JPH05273810A - Self-diagnosable image forming device - Google Patents

Self-diagnosable image forming device

Info

Publication number
JPH05273810A
JPH05273810A JP4066444A JP6644492A JPH05273810A JP H05273810 A JPH05273810 A JP H05273810A JP 4066444 A JP4066444 A JP 4066444A JP 6644492 A JP6644492 A JP 6644492A JP H05273810 A JPH05273810 A JP H05273810A
Authority
JP
Japan
Prior art keywords
failure
qualitative
boundary
value
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4066444A
Other languages
Japanese (ja)
Other versions
JP2793423B2 (en
Inventor
Yoshiki Shimomura
芳樹 下村
Sadao Tanigawa
貞夫 谷川
Yasushi Umeda
靖 梅田
Tetsuo Tomiyama
哲男 冨山
弘之 ▲吉▼川
Hiroyuki Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP4066444A priority Critical patent/JP2793423B2/en
Publication of JPH05273810A publication Critical patent/JPH05273810A/en
Application granted granted Critical
Publication of JP2793423B2 publication Critical patent/JP2793423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To accurately diagnose a fault as to a self-diagnosable system for an image forming device. CONSTITUTION:A pseudo fault occurrence part 14 forcibly causes the fault on the image forming device by operating actuator controllers 2C, 3C and 5C. And the detection values of sensors X, VS, and DS at the time of forcibly causing the fault are read and a landmark stored in a landmark forming part 13 is corrected based on the detection value read and the detection values obtained from the sensors X, VS and DS before the fault is caused. And after the symptom of the fault is caused on the device, the detection values of the sensors X, VS, and DS are converted to a qualitative values based on the landmark corrected. And the qualitative values are compared with the set of the qualitative values outputted from an outputting part 12, and the fault is estimated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自己診断システムを
有する画像形成装置に関するものである。より詳しく
は、近年盛んに研究が行われている人工知能、知識工学
を利用して、装置が動作状態等を自己診断し得るように
した画像形成装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus having a self-diagnosis system. More specifically, the present invention relates to an image forming apparatus that enables self-diagnosis of an operating state of the apparatus by utilizing artificial intelligence and knowledge engineering, which have been actively researched in recent years.

【0002】[0002]

【従来の技術】精密機械や産業機械等の開発分野におい
ては、保全作業の省力化や自動運転の長期化を実現する
ために、最近、人工知能(Artificial Intelligence:い
わゆるAI)技術を利用したエキスパートシステムの研
究が盛んに行われている。エキスパートシステムの中に
は、装置に故障が生じたか否かを自己診断し、また生じ
た故障を自己修復するものが見受けられる。
2. Description of the Related Art In the field of development of precision machinery and industrial machinery, experts who have recently used artificial intelligence (so-called AI) technology in order to save labor in maintenance work and prolong automatic operation. Research on the system is being actively conducted. Some expert systems self-diagnose whether or not a failure has occurred in the device and also self-repair the failure that has occurred.

【0003】ところが、従来のエキスパートシステム
(自動調節システムや故障診断システム)は、基本的に
は、或るセンサの出力に基づいて対応するアクチュエー
タを作動させるだけであったので、自己修復機械として
は完全なものとはいえなかった。そこで、本願出願人
は、定性物理に基づく対象モデル上での診断/修復推論
を用いた機械制御法を見出し、係る機械制御法を利用し
て、画像形成装置のための新規な自己診断および自己修
復システムを発明し、特許出願を行った(たとえば特願
昭2−252191号参照)。
However, since the conventional expert system (automatic adjustment system or failure diagnosis system) basically only operates the corresponding actuator based on the output of a certain sensor, it is a self-repairing machine. It wasn't perfect. Therefore, the applicant of the present application has found a machine control method using diagnosis / repair inference on a target model based on qualitative physics, and using such a machine control method, novel self-diagnosis and self-diagnosis for an image forming apparatus are performed. He invented a restoration system and filed a patent application (see, for example, Japanese Patent Application No. 2-252191).

【0004】この先願にかかる画像形成装置のための自
己診断および自己修復システムは、次の特徴を備えてい
る。すなわち、 (1)対象機械(画像形成装置)に備えられたセンサの
検出値を定性値に変換して制御に用いること。 (2)画像形成装置の構造および特性を、画像形成装置
の性質を表わすパラメータの因果関係ネットワーク(パ
ラメータモデル)を用いて定性的に表現していること。
The self-diagnosis and self-repair system for the image forming apparatus according to this prior application has the following features. That is, (1) The detection value of the sensor provided in the target machine (image forming apparatus) is converted into a qualitative value and used for control. (2) The structure and characteristics of the image forming apparatus are qualitatively expressed using a causal relationship network (parameter model) of parameters representing the characteristics of the image forming apparatus.

【0005】(3)定性値に変換されたセンサ値を、パ
ラメータモデルにあてはめ、故障診断および故障修復推
論のための定性シミュレーションを行っていること、で
ある。 つまり、定性モデルベースドシステム(Qualitative Mo
del Based System(QMS))による故障診断および故
障修復を行っていることである。
(3) The sensor value converted into a qualitative value is applied to a parameter model to perform a qualitative simulation for failure diagnosis and failure repair inference. In other words, a qualitative model-based system (Qualitative Mo
It is to perform fault diagnosis and fault repair by the del Based System (QMS).

【0006】このような特徴を有する本願出願人の先願
に係る自己診断および自己修復システムによれば、万一
画像形成装置がその構造変更等を伴うような故障を生じ
たとしても、それに柔軟に対応可能である。なぜなら
ば、定性シミュレーションを利用することにより、対象
機械の制御点や制御ループを動的に変更することが可能
だからである。
According to the self-diagnosis and self-repair system of the applicant of the present application having the above characteristics, even if a failure such as a structural change occurs in the image forming apparatus, it is flexible. Is available. This is because it is possible to dynamically change the control point and control loop of the target machine by using the qualitative simulation.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記先
願に係る自己診断および自己修復システムにおいては、
センサの検出値を定性値に変換する際に、その変換に誤
りが生じるという可能性があった。なぜならば、センサ
検出値を定性値に変換する場合には、定性量空間上に境
界標を定義し、その境界標よりも検出値が大きいかまた
は小さいかにより異なる定性値に変換されるわけである
から、境界標は正しく定められていなければならない。
However, in the self-diagnosis and self-repair system according to the above-mentioned prior application,
When converting the detected value of the sensor into a qualitative value, there was a possibility that an error would occur in the conversion. This is because, when converting the sensor detection value into a qualitative value, a boundary marker is defined in the qualitative space and it is converted into a different qualitative value depending on whether the detected value is larger or smaller than the boundary marker. Therefore, the boundary mark must be properly defined.

