローラの直径をRdとすると、 R=W−Rd と表されるように、例えばウオームギアを回動し
てローラ面間を調整する場合に、ウオームギアの
回転数と距離Rの偏位量との間には比例関係が成
立しないことから、ウオームギア1回転当りのロ
ーラ面間寸法の偏位量が一定でないために、ウオ
ームホイルの回転数を記録しておいて上述の式に
したがい計算をしなくてはならず、調整作業には
一層の熟練が必要であつた。
(Problem to be solved by the invention) Measuring numerical values using a gauge bar and making adjustments based on the measured values requires inserting the gauge bar and checking the numerical values, making it difficult to adjust between the roller surfaces. The problem is that it is time-consuming and difficult to achieve accuracy. Recently, in order to improve the finishing accuracy of rolled materials, the finished dimensions of rolled materials during rolling have been
There is a demand for fine-tuning the center-to-center dimensions of the rollers by providing feedback to the skin pass equipment that is currently operating online to improve the finishing accuracy of the product. In response to such requests, conventional methods require adjusting the face-to-face dimensions of the rollers and then inserting a gauge bar between the rollers again, which eliminates the need to stop the rolling line once for adjustment. This was a cause of a decline in the factory's operating efficiency. In addition, when adjusting the face-to-face adjustment of the rollers using a gauge bar, the adjustment result cannot be confirmed numerically, so there is a problem that skill is required for the operation. Furthermore, even if the adjustment is made online, the distance W between the eccentric shafts is calculated using the following formula, W=w±(e×Sinθ ), so the distance R between the surfaces of the rollers used is
If the diameter of the roller is Rd, it is expressed as R=W-Rd. For example, when rotating the worm gear to adjust the distance between the roller surfaces, the rotation speed of the worm gear and the amount of deviation of the distance R are Since there is no proportional relationship between the two, and the amount of deviation of the roller face-to-face dimension per one revolution of the worm gear is not constant, record the number of revolutions of the worm wheel and calculate according to the above formula. The adjustment work required even more skill.

本発明の目的は、ローラの面間距離を正確に且
つ簡単な構造で表示及び調整することができる圧
延機におけるローラの面間調整装置を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a roller face-to-face adjustment device in a rolling mill that can accurately display and adjust the face-to-face distance of the rollers with a simple structure.

(問題点を解決するための手段) 本発明は、ケース本体に回動自在に支持され、
ローラ面が対向する一対のローラを回動自在に支
持した一対の偏心軸と、 前記各偏心軸に対して偏心させて該各偏心軸と
一体に設けられた一対の支持軸部と、 前記各支持軸部と一体に設けられた一対のウオ
ームホイルと、 前記各ウオームホイルと噛合する互いに逆ねじ
である一対のウオームギアを有するウオームギア
シヤフトと、 前記各偏心軸と同心的に前記各ウオームホイル
と一体に設けられた一対の計測用軸部と、 前記両計測用軸部間に設けられ、該両軸部間の
距離の変化量を検出し、この変化量を表す電気信
号を出力する芯間検出部と、 前記芯間検出部の電気信号に基づき前記両ロー
ラの面間距離を演算する演算部と、 前記演算部で演算された前記面間距離を表示す
る表示部と を具備することを特徴とする圧延機におけるロー
ラの面間調整装置である。
(Means for solving the problem) The present invention is rotatably supported by a case body,
a pair of eccentric shafts that rotatably support a pair of rollers whose roller surfaces face each other; a pair of support shaft portions that are eccentric to each of the eccentric shafts and integrally provided with each of the eccentric shafts; a pair of worm wheels provided integrally with the support shaft; a worm gear shaft having a pair of worm gears having opposite threads that mesh with each of the worm wheels; and a worm gear shaft provided integrally with each of the worm wheels concentrically with each of the eccentric shafts. a pair of measurement shafts provided in the measurement shaft; and a center-to-center detection device provided between the two measurement shafts that detects the amount of change in the distance between the two shafts and outputs an electrical signal representing this amount of change. A calculation unit that calculates the distance between the surfaces of both rollers based on the electrical signal of the center-to-center detection unit; and a display unit that displays the distance between the surfaces calculated by the calculation unit. This is a device for adjusting the distance between rollers in a rolling mill.

(作用) ローラを夫々回動自在に支持している一対の偏
心軸と同心的に設けられた一対の計測用軸部間の
距離の変化量が両計測用軸部間に設けられた芯間
検出部により検出され、この検出部から出力され
る前記変化量を表す電気信号に基づき演算部で演
算されたローラの面間距離が表示部で表示される
と共に、ウオームギアシヤフトを回転させると、
この回転が一対のウオームギアを介して一対のウ
オームホイルに伝達され、各偏心軸と同心的にな
つている、すなわち各支持軸部に対して偏心して
いる各計測用軸部が円周方向に移動して両計測用
軸部間の距離が変化し、これによつて両偏心軸間
の距離すなわち両ローラの面間距離が調整され
る。
(Function) The amount of change in the distance between a pair of measuring shafts provided concentrically with a pair of eccentric shafts that rotatably support the rollers is determined by the distance between the centers provided between both measuring shafts. The distance between the surfaces of the rollers detected by the detection unit and calculated by the calculation unit based on the electric signal representing the amount of change output from the detection unit is displayed on the display unit, and when the worm gear shaft is rotated,
This rotation is transmitted to a pair of worm wheels via a pair of worm gears, and each measuring shaft that is concentric with each eccentric shaft, that is, eccentric with respect to each support shaft, moves in the circumferential direction. As a result, the distance between both measuring shafts changes, and thereby the distance between both eccentric shafts, that is, the distance between the surfaces of both rollers is adjusted.

(実施例) 以下本発明の実施例を説明する。(Example) Examples of the present invention will be described below.

第1,2図において、ガイドボツクス(ケース
本体)1には、一対の偏心軸2,2aを回動可能
に立設してあり、各偏心軸はその上部に支持軸部
3,3aを一体的に結合してある。偏心軸2,2
aにはローラ4,4aを回転自在に軸支してあ
る。そして支持軸部3,3aにウオームホイル
5,5aを設けてある。ウオームホイルにはガイ
ドボツクス1に設けてある軸受6に回転自在に軸
支されたウオームギアシヤフト7に設けてある互
いに逆ねじ関係にあるウオームギア8,8aが噛
合している。
In Figures 1 and 2, a pair of eccentric shafts 2, 2a are rotatably installed on a guide box (case main body) 1, and each eccentric shaft has a supporting shaft part 3, 3a integrally attached to its upper part. It is connected in a specific way. Eccentric shaft 2, 2
Rollers 4, 4a are rotatably supported on shaft a. Worm foils 5, 5a are provided on the support shafts 3, 3a. Worm gears 8 and 8a, which are provided on a worm gear shaft 7 that is rotatably supported by a bearing 6 provided on the guide box 1, are meshed with the worm wheel.