【0008】ところがこの境界標は、画像形成装置の使
用環境等により変化することがある。それゆえ、従来の
システムにおいては、制御の基礎となるセンサ検出値の
定性値化にばらつきが生じ、その結果、正確な定性シミ
ュレーションが行えず、故障診断や故障修復に誤りが生
じるおそれがあった。そこでこの発明は、正確な故障診
断が可能な画像形成装置を提供することを目的とする。
However, this boundary mark may change depending on the environment in which the image forming apparatus is used. Therefore, in the conventional system, the qualitative quantification of the sensor detection value, which is the basis of the control, varies, and as a result, an accurate qualitative simulation cannot be performed, and an error may occur in failure diagnosis or failure repair. .. Therefore, an object of the present invention is to provide an image forming apparatus capable of performing accurate failure diagnosis.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
装置に生じている故障を自己診断することのできる画像
形成装置であって、装置の故障状態を表わすパラメータ
の定性値の組を出力する出力手段と、装置の予め定める
複数の部位の状態を検出するための複数のセンサと、各
センサに対応して設けられ、各センサの検出値を定性値
に変換する際に必要な定性量空間の境界標が記憶された
境界標記憶手段と、所定のタイミングで、装置に故障を
強制的に引き起こし、少なくとも故障を引き起こしたと
きに読取った前記複数のセンサの検出値とを用いて、前
記境界標記憶手段に記憶された境界標を修正する境界標
修正手段と、装置に故障症状が発現したとき、前記複数
のセンサの検出値を読取り、前記境界標記憶手段に記憶
された境界標を用いて、各センサの検出値を定性値に変
換する変換手段と、前記変換手段で変換された定性値と
前記出力手段から出力される定性値の組とを比較し、発
現中の故障症状を引き起こしている故障を特定するため
に、定性値と所定の関係にある定性値の組を選択する選
択手段と、を含むことを特徴とするものである。
The invention according to claim 1 is
An image forming apparatus capable of self-diagnosing a failure occurring in the apparatus, the output means outputting a set of qualitative values of parameters representing the failure state of the apparatus, and detecting the states of a plurality of predetermined parts of the apparatus. A plurality of sensors for doing so, a boundary mark storage unit that is provided corresponding to each sensor, and stores a boundary mark of the qualitative amount space necessary when converting the detection value of each sensor into a qualitative value, and a predetermined mark. Boundary mark correction for forcibly causing a failure of the device at a timing, and at least using the detection values of the plurality of sensors read when the failure is caused to correct the boundary target stored in the boundary target storage means. And a device, when a failure symptom appears in the device, the detection values of the plurality of sensors are read, and the detection value of each sensor is converted into a qualitative value by using the boundary markers stored in the boundary marker storage means. When In order to compare the qualitative value converted by the conversion means and the set of qualitative values output from the output means, and to identify the fault causing the failure symptom that is being expressed, there is a predetermined relationship with the qualitative value. Selecting means for selecting a set of qualitative values.

【0010】請求項2記載の発明は、前記画像形成装置
において、前記境界標生成手段は、故障を引き起こす前
に読取った前記複数のセンサの検出値と、故障を引き起
こしたときに読取った前記複数のセンサの検出値とを用
いて、境界標を修正することを特徴とするものである。
請求項3記載の発明は、前記画像形成装置において、さ
らに、前記選択手段で選択された定性値の組に設定され
ている故障を修復するように作動する故障修復手段を含
むことを特徴とするものである。
According to a second aspect of the present invention, in the image forming apparatus, the boundary mark generating means reads the detection values of the plurality of sensors read before causing a failure and the plurality of sensors read when the failure occurs. It is characterized in that the boundary mark is corrected by using the detection value of the sensor of.
According to a third aspect of the present invention, the image forming apparatus further includes a failure repair unit that operates to repair a failure set in the set of qualitative values selected by the selection unit. It is a thing.

【0011】請求項4記載の発明は、前記画像形成装置
において、前記境界標修正手段が境界標を修正するため
に、装置に故障を強制的に引き起こすタイミングは、前
記故障修復手段により故障修復が完了される度であるこ
とを特徴とするものである。請求項5記載の発明は、前
記画像形成装置において、前記境界標修正手段が境界標
を修正するために、装置に故障を強制的に引き起こすタ
イミングは、マニュアル操作等により修正要求信号が入
力されたときであることを特徴とするものである。
According to a fourth aspect of the present invention, in the image forming apparatus, since the boundary mark correcting means corrects the boundary mark, the timing at which the apparatus is forcibly caused a failure is determined by the failure repairing means. It is characterized in that it is completed every time. According to a fifth aspect of the present invention, in the image forming apparatus, a correction request signal is input by a manual operation or the like at a timing when the boundary mark correction unit corrects the boundary mark so that the device is forced to cause a failure. It is characterized by being time.

【0012】[0012]

【作用】請求項1または2記載の発明によれば、装置に
故障症状が発現したとき、複数のセンサの検出値が読取
られて、各検出値は定性値に変換される。センサの検出
値を定性値に変換する際に必要な境界標は、装置に故障
を強制的に引き起こすという疑似故障法により修正され
る。それゆえ、定性値への変換に必要な境界標を常に最
適な値に修正していくことができ、センサ検出値を精度
良く定性値に変換できる。変換された定性値は、定性値
の組と比較され、定性値と所定の関係、たとえば定性値
と一致する定性値の組が選択される。そして選択された
定性値の組に設定されている故障が、今回の故障症状を
引き起こした原因であると推定される。
According to the invention of claim 1 or 2, when a failure symptom appears in the device, the detection values of the plurality of sensors are read and each detection value is converted into a qualitative value. The boundary mark necessary for converting the detected value of the sensor into the qualitative value is corrected by the pseudo-fault method of forcibly causing a failure in the device. Therefore, the boundary marker necessary for conversion to a qualitative value can always be corrected to an optimum value, and the sensor detection value can be accurately converted to a qualitative value. The converted qualitative value is compared with a set of qualitative values, and a set of qualitative values that matches a predetermined relationship with the qualitative value, for example, a set of qualitative values is selected. Then, it is estimated that the failure set in the selected set of qualitative values is the cause of this failure symptom.

【0013】請求項2記載の発明によれば、推定された
故障が自動的に修復される。請求項4記載の発明によれ
ば、境界標を修正するタイミングは、故障修復完了の度
であるから、故障修復により装置のパラメータに変化が
生じ、その境界標が変化しても、その変化に追従して境
界標を修正することができる。請求項5記載の発明によ
れば、サービスマン等によりマニュアル操作で修正要求
信号が入力されるごとに、疑似故障法による境界標の修
正が行われるので、必要なときに境界標の修正ができ
る。
According to the second aspect of the invention, the estimated failure is automatically repaired. According to the invention as set forth in claim 4, since the timing for correcting the boundary marker is the degree of completion of the failure repair, even if the boundary marker changes and the boundary marker changes, the change does not occur even if the boundary marker changes. The boundary mark can be corrected by following it. According to the invention of claim 5, the boundary mark is corrected by the pseudo-fault method every time the correction request signal is manually input by a service person or the like, so that the boundary mark can be corrected when necessary. ..

【0014】[0014]

【実施例】以下には、図面を参照して、小型の電子写真
複写機に適用された自己診断および自己修復システムを
一実施例として説明する。図1は、この発明が適用され
た小型の電子写真複写機の機械構成図であり、この発明
に関係する部分のみが図解的に示された図である。図1
において、1は感光体ドラム、2はメインチャージャ、
3は原稿照明用のハロゲンランプ、4は現像装置、5は
転写・分離チャージャである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A self-diagnosis and self-repair system applied to a small electrophotographic copying machine will be described below as an embodiment with reference to the drawings. FIG. 1 is a mechanical configuration diagram of a small-sized electrophotographic copying machine to which the present invention is applied, and is a diagram schematically showing only a portion related to the present invention. Figure 1
, 1 is the photoconductor drum, 2 is the main charger,
Reference numeral 3 is a halogen lamp for illuminating the original, 4 is a developing device, and 5 is a transfer / separation charger.