ところで、ウオームホイル5,5a上には偏心
軸2,2aと同心の計測用軸部9,9aを起立し
てある。両軸部はガイドボツクス1の上部にボル
ト10で固定されたカバー11に開けてある孔1
2,12を通じてカバー上方に突出している。孔
12,12の大きさは、孔内を計測用軸部9,9
aが移動可能のものである。両計測用軸部間に
は、第1,3図に示すように、両計測用軸部9,
9a間の距離の変化量を検出し、この変化量を表
す電気信号を出力する芯間検出部であるリニアゲ
ージ13を水平状態に架設してある。リニアゲー
ジ13の本体の一端から支持ピン131を、他端
からはゲージピン132をばね力を利用して進退
出可能に突出してある。両ピン131,132の
先端は取付けリング131a,132aをそれぞ
れ設けてあり、各リングは計測用軸部9,9aに
嵌合して、各軸に予め取り付けてあるカラー13
3,133上に載せて、軸部上方から止めねじ1
34,134で軸部を中心として回動可能に保持
してある。支持ピン131の基部にはねじ部13
1bを形成してあり、リニアゲージ13の本体に
ねじ結合し、ナツト131cで結合を固定してい
る。またゲージピン132は、計測用軸部9,9
a間の距離の変化によつてゲージ本体から進退出
する。リニアゲージ13からは、計測用軸部9,
9a間の距離の変化量に応じたパルス信号が第4
図に示す計測部14に送られる。計測部14は、
配線15によつてリニアゲージ13と電気的に接
続している。計測部14は演算部14aと表示部
14bとを具備している。リニアゲージ13から
送られた信号は、演算部14aに送られて、この
演算部はリニアゲージからのパルス信号に基づき
偏心軸2,2a間の距離を計算し、その値から予
め入力されているローラ4,4aの直径を差し引
いた所要のローラの面間距離を演算する。表示部
14bは、演算部14aで演算されたローラの面
間距離をデジタル表示する。
Incidentally, measurement shaft portions 9, 9a concentric with the eccentric shafts 2, 2a are erected on the worm wheels 5, 5a. Both shafts have holes 1 in a cover 11 fixed to the top of the guide box 1 with bolts 10.
2 and 12 and protrudes upward from the cover. The size of the holes 12, 12 is determined by the measurement shaft portions 9, 9 inside the holes.
a is movable. As shown in FIGS. 1 and 3, between the two measuring shafts, there are two measuring shafts 9,
A linear gauge 13, which is a center-to-center detection section that detects the amount of change in the distance between the two 9a and outputs an electric signal representing this amount of change, is installed horizontally. A support pin 131 protrudes from one end of the main body of the linear gauge 13, and a gauge pin 132 protrudes from the other end so as to be movable forward and backward using spring force. Attachment rings 131a and 132a are provided at the tips of both pins 131 and 132, respectively, and each ring fits into the measurement shaft portions 9 and 9a, and the collar 13 that is pre-attached to each shaft
3, place it on 133, and tighten the setscrew 1 from above the shaft.
34, 134, and is rotatably held around a shaft portion. A threaded portion 13 is provided at the base of the support pin 131.
1b is formed, and is screwed to the main body of the linear gauge 13, and the connection is fixed with a nut 131c. Further, the gauge pin 132 is connected to the measuring shaft portions 9, 9.
It advances or retreats from the gauge body by changing the distance between a. From the linear gauge 13, the measurement shaft 9,
The fourth pulse signal corresponds to the amount of change in the distance between 9a and 9a.
It is sent to the measuring section 14 shown in the figure. The measurement unit 14 is
It is electrically connected to the linear gauge 13 by a wiring 15. The measurement section 14 includes a calculation section 14a and a display section 14b. The signal sent from the linear gauge 13 is sent to the calculation unit 14a, and this calculation unit calculates the distance between the eccentric shafts 2 and 2a based on the pulse signal from the linear gauge, and the value is input in advance. A required distance between the surfaces of the rollers is calculated by subtracting the diameters of the rollers 4 and 4a. The display section 14b digitally displays the distance between the surfaces of the rollers calculated by the calculation section 14a.

つぎに使用法を説明する。 Next, we will explain how to use it.

まず、偏心軸2,2aをローラ面間距離の原
点に設定してローラの面間距離をデジタルスイツ
チ(図示せず。)により演算部14aに初期入力
すると共に、ローラの直径をデジタルスイツチ
(図示せず。)により演算部に入力して初期設定を
行う。初期設定後、ウオームギアシヤフト7によ
つてウオームギア8,8aを回動してローラ4,
4aの面間距離を調整する。調整時に、ウオーム
ホイル5,5aの回転に応じて、計測用軸部9,
9aが円周方向に移動して両計測用軸部間の距離
が変化し、リニアゲージ13のゲージピン132
が進退出し、これによつてゲージ全体が伸縮し、
この伸縮を通じてリニアゲージからその変位量に
応じたパルス信号が計測部14に送られて、演算
部14aで演算され、ローラの面間距離が表示部
14bに表示される。
First, the eccentric shafts 2 and 2a are set as the origin of the distance between the surfaces of the rollers, and the distance between the surfaces of the rollers is initially input into the calculation unit 14a using a digital switch (not shown). (not shown) is input to the calculation unit to perform initial settings. After initial setting, the worm gears 8 and 8a are rotated by the worm gear shaft 7 to rotate the rollers 4 and 8a.
Adjust the distance between the surfaces of 4a. During adjustment, the measuring shaft portion 9,
9a moves in the circumferential direction, the distance between both measuring shafts changes, and the gauge pin 132 of the linear gauge 13
moves forward and backward, which causes the entire gauge to expand and contract.
Through this expansion and contraction, a pulse signal corresponding to the amount of displacement is sent from the linear gauge to the measuring section 14, and is calculated by the calculating section 14a, and the distance between the surfaces of the rollers is displayed on the display section 14b.

表示された値に基づいて最適なローラの面間の
調整をする。
Make optimal roller face-to-face adjustments based on the displayed values.

第5〜7図に他の例を示す。この例では、ウオ
ームギアシヤフト7を、自動回転駆動手段を連動
させておいて、自動調整するものである。すなわ
ち、第5,6図に示すようにウオームギアシヤフ
ト7の中間に微調整ギア16を設け、この微調整
ギアにピニオンシヤフト17に取り付けた微調整
ピニオン18が噛合してある。ピニオンシヤフト
17は軸受け19で支持され、後端側は自動回転
駆動手段であるモータ20と連動している。この
ためモータの駆動により、その回転力は微調整ピ
ニオン18から微調整ギア16およびウオームギ
アシヤフト7を経てウオームギア8,8aおよび
ウオームホイル5,5に伝達されて、ローラ面が
調整される。
Other examples are shown in FIGS. 5-7. In this example, the worm gear shaft 7 is automatically adjusted by interlocking the automatic rotation drive means. That is, as shown in FIGS. 5 and 6, a fine adjustment gear 16 is provided in the middle of the worm gear shaft 7, and a fine adjustment pinion 18 attached to a pinion shaft 17 meshes with this fine adjustment gear. The pinion shaft 17 is supported by a bearing 19, and its rear end side is interlocked with a motor 20, which is automatic rotation driving means. Therefore, when the motor is driven, the rotational force is transmitted from the fine adjustment pinion 18 to the worm gears 8, 8a and the worm wheels 5, 5 via the fine adjustment gear 16 and the worm gear shaft 7, and the roller surface is adjusted.

モータ20は計測部14と配線15a(第7図)
によつて電気的に接続している。計測部14は、
ローラ面間の距離を計測する演算部14aの他
に、計測した面間距離とローラの移動目標値とを
比較計算する計算部14cを設け、さらにこの比
較値が一致した時にモータ停止信号をモータ20
に送る信号発生部14dを備えている。
The motor 20 is connected to the measuring section 14 and the wiring 15a (Fig. 7)
electrically connected by. The measurement unit 14 is
In addition to the calculation section 14a that measures the distance between roller surfaces, there is also a calculation section 14c that compares and calculates the measured distance between surfaces and a roller movement target value, and when the comparison values match, a motor stop signal is sent to the motor. 20
The signal generator 14d is provided with a signal generating section 14d that sends a signal to.

自動調整を説明すると、計測部14に予めロー
ラの面間の移動目標値を入力しておく。そしてモ
ータ20を始動させると、ローラの面間が移動
し、計測部の演算部14aが面間距離の現在値を
測定し、計算部14cにおいて現在値と入力して
ある目標値とを比較し、比較した現在値と目標値
とが一致した時、信号発生部14dからの指令に
よりモータ20の駆動は停止する。この結果、所
望のローラの面間の自動調整がされる。
To explain the automatic adjustment, a target value of movement between the surfaces of the roller is input into the measurement unit 14 in advance. When the motor 20 is started, the distance between the surfaces of the rollers is moved, and the calculation section 14a of the measurement section measures the current value of the distance between the surfaces, and the calculation section 14c compares the current value with the input target value. When the compared current value and target value match, the drive of the motor 20 is stopped by a command from the signal generator 14d. This results in automatic adjustment of the desired roller surfaces.

一致しない場合にはその値に応じて、 例えば現在値<目標値の場合、モータ20を逆
転させ、現在値>目標値の場合、モータを正転さ
せて、現在値と目標値とを比較させる作業を繰り
返して、一致したところでモータ20は停止す
る。
If they do not match, depending on the value, for example, if the current value < the target value, the motor 20 is rotated in the reverse direction, and if the current value > the target value, the motor is rotated in the forward direction, and the current value and the target value are compared. The operation is repeated, and when a match is reached, the motor 20 stops.