【0015】メインチャージャ2には、メインチャージ
ャの放電電圧を変化させるためのメインチャージャコン
トローラ2Cが接続されている。また、ハロゲンランプ
3には、ハロゲンランプ3の光量を制御するためのハロ
ゲン光量コントローラ3Cが接続されている。さらに、
転写・分離チャージャ5には、このチャージャ5による
放電電圧、すなわち感光体ドラム1とコピー用紙間の転
写電圧を制御するための転写チャージャコントローラ5
Cが接続されている。
The main charger 2 is connected to a main charger controller 2C for changing the discharge voltage of the main charger. Further, a halogen light amount controller 3C for controlling the light amount of the halogen lamp 3 is connected to the halogen lamp 3. further,
The transfer / separation charger 5 includes a transfer charger controller 5 for controlling the discharge voltage of the charger 5, that is, the transfer voltage between the photosensitive drum 1 and the copy sheet.
C is connected.

【0016】電子写真複写機では、得られたコピー画像
が美しく仕上がっている(正常)か否かが最も重要なこ
とである。そこでこの実施例は、得られたコピー画像が
正常か、画像かぶりを生じているか、画像が薄いかを自
動的に検出し、得られたコピーが画像かぶりを生じてい
たり薄い場合には、係る症状を引き起こしている原因、
すなわち故障を突き止め、その故障を自己修復する装置
を例にとって説明する。
In an electrophotographic copying machine, it is of utmost importance whether or not the obtained copy image is beautifully finished (normal). Therefore, this embodiment automatically detects whether the obtained copy image is normal, has image fog, or has a light image, and is applicable when the obtained copy has image fog or is light. The cause of the symptom,
That is, an apparatus will be described as an example for identifying a failure and self-repairing the failure.

【0017】この実施例には、たとえば4つのセンサが
設けられている。すなわち、感光体ドラム1を露光する
光の量(換言すれば、ハロゲンランプ3の光量)を測定
するための光量センサX、露光後の感光体ドラム1の表
面電位を測定する表面電位センサVs、感光体ドラム1
上のトナー濃度を検出するためのトナー濃度センサD
s、および、コピー濃度センサOsである。コピー濃度
センサOsは、この電子写真複写機によって形成された
コピー画像の濃度を検出するためのものである。コピー
濃度センサOsの検出出力Osに基づいて、電子写真複
写機が正常か、故障症状として画像かぶりが生じている
か、画像が薄いかが判別される。
In this embodiment, for example, four sensors are provided. That is, a light amount sensor X for measuring the amount of light for exposing the photosensitive drum 1 (in other words, the amount of light of the halogen lamp 3), a surface potential sensor Vs for measuring the surface potential of the exposed photosensitive drum 1, Photoconductor drum 1
Toner concentration sensor D for detecting the upper toner concentration
s and the copy density sensor Os. The copy density sensor Os is for detecting the density of the copy image formed by this electrophotographic copying machine. Based on the detection output Os of the copy density sensor Os, it is determined whether the electrophotographic copying machine is normal, image fog has occurred as a failure symptom, or the image is light.

【0018】図2は、図1に示す小型の電子写真複写機
の機能ブロック図であり、この発明に関係する部分のみ
が示されている。図2において、角の丸まったブロック
はいわゆるハードウェアによる機能を表わしており、角
の尖ったブロックは、いわゆるソフトウェアによる機能
(コンピュータ内で実行されるプログラム処理)を表わ
している。なお、ハードウェアによる機能およびソフト
ウェアによる機能の区分けは一例であり、ソフトウェア
の機能をハードウェアにより実現するようにしてもよ
い。
FIG. 2 is a functional block diagram of the small-sized electrophotographic copying machine shown in FIG. 1, and shows only the portion related to the present invention. In FIG. 2, a block with rounded corners represents a function by so-called hardware, and a block with a sharp corner represents a function by so-called software (a program process executed in a computer). Note that the division of functions by hardware and functions by software is an example, and the functions of software may be realized by hardware.

【0019】図2の機能ブロックと、図1の機械構成と
の対応関係は、次のとおりである。すなわち、図2のセ
ンサには、図1の光量センサX、表面電位センサVs、
トナー濃度センサDs、およびコピー濃度センサOsが
含まれている。図2のアクチュエータコントローラに
は、図1のメインチャージャコントローラ2C、ハロゲ
ン光量コントローラ3Cおよび転写チャージャコントロ
ーラ5Cが含まれている。図2のアクチュエータには、
図1のメインチャージャ2、ハロゲンランプ3および転
写・分離チャージャ5が含まれている。
The correspondence relationship between the functional blocks of FIG. 2 and the mechanical configuration of FIG. 1 is as follows. That is, the sensor of FIG. 2 includes the light quantity sensor X, the surface potential sensor Vs, and
A toner density sensor Ds and a copy density sensor Os are included. The actuator controller of FIG. 2 includes the main charger controller 2C, the halogen light amount controller 3C and the transfer charger controller 5C of FIG. The actuator of FIG.
The main charger 2, the halogen lamp 3 and the transfer / separation charger 5 of FIG. 1 are included.

【0020】図2において、ソフトウェアによる機能ブ
ロックは、たとえば4つの機能ブロックに区分される。
すなわち、診断/修復推論部11、出力部12、境界標
生成部13、および、疑似故障発生部14である。出力
部12は、たとえば表1および表2に例示する装置の故
障状態を表わす特徴的なパラメータの定性値の組(以下
「定性値の組」という)を定性シミュレーションにより
生成して出力する。ここに定性値の組とは、電子写真複
写機に一時に生じる故障は単一故障であると限定した条
件のもとで、故障が生じたときの装置状態を定性シミュ
レーションし、そのシミュレーション結果のうちの装置
にあり得る状態である。
In FIG. 2, the functional block by software is divided into, for example, four functional blocks.
That is, the diagnosis / repair reasoning unit 11, the output unit 12, the boundary marker generation unit 13, and the pseudo failure generation unit 14. The output unit 12 generates and outputs a set of qualitative values of characteristic parameters (hereinafter, referred to as a “set of qualitative values”) representing the failure states of the devices exemplified in Tables 1 and 2 by qualitative simulation. Here, a set of qualitative values is a qualitative simulation of the device state when a failure occurs under the condition that the failure that occurs at one time in the electrophotographic copying machine is a single failure. This is a possible condition for our device.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】定性値の組の生成は、上述した本願出願人
の先願(特願昭2−252191号)等で説明した定性
シミュレーションを用いて行うことができる。定性シミ
ュレーションの仕方を簡単に説明すると、次のとおりで
ある。この電子写真複写機を、物理的な支点から捉えて
複数個の要素の結合として表現し、各要素の挙動および
属性ならびに各要素間の結合関係をパラメータを用いて
定性的に表わすと、図3に示すパラメータモデルが得ら
れる。なお、この図3に示すパラメータモデルは、コピ
ー濃度パラメータOsに関連するパラメータのみを取り
出した簡略化モデルである。
Generation of a set of qualitative values can be performed using the qualitative simulation described in the above-mentioned applicant's earlier application (Japanese Patent Application No. 2-252191). The method of qualitative simulation is briefly described as follows. This electrophotographic copying machine is expressed as a combination of a plurality of elements by grasping it from a physical fulcrum, and the behavior and attributes of each element and the connection relationship between each element are qualitatively expressed using parameters. The parameter model shown in is obtained. The parameter model shown in FIG. 3 is a simplified model in which only parameters related to the copy density parameter Os are taken out.

【0024】図3に示すパラメータモデルにおいて、H
lはハロゲンランプ3の光量パラメータ、Dは原稿の光
学濃度パラメータ、Xは感光体ドラム1を露光する光量
のパラメータ、βは感光体ドラム1の感度パラメータ、
Vnはメインチャージ後の感光体ドラム1の表面電位パ
ラメータ、Vsは露光後の感光体ドラム1の表面電位パ
ラメータ、Vbは現像バイアスのパラメータ、γ0 はト
ナー感度のパラメータ、Dsはドラム上での画像濃度
(トナー濃度)のパラメータ、Vtは転写電圧のパラメ
ータ、ζは用紙感度のパラメータ、を示している。これ
らパラメータのうち、D、β、γ0 およびζは変動する
可能性が小さいので固定値とみなすことができる。それ
ゆえ、コピー濃度パラメータOsが変化する原因は、H
l、Vn、Vb、または、Vtのいずれかが変化したこ
とに起因すると推測できる。そしてこれら4つのパラメ
ータHl、Vn、VbまたはVtが変化してOsが変化
するとき、その変化は必ず3つのセンス対象パラメータ
X、VsまたはDs(図3において丸で囲ったもの)を
変化させる(ただし、Vtの変化に起因するときのみ、
X,Vs,Dsはいずれも変化しない)。
In the parametric model shown in FIG. 3, H
l is the light amount parameter of the halogen lamp 3, D is the optical density parameter of the document, X is the light amount parameter for exposing the photosensitive drum 1, and β is the sensitivity parameter of the photosensitive drum 1.
Vn is a surface potential parameter of the photosensitive drum 1 after main charging, Vs is a surface potential parameter of the photosensitive drum 1 after exposure, Vb is a developing bias parameter, γ 0 is a toner sensitivity parameter, and Ds is a drum sensitivity parameter. An image density (toner density) parameter, Vt is a transfer voltage parameter, and ζ is a paper sensitivity parameter. Among these parameters, D, β, γ 0, and ζ are unlikely to change, and can be regarded as fixed values. Therefore, the reason why the copy density parameter Os changes is H
It can be inferred that this is due to a change in any one of l, Vn, Vb, and Vt. When these four parameters Hl, Vn, Vb or Vt change and Os changes, the change inevitably changes the three sense target parameters X, Vs or Ds (circled in FIG. 3) ( However, only when it is caused by the change in Vt,
X, Vs, and Ds do not change).

【0025】定性値の組を生成するための定性シミュレ
ーションは、上述したように、電子写真複写機に一時に
生じる故障は単一故障であるとの前提にたっている。そ
れゆえ、Hl(ハロゲンランプ)不良の場合、Vn(メ
インチャージャ)不良の場合、Vb(現像バイアス)不
良の場合、および、Vt(転写チャージャ)不良の場合
のそれぞれにつき、センス対象パラメータX,Vs,D
sの状態が異なる。そこで、この状態が推論されて、定
性値の組として出力される。
The qualitative simulation for generating the set of qualitative values is based on the assumption that the electrophotographic copying machine has a single failure at one time, as described above. Therefore, the sense target parameters X and Vs are determined for each of the Hl (halogen lamp) failure, the Vn (main charger) failure, the Vb (development bias) failure, and the Vt (transfer charger) failure. , D
The state of s is different. Therefore, this state is inferred and output as a set of qualitative values.

【0026】次に、定性値の組の生成の仕方の具体例に
ついて、図3のパラメータモデルを用いて説明する。コ
ピー濃度が異常になり、Osがハイ(+)になったとす
る。Os:ハイ(+)の原因がHl:ロー(−)なら
ば、Xはロー(−)となる。また、Os:ハイ(+)の
原因がVn、VbまたはVtの変化に起因するならば、
Xは正常(N)である。なぜならば、定性値の組の生成
は、電子写真複写機に一時に生じる故障は単一故障であ
るとの前提に立っているからである。よって、Os:ハ
イ(+)では、Xは正常(N)またはハイ(+)でなけ
ればならず、ロー(−)はあり得ない。
Next, a specific example of how to generate a set of qualitative values will be described using the parameter model of FIG. It is assumed that the copy density becomes abnormal and Os becomes high (+). If the cause of Os: high (+) is Hl: low (-), X becomes low (-). If the cause of Os: high (+) is due to the change of Vn, Vb, or Vt,
X is normal (N). This is because the generation of a set of qualitative values is based on the premise that a failure that occurs at one time in the electrophotographic copying machine is a single failure. Thus, for Os: high (+), X must be normal (N) or high (+) and cannot be low (-).

【0027】一方、Os:ハイ(+)の根本原因がHl
ならば、Hl:ロー(−)でなければならず、Hlの変
化はパラメータモデル上でX,VsおよびDsに影響を
及ぼすはずである。なぜならば、影響を及ばさない程度
のHlの変化であれば、その結果としてOsも変化しな
いからである。よって、Hlが故障症状を引き起こす根
本原因、つまり故障ならば、X、Vs、および、Ds
は、正常(N)にはなり得ない。
On the other hand, the root cause of Os: high (+) is Hl.
If so, Hl: low (-), and changes in Hl should affect X, Vs, and Ds on the parametric model. This is because if Hl is changed to such an extent that it has no influence, Os will not change as a result. Therefore, if Hl is the root cause that causes the failure symptom, that is, if it is a failure, X, Vs, and Ds
Cannot be normal (N).

【0028】このように、定性値の組は、コピー濃度パ
ラメータOsが異常を示す場合、その原因は必ず単一
パラメータの変化に起因すると限定し、かつ、パラメ
ータ変化はセンス対象パラメータ(図3において丸で囲
ったパラメータ)に必ず影響を与えている、と仮定して
生成される。かかる,の条件下で定性値の組を生成
すると、装置に実際に生じ得るもののみを定性値の組と
して得られる。
In this way, the set of qualitative values limits the cause when the copy density parameter Os shows an abnormality to the change of a single parameter, and the parameter change is limited to the sense target parameter (in FIG. 3). It is generated assuming that the parameter (encircled) is always affected. When a set of qualitative values is generated under such conditions, only those that can actually occur in the device are obtained as the set of qualitative values.

【0029】定性値の組の具体例は表1,表2の通りで
ある。表1は、この電子写真複写機に故障症状「画像か
ぶり」が生じたときの4つの定性値の組を示している。
表1は、次のようにして求められたものである。電子写
真複写機でコピーされた画像に画像かぶりが生じている
場合、図3のパラメータモデルから、その原因として、
Hl(ハロゲンランプ)不良、Vn(メインチャージ
ャ)不良、Vb(現像バイアス)不良、または、Vt
(転写チャージャ)不良、が推測できる。
Specific examples of qualitative value sets are shown in Tables 1 and 2. Table 1 shows a set of four qualitative values when the failure symptom "image fog" occurs in this electrophotographic copying machine.
Table 1 is obtained as follows. When image fogging occurs in the image copied by the electrophotographic copying machine, from the parameter model of FIG.
Hl (halogen lamp) failure, Vn (main charger) failure, Vb (development bias) failure, or Vt
(Transfer charger) Defective can be inferred.