(発明の効果) 本発明によれば、ローラを夫々回動自在に支持
している一対の偏心軸と同心的に設けられた一対
の計測用軸部間の距離の変化量が両計測用軸部間
に設けられた芯間検出部により検出され、この検
出部から出力される前記変化量を表す電気信号に
基づき演算部で演算されたローラの面間距離が表
示部で表示されると共に、ウオームギアシヤフト
を回転させると、この回転が一対のウオームギア
を介して一対のウオームホイルに伝達され、各偏
心軸と同心的になつている、すなわち各支持軸部
に対して偏心している各計測用軸部が円周方向に
移動して両計測用軸部間の距離が変化し、これに
よつて両偏心軸間の距離すなわち両ローラの面間
距離が調整される。従つて、ローラの面間距離を
正確に且つ簡単な構造で表示及び調整することが
できる。その結果、圧延中であつても演算部での
表示を見ながらローラの面間距離を所望値に正確
に設定することができ、工場の操業度を維持しつ
つ製品の制度を向上させることができ、且つロー
ラの面間距離を、熟練を要することなく簡単且つ
正確に調整することができる。
(Effects of the Invention) According to the present invention, the amount of change in the distance between the pair of measurement shafts provided concentrically with the pair of eccentric shafts rotatably supporting the rollers is The distance between the surfaces of the rollers is detected by a center-to-center detection unit provided between the parts, and is calculated by a calculation unit based on an electrical signal representing the amount of change output from the detection unit, and is displayed on a display unit. When the worm gear shaft is rotated, this rotation is transmitted to a pair of worm wheels via a pair of worm gears, and each measurement shaft is concentric with each eccentric shaft, that is, eccentric with respect to each support shaft. The measuring shaft portion moves in the circumferential direction to change the distance between both measuring shaft portions, thereby adjusting the distance between both eccentric shafts, that is, the distance between the surfaces of both rollers. Therefore, the distance between the surfaces of the rollers can be displayed and adjusted accurately and with a simple structure. As a result, even during rolling, it is possible to accurately set the distance between the roller surfaces to the desired value while looking at the display on the calculation section, improving product accuracy while maintaining factory operating efficiency. In addition, the distance between the surfaces of the rollers can be easily and accurately adjusted without requiring any skill.

そして人手を介することなくローラの面間調整
を自動的にできるから、調整作業がより一層簡単
となる。
Furthermore, since the surface-to-surface adjustment of the rollers can be automatically performed without human intervention, the adjustment work becomes even easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一部断面平面図、第2図は一部切欠側
面図、第3図は計測用検出部の取付け状態を示す
断面図、第4図は測定用検出部と計測部とのブロ
ツク図、第5図はモータと微調整機構を示す正面
図、第6図はモータと微調整機構を示す平面図、
第7図は測定用検出部、計測部およびモータの関
係を示すブロツク図である。 2,2a…偏心軸、3,3a…支持軸部、4,
4a…ローラ、5,5a…ウオームホイール、7
…ウオームシヤフト、8…ウオームギア、9,9
a…計測用軸部、13…計測用検出部、14…計
測部、14a…演算部、14b…表示部、14c
…計算部、14d…信号発生部、20…自動回転
駆動手段。
Fig. 1 is a partially sectional plan view, Fig. 2 is a partially cutaway side view, Fig. 3 is a sectional view showing the mounting state of the measurement detection unit, and Fig. 4 is a block diagram of the measurement detection unit and measurement unit. Figure 5 is a front view showing the motor and fine adjustment mechanism, Figure 6 is a plan view showing the motor and fine adjustment mechanism,
FIG. 7 is a block diagram showing the relationship among the measurement detecting section, the measuring section, and the motor. 2, 2a... Eccentric shaft, 3, 3a... Support shaft portion, 4,
4a...roller, 5, 5a...worm wheel, 7
...Wormshaft, 8...Wormgear, 9,9
a...Measurement shaft part, 13...Measurement detection part, 14...Measurement part, 14a...Calculation part, 14b...Display part, 14c
...Calculating section, 14d... Signal generating section, 20... Automatic rotation drive means.

Claims (1)