【0030】この場合において、上記の故障は単一故
障に限ること、および、Hlの変化が必ず他のパラメ
ータにも影響を及ぼす、という2つの条件に当てはめる
と、画像かぶりの原因がHl不良の場合には、パラメー
タXはロー(−)、パラメータVsはハイ(+)、パラ
メータDsはハイ(+)になるはずであり、これ以外の
状態はとらない。
In this case, if the above-mentioned failure is limited to a single failure, and if the change in Hl necessarily affects other parameters as well, then the cause of image fogging is the failure of Hl. In this case, the parameter X should be low (-), the parameter Vs should be high (+), and the parameter Ds should be high (+), and no other state is taken.

【0031】また、画像かぶりの原因がVn不良の場合
は、パラメータXは正常(N)、パラメータVsはハイ
(+)、パラメータDsはハイ(+)となるはずであ
り、これ以外の状態はとらない。また、画像かぶりの原
因が、Vb不良の場合は、パラメータXは正常(N)、
パラメータVsは正常(N)、パラメータDsはハイ
(+)となるはずであり、これ以外の状態はとらない。
If the cause of the image fog is Vn defect, the parameter X should be normal (N), the parameter Vs should be high (+), and the parameter Ds should be high (+). I will not take it. When the cause of image fogging is Vb defect, the parameter X is normal (N),
The parameter Vs should be normal (N) and the parameter Ds should be high (+), and no other state is taken.

【0032】また、画像かぶりの原因が、Vt不良の場
合、パラメータXは正常(N)、パラメータVsは正常
(N)、パラメータDsは正常(N)となるはずであ
り、これ以外の状態はとらない。なお、表1における各
パラメータ状態に付加された「1.0」の数値は、後述
するファジイ理論のメンバーシップ関数における度合い
を示している。このファジイ理論のメンバーシップ関数
を導入したことの利点等については後述する。
If the cause of the image fog is Vt defect, the parameter X should be normal (N), the parameter Vs should be normal (N), and the parameter Ds should be normal (N). I will not take it. The numerical value of "1.0" added to each parameter state in Table 1 indicates the degree in the membership function of the fuzzy theory described later. The advantages of introducing the membership function of this fuzzy theory will be described later.

【0033】同様に、この電子写真複写機で得られるコ
ピーの濃度が薄い場合、その原因は、図3のパラメータ
モデルにより、Hl(ハロゲンランプ)不良、Vn(メ
インチャージャ)不良、Vb(現像バイアス)不良、ま
たは、Vt(転写チャージャ)不良が推測され、各不良
が生じたときのセンス対象パラメータX,VsおよびD
sの状態は表2に示すとおりとなる。
Similarly, when the density of the copy obtained by this electrophotographic copying machine is low, the causes are Hl (halogen lamp) failure, Vn (main charger) failure, Vb (development bias) according to the parameter model of FIG. ) Defects or Vt (transfer charger) defects are estimated, and sense target parameters X, Vs, and D when the respective defects occur
The state of s is as shown in Table 2.

【0034】上記表1や表2に例示した定性値の組が、
出力部12において必要に応じて定性シミュレーション
により求められる。定性値の組には、また、各故障症状
における故障ごとに、推論された修復方法が含まれてい
てもよい。たとえば、故障症状「画像かぶり」の故障
「Hl不良」に対しては、次の表3のような修復方法を
含ませることができる。この修復方法も、定性シミュレ
ーションにより求められる。
The set of qualitative values shown in Tables 1 and 2 above are
It is obtained by the qualitative simulation in the output unit 12 as needed. The set of qualitative values may also include inferred repair methods for each fault in each fault symptom. For example, a repair method as shown in the following Table 3 can be included for the failure "Hl defect" of the failure symptom "image fog". This restoration method is also required by qualitative simulation.

【0035】[0035]

【表3】 [Table 3]

【0036】他の故障に対しても、それぞれ、修復方法
が記憶されていてもよい。次に、図2の境界標生成部1
3には、図4および図5に例示するように、故障症状ご
とに、光量センサX、表面電位センサVsおよびトナー
濃度センサDsの検出値を定性値化する際に用いる境界
標としてのメンバーシップ関数が記憶されている。メン
バーシップ関数は、公知のとおり、ファジイ理論におい
て、或る要素が或る集合に属する度合い(グレード)を
規定する関数である。
The repair method may be stored for each of the other failures. Next, the boundary marker generation unit 1 of FIG.
As shown in FIGS. 4 and 5, 3, a membership as a boundary marker used when qualifying the detection values of the light intensity sensor X, the surface potential sensor Vs, and the toner concentration sensor Ds for each failure symptom. The function is remembered. As is well known, the membership function is a function that defines the degree (grade) of a certain element belonging to a certain set in the fuzzy theory.

【0037】たとえば図4は、故障症状「画像かぶり」
時に用いるX,Vs,Dsのメンバーシップ関数を示し
ている。コピー濃度センサOs(図1参照)の出力に基
づいてこの電子写真複写機から出力されるコピーに画像
かぶりが生じていると診断/修復推論部11(図2参
照)において判別されると、そのときの光量センサX、
表面電位センサVsおよびトナー濃度センサDsの検出
値が、境界標生成部13に記憶された図4に示すメンバ
ーシップ関数に基づいて定性値化される。たとえば、光
量センサXの検出値が定量値で2.2(V)未満では、
パラメータX(−:1.0、N:0.0)に定性値化さ
れる。光量センサXの検出定量値が2.3(V)では、
パラメータX(−:0.7、N:0.3)に定性値化さ
れる。また、光量センサXの検出定量値が2.5(V)
以上では、パラメータX(−:0.0、N:1.0)に
定性値化される。
For example, FIG. 4 shows a failure symptom "image fogging".
The membership functions of X, Vs, and Ds used at times are shown. When the diagnosis / repair reasoning unit 11 (see FIG. 2) determines that image fogging has occurred in the copy output from the electrophotographic copying machine based on the output of the copy density sensor Os (see FIG. 1), Light intensity sensor X,
The detection values of the surface potential sensor Vs and the toner concentration sensor Ds are qualitatively converted into values based on the membership function shown in FIG. For example, if the detection value of the light amount sensor X is a quantitative value less than 2.2 (V),
It is qualitatively converted into a parameter X (-: 1.0, N: 0.0). When the detected quantitative value of the light quantity sensor X is 2.3 (V),
It is qualitatively converted into a parameter X (-: 0.7, N: 0.3). In addition, the quantitative value detected by the light amount sensor X is 2.5 (V).
In the above, the parameter X (-: 0.0, N: 1.0) is converted into a qualitative value.

【0038】表面電位センサVsの検出定量値およびト
ナー濃度センサDsの検出定量値も、同様に、図4に示
すVsのメンバーシップ関数およびDsのメンバーシッ
プ関数を用いて、それぞれ定性値化される。また、画像
濃度が薄いと判別された場合には、光量センサX、表面
電位センサVsおよびトナー濃度センサDsの検出定量
値は、図5に示すX,Vs,Dsのメンバーシップ関数
を用いて、それぞれ定性値化される。
The detected quantitative value of the surface potential sensor Vs and the detected quantitative value of the toner concentration sensor Ds are also qualitatively converted by using the membership function of Vs and the membership function of Ds shown in FIG. 4, respectively. .. When it is determined that the image density is low, the detected quantitative values of the light amount sensor X, the surface potential sensor Vs, and the toner density sensor Ds are determined by using the membership functions of X, Vs, and Ds shown in FIG. Each is qualitatively converted.

【0039】次に、図4または図5に示すメンバーシッ
プ関数の設定の仕方について説明をする。一般に、セン
サの検出定量値を定性値に変換するためには、量空間上
に境界標(ランドマーク)を定義する必要がある。とこ
ろが、修復後の電子写真複写機の正常状態の変化やセン
サの測定精度の限界を考慮すると、境界標を静的なもの
として決定することは容易ではない。もし、境界標を静
的なものとして決定し、その決定に誤りがあれば、この
制御の前提をなすセンサ値の定性値化が正確に行われな
いこととなり、その後の故障診断や故障修復において、
誤診や誤修復が行われる可能性が大きくなる。
Next, a method of setting the membership function shown in FIG. 4 or 5 will be described. Generally, in order to convert the quantitative value detected by the sensor into a qualitative value, it is necessary to define a boundary mark (landmark) on the quantity space. However, considering the change in the normal state of the electrophotographic copying machine after restoration and the limit of the measurement accuracy of the sensor, it is not easy to determine the boundary mark as static. If the boundary mark is determined to be static and there is an error in the determination, the qualitative quantification of the sensor value, which is the premise of this control, will not be performed accurately, and it will not be possible in subsequent failure diagnosis and failure repair. ,
There is a greater risk of misdiagnosis and repair.

【0040】そこでこの実施例では、上述のように、故
障症状ごとに境界標を定義し、かつ、境界標をファジイ
理論のメンバーシップ関数を用いて定義した。故障症状
に応じたメンバーシップ関数を用いてセンサの検出定量
値を定性値化するようにすると、センサの読取誤差や、
使用環境の変化等によるセンサ出力の変動に柔軟にかつ
好適に対処できる。
Therefore, in this embodiment, as described above, the boundary marker is defined for each failure symptom, and the boundary marker is defined by using the membership function of the fuzzy theory. If the detected quantitative value of the sensor is made into a qualitative value by using the membership function according to the failure symptom, the reading error of the sensor,
It is possible to flexibly and suitably cope with a change in sensor output due to a change in the usage environment.

【0041】また、センサの検出定量値を定性値化する
場合に、ファジイ理論のメンバーシップ関数を導入する
と、センサの測定精度や使用環境の変化等に依存する実
測定量値と定性値との対応づけに関する問題に柔軟に対
処することができ、センサ値を定性値化する際に、誤り
を生じにくくできる。なお、この段階では、定性値化さ
れたパラメータは、直ちに定性値の組に当てはめていず
れかの故障を選択するために用いられるわけではない。
後述するように、定性値の組に含まれる複数の故障の1
つを選択するために、所定の計算式に基づいて、パラメ
ータの状態と最も状態の近い定性値の組の故障が求めら
れる。
If a fuzzy theory membership function is introduced when converting the detected quantitative value of the sensor into a qualitative value, the correspondence between the measured quantitative value and the qualitative value, which depends on the measurement accuracy of the sensor and changes in the usage environment, etc. It is possible to flexibly deal with the problem relating to marking, and it is possible to prevent an error from occurring easily when the sensor value is qualitatively converted. At this stage, the qualitativeized parameters are not immediately applied to the set of qualitative values and used to select any failure.
As will be described later, one of a plurality of faults included in the set of qualitative values
In order to select one of them, a failure of a set of qualitative values closest to the state of the parameter is obtained based on a predetermined calculation formula.

【0042】さらに、この実施例では、疑似故障法(Im
itation Fault 法:IF法 )を導入した。IF法は、電
子写真複写機を出荷する前の初期時、故障修復後、また
はマニュアル入力に基づく任意のタイミングで、アクチ
ュエータを操作することにより電子写真複写機に故障を
強制的に引き起し、故障を引き起こす前の正常時および
故障時のセンサ情報を用いて境界標を動的に決定すると
いう方法である。図4および図5に示すメンバーシップ
関数は、このIF法を用いて決定されたものである。I
F法を用いれば、実際の制御対象である電子写真複写機
ごとに、センサの検出定量値を定性値化するために必要
な量空間上の境界標を動的に決定できるから、定性値化
の基礎をなす境界標を装置毎に精度良く定義することが
できる。
Further, in this embodiment, the pseudo fault method (Im
itation Fault method: IF method) was introduced. The IF method forcibly causes a failure in the electrophotographic copying machine by operating the actuator at the initial stage before shipping the electrophotographic copying machine, after repairing the failure, or at any timing based on manual input. This is a method of dynamically determining the boundary mark by using sensor information at the time of normal and before the failure. The membership functions shown in FIGS. 4 and 5 are determined using this IF method. I
If the F method is used, it is possible to dynamically determine the boundary mark on the quantity space necessary for quantifying the detected quantitative value of the sensor for each electrophotographic copying machine that is an actual control target. It is possible to accurately define the boundary mark which forms the basis of each device.

【0043】また、IF法を用いれば、後述するよう
に、装置が初期状態のときに定義した境界標を、故障修
復が完了するごとに修正できるから、装置の経時的変化
や使用環境の変化等に合わせて、量空間上の境界標を常
に最適な値に更新していくことができる。図2に戻っ
て、この電子写真複写機の機能ブロックには、上述した
IF法を実行するための疑似故障発生部14が備えられ
ている。
If the IF method is used, the boundary mark defined when the device is in the initial state can be corrected each time the failure repair is completed, as will be described later, so that the device changes over time and the operating environment changes. It is possible to constantly update the boundary marker on the quantity space to an optimum value in accordance with the above. Returning to FIG. 2, the functional block of this electrophotographic copying machine is provided with the pseudo failure generating unit 14 for executing the above-mentioned IF method.

【0044】なおこの実施例では、図4および図5に示
すように、量空間上の境界標は、ファジイ理論のメンバ
ーシップ関数を用いて定義されている。つまり、境界標
がファジイ化されている。境界標をファジイ化すると、
上述のように、センサの読取誤差が生じたり、環境変化
等の外乱により境界標が変化しても、柔軟に対処できる
という利点がある。しかしながら、この発明は、境界標
を定義する場合に、ファジイ理論を用いる構成のみに向
けられているわけではない。たとえば、本願出願人の先
願に係る特願昭2−252191号に記載のセンサ値を
定性値に変換する際に必要な量空間上の境界標の定義に
際し、上述したIF法により境界標を決定する構成も、
この発明は対象としている。なぜならば、IF法は、そ
れ自体で、つまり境界標をファジイ化しなくても、境界
標を動的に決定することができ、最適な境界標を得られ
るからである。
In this embodiment, as shown in FIGS. 4 and 5, the boundary mark on the quantity space is defined by using the membership function of the fuzzy theory. That is, the boundary mark is fuzzy. If you make the boundary mark fuzzy,
As described above, there is an advantage that even if the reading error of the sensor occurs or the boundary mark changes due to disturbance such as environmental change, it can be flexibly dealt with. However, the present invention is not only directed to configurations that use fuzzy theory when defining boundary markers. For example, in defining the boundary mark on the quantity space required when converting the sensor value to the qualitative value described in Japanese Patent Application No. 2-252191 related to the applicant of the present application, the boundary mark is determined by the above-mentioned IF method. The configuration to decide is also
This invention is the subject. This is because the IF method can determine the boundary marker dynamically by itself, that is, without fuzzyizing the boundary marker, and the optimum boundary marker can be obtained.