【特許請求の範囲】 1 ケース本体に回動自在に支持され、ローラ面
が対向する一対のローラを回動自在に支持した一
対の偏心軸と、 前記各偏心軸に対して偏心させて該各偏心軸と
一体に設けられた一対の支持軸部と、 前記各支持軸部と一体に設けられた一対のウオ
ームホイルと、 前記各ウオームホイルと噛合する互いに逆ねじ
である一対のウオームギアを有するウオームギア
シヤフトと、 前記各偏心軸と同心的に前記各ウオームホイル
と一体に設けられた一対の計測用軸部と、 前記両計測用軸部間に設けられ、該両軸部間の
距離の変化量を検出し、この変化量を表す電気信
号を出力する芯間検出部と、 前記芯間検出部の電気信号に基づき前記両ロー
ラの面間距離を演算する演算部と、 前記演算部で演算された前記面間距離を表示す
る表示部と を具備することを特徴とする圧延機におけるロー
ラの面間調整装置。 2 前記ウオームギアシヤフトに回転力を与える
自動回転駆動手段と、前記演算部で演算された前
記面間距離の演算値と予め記憶されたローラ面の
面間距離の目標値とを比較し、前記両値が一致し
たとき前記自動回転駆動手段に停止信号を出力す
る比較手段とをさらに具備することを特徴とする
請求項1記載の装置。
[Scope of Claims] 1. A pair of eccentric shafts rotatably supported by the case body and rotatably supporting a pair of rollers with opposing roller surfaces; A worm gear comprising: a pair of support shaft portions provided integrally with an eccentric shaft; a pair of worm wheels provided integrally with each of the support shaft portions; and a pair of worm gears having opposite threads that mesh with each of the worm wheels. a shaft; a pair of measurement shafts provided concentrically with each of the eccentric shafts and integrally with each of the worm wheels; and a pair of measurement shafts provided between the two measurement shafts, the amount of change in distance between the two shafts; a center-to-center detection unit that detects the amount of change and outputs an electrical signal representing the amount of change; a calculation unit that calculates the distance between the surfaces of the rollers based on the electrical signal from the center-to-center detection unit; and a display section for displaying the distance between surfaces of rollers in a rolling mill. 2. The automatic rotation drive means that applies rotational force to the worm gear shaft compares the calculated value of the distance between surfaces calculated by the calculation section with a pre-stored target value of the distance between the roller surfaces, and 2. The apparatus according to claim 1, further comprising comparison means for outputting a stop signal to said automatic rotation drive means when the values match.
JP62125956A 1987-05-25 1987-05-25 Interface adjusting device for roller Granted JPS63290611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125956A JPS63290611A (en) 1987-05-25 1987-05-25 Interface adjusting device for roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125956A JPS63290611A (en) 1987-05-25 1987-05-25 Interface adjusting device for roller

Publications (2)

Publication Number Publication Date
JPS63290611A JPS63290611A (en) 1988-11-28
JPH0527485B2 true JPH0527485B2 (en) 1993-04-21

Family

ID=14923131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125956A Granted JPS63290611A (en) 1987-05-25 1987-05-25 Interface adjusting device for roller

Country Status (1)

Country Link
JP (1) JPS63290611A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262009A (en) * 1988-04-14 1989-10-18 Sumitomo Metal Ind Ltd Caliper diameter adjusting type diameter reducing roll stand
KR100805067B1 (en) 2006-10-20 2008-02-20 주식회사 포스코 Apparatus for adjusting front guide for wire sizing-rolling mill
CN105363789B (en) * 2015-11-16 2017-04-12 中国兵器工业第二一三研究所 Mechanism for adjusting distance between roller shafts of cutting rope forming machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276708A (en) * 1985-05-30 1986-12-06 Sumitomo Metal Ind Ltd Instrument for measuring chock gap of rolling mill

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180801U (en) * 1983-05-17 1984-12-03 株式会社神戸製鋼所 Rolling reduction display device in rolling mill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276708A (en) * 1985-05-30 1986-12-06 Sumitomo Metal Ind Ltd Instrument for measuring chock gap of rolling mill

Also Published As

Publication number Publication date
JPS63290611A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
JPH0527485B2 (en)
US5528917A (en) Force controlled rolling of gears
JP2509603B2 (en) Gear combination clearance measuring method and device
WO1995001848A1 (en) Method and apparatus for supporting a roll molding machine stand, and method and apparatus for measuring a supporting platform position
CN110285921B (en) Experimental device and method for measuring rotational inertia
JPS61159217A (en) High speed wire drawing equipment of wire rod
US3709011A (en) Ring rolling apparatus with four rolls
US3712094A (en) Gear rolling machine
CN213944761U (en) Bar straightening machine
US4790074A (en) Apparatus for testing rack teeth
JP3322184B2 (en) Device and method for adjusting position in horizontal roll axis direction of universal rolling mill
US4022040A (en) Method of operation and control of crown adjustment system drives on cluster mills
JPH0218923B2 (en)
GB2027373A (en) Apparatus for Producing Helical Seam Pipes
JPH0140568Y2 (en)
JPH1082710A (en) Balance measuring unit for rotor
CN209311097U (en) A kind of electrodynamic analogy device on multi-state road surface
JPH07106390B2 (en) Cold roll forming machine
JPS6357128B2 (en)
JP2567750Y2 (en) Finishing mill
US3563076A (en) Setup method for gear golling
CN220230437U (en) Dough sheet thickness measuring device and calendaring equipment
KR20030052750A (en) Apparatus for measurment of distance between edger roll
JPH0539482Y2 (en)
SU1217509A1 (en) Arrangement for checking position of pressure screw of rolling mill roll setting mechanism