【0045】また、IF法により境界標を決定する場合
において、境界標を上述のようにメンバーシップ関数で
定めない場合には、IF法により電子写真複写機に故障
を強制的に引き起こしたときに得られるセンサ情報のみ
に基づいて境界標を決定してもよい。なぜならば、IF
法によれば、電子写真複写機が正常状態から故障状態に
なる臨界点が確認できるから、その臨界点におけるセン
サ情報のみに基づいても、境界標を決定できるからであ
る。
When the boundary mark is determined by the IF method and the boundary mark is not determined by the membership function as described above, when the electrophotographic copying machine is forcibly caused to fail by the IF method. The boundary mark may be determined based only on the obtained sensor information. Because IF
According to the method, since the critical point at which the electrophotographic copying machine changes from the normal state to the failure state can be confirmed, the boundary mark can be determined based on only the sensor information at the critical point.

【0046】図6は、図2に示す診断/修復推論部11
において行われるファジイ定性推論(Fuzzy Qualitativ
e Reasoning : FQR)のアルゴリズムを表わすフロー
チャートである。次に図6の流れに沿って、この電子写
真複写機における故障診断および故障修復処理について
説明をする。制御動作が始まると、診断/修復推論部1
1によってコピー濃度センサOsの検出値が読取られる
(ステップS1)。そして読取られたコピー濃度Osは
予め定められた基準値と比較され、電子写真複写機が故
障しているか否かの判別がされる(ステップS2)。
FIG. 6 shows the diagnosis / repair inference unit 11 shown in FIG.
Fuzzy Qualitativ
e Reasoning: FQR) is a flowchart showing an algorithm. Next, the failure diagnosis and failure repair processing in this electrophotographic copying machine will be described along the flow of FIG. When the control operation starts, the diagnosis / repair reasoning unit 1
The detection value of the copy density sensor Os is read by 1 (step S1). Then, the read copy density Os is compared with a predetermined reference value to determine whether or not the electrophotographic copying machine is out of order (step S2).

【0047】たとえば、基準値として、図7に示す条件
が記憶されているとする。すなわち、検出電圧が2.5
(V)未満では画像が薄い、検出電圧が2.5(V)以
上で2.9(V)未満では正常、検出電圧が2.9
(V)以上では画像かぶりという故障有無判別基準値が
設定されているとする。このとき、コピー濃度センサO
sの検出値が3.1(V)ならば、故障症状「画像かぶ
り」が生じていると判定される(ステップS3)。
For example, assume that the conditions shown in FIG. 7 are stored as reference values. That is, the detection voltage is 2.5
If the voltage is less than (V), the image is light, the detection voltage is 2.5 (V) or more and less than 2.9 (V) is normal, and the detection voltage is 2.9.
Above (V), it is assumed that the failure presence / absence determination reference value called image fogging is set. At this time, the copy density sensor O
If the detected value of s is 3.1 (V), it is determined that the failure symptom "image fog" has occurred (step S3).

【0048】上記ステップS1〜S3の処理は、この実
施例にかかる電子写真複写機が自動的に故障の有無を判
別する機械であるために行われる処理であるが、この処
理は手動によって行ってもよい。手動によりステップS
1〜S3の処理を行う場合、コピー濃度センサOsを設
けなくてよい。手動による処理では、電子写真複写機か
ら出力されるコピーを見て、サービスマン等が、コピー
がたとえば画像かぶりを生じていると判断すればよい。
そしてこの場合、故障症状として画像かぶりが装置へ入
力される。故障症状の入力は、電子写真複写機に通常備
えられているテンキー等によって入力できるようにすれ
ばよい。
The processes of steps S1 to S3 are performed because the electrophotographic copying machine according to this embodiment is a machine that automatically determines the presence or absence of a failure. However, this process is performed manually. Good. Step S manually
When performing the processes of 1 to S3, the copy density sensor Os need not be provided. In the manual process, a serviceman or the like may judge that the copy causes image fogging, for example, by looking at the copy output from the electrophotographic copying machine.
In this case, the image fog is input to the apparatus as a failure symptom. The failure symptom may be input by using a numeric keypad or the like which is usually provided in the electrophotographic copying machine.

【0049】ステップS3において、故障症状「画像か
ぶり」が判別されると、次に、光量センサX、表面電位
センサVsおよびトナー濃度センサDsの検出値が読取
られる(ステップS4)。今、読取られた各センサの検
出値が、X:2.45(V)、Vs:2.5(V)、D
s:1.9(V)であったとする。読取られた各センサ
値は境界標生成部13に記憶された画像かぶり時のメン
バーシップ関数(図4)に当てはめられ、仮の定性値が
決められる(ステップS5)。この具体例では、X:
2.45、Vs:2.5、Ds:1.9が、それぞれ、
図4のメンバーシップ関数に当てはめられ、X:−0.
8、Vs:+0.9、Ds:+0.7、が得られる。
When the failure symptom "image fog" is determined in step S3, the detection values of the light amount sensor X, the surface potential sensor Vs and the toner density sensor Ds are read (step S4). Now, the detected values of each sensor read are X: 2.45 (V), Vs: 2.5 (V), D
It is assumed that s is 1.9 (V). Each read sensor value is applied to the membership function (FIG. 4) at the time of image fog stored in the boundary mark generator 13 to determine a temporary qualitative value (step S5). In this example, X:
2.45, Vs: 2.5, Ds: 1.9,
Fitted to the membership function of FIG. 4, X: -0.
8, Vs: +0.9, Ds: +0.7 are obtained.

【0050】 つまり、(X,Vs,Ds)=(2.45,2.5,1.9) =p(−0.8,+0.9,+0.7) が得られる。なお、センサ検出値の定性値化を、メンバ
ーシップ関数を用いたファジイ定性値化ではなく、特定
の境界標に基づいて行うならば、 (X,Vs,Ds)=(−,+,+) が得られる。
That is, (X, Vs, Ds) = (2.45, 2.5, 1.9) = p (-0.8, +0.9, +0.7) is obtained. If the sensor detection value is qualitatively converted based on a specific boundary marker instead of the fuzzy qualitative quantification using the membership function, (X, Vs, Ds) = (-, +, +) Is obtained.

【0051】次に、表1に示す故障症状「画像かぶり」
の定性値の組が出力部12において求められ、この定性
値の組に列挙された故障と、ステップS5で求められた
仮の定性値との一致度Cが算出される(ステップS
6)。この一致度Cの算出は、次のようにして行われ
る。先ず、故障症状「画像かぶり」の定性値の組に列挙
された故障を、X,Vs,Dsの3次元量空間で表現す
る。この表現は、次式で表わせる。
Next, the failure symptom "image fogging" shown in Table 1
A set of qualitative values of is determined in the output unit 12, and the degree of coincidence C between the failures listed in the set of qualitative values and the tentative qualitative value obtained in step S5 is calculated (step S).
6). The calculation of the degree of coincidence C is performed as follows. First, the failures listed in the set of qualitative values of the failure symptom "image fog" are expressed in a three-dimensional quantity space of X, Vs, and Ds. This expression can be expressed by the following equation.

【0052】 Hl不良:(X,Vs,Ds)=f1(−1.0,+1.0,+1.0) Vn不良:(X,Vs,Ds)=(N1.0,+1.0,+1.0) =f2(−0.0,+1.0,+1.0) Vb不良:(X,Vs,Ds)=(N1.0,N1.0,+1.0) =f3(−0.0,+0.0,+1.0) Vt不良:(X,Vs,Ds)=(N1.0,N1.0,N1.0) =f4(−0.0,+0.0,+0.0) 上述の式を図化すると、図8に示す3次元量空間とな
る。図8において、f1、f2、f3、f4が、それぞ
れ、Hl不良、Vn不良、Vb不良およびVt不良の位
置である。
Hl defect: (X, Vs, Ds) = f1 (-1.0, +1.0, +1.0) Vn defect: (X, Vs, Ds) = (N1.0, +1.0, +1) .0) = f2 (−0.0, + 1.0, + 1.0) Vb defect: (X, Vs, Ds) = (N1.0, N1.0, + 1.0) = f3 (−0.0) , +0.0, +1.0) Vt failure: (X, Vs, Ds) = (N1.0, N1.0, N1.0) = f4 (-0.0, +0.0, +0.0) Above When the equation (3) is plotted, the three-dimensional quantity space shown in FIG. 8 is obtained. In FIG. 8, f1, f2, f3, and f4 are the positions of the Hl defect, the Vn defect, the Vb defect, and the Vt defect, respectively.

【0053】また、ステップS5で求められた仮の定性
値p(−0.8,+0.9,+0.7)は、図8の3次
元量空間において、pに位置する。そこで次に、点pか
ら定性値の組に列挙された各故障の位置f1,f2,f
3,f4までの距離Dを計算すると、次のとおりとな
る。 D(f1)=√{(0.8−1.0)2 + (0.9 −1.0)2 + (0.7 −1.0)2 }= 0.374 D(f2)=√{(0.8−0.0)2 + (0.9 −1.0)2 + (0.7 −1.0)2 }= 0.86 D(f3)=√{(0.8−0.0)2 + (0.9 −0.0)2 + (0.7 −1.0)2 }= 1.241 D(f4)=√{(0.8−0.0)2 + (0.9 −0.0)2 + (0.7 −0.0)2 }= 1.393 そして、上述の式で計算された距離Dが正規化され、一
致度Cが算出される。距離Dの正規化は、次の式に基づ
いてなされる。
Further, the temporary qualitative value p (-0.8, +0.9, +0.7) obtained in step S5 is located at p in the three-dimensional quantity space of FIG. Therefore, next, from the point p, the positions f1, f2, f of each fault listed in the set of qualitative values
The distance D to 3 and f4 is calculated as follows. D (f1) = √ {( 0.8-1.0) 2 + (0.9 -1.0) 2 + (0.7 -1.0) 2} = 0.374 D (f2) = √ {(0.8-0.0) 2 + (0.9 -1.0) 2 + (0.7-1.0) 2 } = 0.86 D (f3) = √ {(0.8-0.0) 2 + (0.9 -0.0) 2 + (0.7 -1.0) 2 } = 1.241 D (f4) = √ {(0.8- 0.0) 2 + (0.9 -0.0) 2 + (0.7 -0.0) 2} = 1.393 Then, the distance D calculated in the above equation is normalized matching score C is calculated. The normalization of the distance D is performed based on the following formula.

【0054】C=1−D/√n (ただし、nはセンスパラメータの数:この場合n=
3) したがって、各一致度Cは、 C(f1)=1−0.374/√3=0.784 C(f2)=1−0.86/√3=0.503 C(f3)=1−1.241/√3=0.284 C(f4)=1−1.393/√3=0.196 となる。この結果、点pからの距離Dの最も近いf1、
すなわち一致度Cの最も大きなf1(Hl不良)が、故
障候補として決定される(ステップS7)。
C = 1-D / √n (where n is the number of sense parameters: in this case, n =
3) Therefore, each matching degree C is C (f1) = 1-0.374 / √3 = 0.784 C (f2) = 1-0.86 / √3 = 0.503 C (f3) = 1 −1.241 / √3 = 0.284 C (f4) = 1−1.393 / √3 = 0.196. As a result, f1, which is the closest to the distance D from the point p,
That is, f1 (H1 defect) having the highest degree of coincidence C is determined as a failure candidate (step S7).

【0055】なお、上述した一致度Cを算出する計算式
は、次の一般式で表わせる。 C=1−√{C(p1)2 +C(p2)2 +…+C(pn)2 }/√n C(pn)=Gm(qn)−Gs(qn) (但し、C:モデル全体の一致度、pn:測定可能な変
数、C(pn):変数pnに対する一致度、qn:変数
pnが取り得る定性値、Gm(qn):故障モデルにお
ける定性値qnのグレード、Gs(qn):測定値にお
ける定性値qnのグレード) なお、ファジイ定性値化でなく、特定の境界標に基づく
通常の定性値化を行う場合は、ステップS6の一致度C
の算出は省略され、 (X,Vs,Ds)=(−,+,+) から直ちに故障がHl不良と決定される。
The formula for calculating the degree of coincidence C can be expressed by the following general formula. C = 1−√ {C (p1) 2 + C (p2) 2 + ... + C (pn) 2 } / √n C (pn) = Gm (qn) -Gs (qn) (where C: coincidence of the entire model Degree, pn: measurable variable, C (pn): degree of agreement with variable pn, qn: qualitative value that variable pn can take, Gm (qn): grade of qualitative value qn in failure model, Gs (qn): measurement (Grade of qualitative value qn in the value) When performing normal qualitative quantification based on a specific boundary marker instead of fuzzy qualitative quantification, the degree of coincidence C in step S6
Is omitted, and the failure is immediately determined to be the Hl failure from (X, Vs, Ds) = (-, +, +).

【0056】ステップS7において、故障がHl不良と
決定されたので、出力部12に記憶されている故障症状
「画像かぶり」の故障「Hl不良」に対応した修復方法
(表3に示す方法)が、その優先度に従って実行され
る。優先度順に修復方法を行うために、ステップS8で
はカウンタxがクリアされ、ステップS9でカウンタx
がx=1にされる。次いで、カウンタxの値が記憶され
ている修復方法の登録個数を越えていないことが確認さ
れると(ステップS10)、記憶されている修復方法の
うち、カウンタxの値の優先度(たとえば、最初の修復
が行われる場合は、優先度No.1のHl:UP(ハロ
ゲンランプ光量を上昇する))の修復が行われる(ステ
ップS11)。
In step S7, since the failure is determined to be the H1 failure, the repair method (method shown in Table 3) corresponding to the failure "H1 failure" of the failure symptom "image fog" stored in the output unit 12 is determined. , According to their priority. In order to perform the restoration method in order of priority, the counter x is cleared in step S8, and the counter x is cleared in step S9.
Is set to x = 1. Next, when it is confirmed that the value of the counter x does not exceed the registered number of stored repair methods (step S10), the priority of the value of the counter x of the stored repair methods (for example, When the first restoration is performed, the restoration of Hl: UP (increasing the halogen lamp light amount) having the priority No. 1 is performed (step S11).

【0057】そして、この修復が成功したか否かの判別
がされる(ステップS12)。修復が成功したか否か
は、修復後に、コピーが行われ、その結果出力されるコ
ピーの濃度がコピー濃度センサOsで読取られることに
よりなされる。修復が成功しなかった場合、ステップS
9に戻り、カウンタxのカウント値を1インクリメント
して、次の優先度の修復が行われる。たとえば優先度N
o.2の修復であるVn:DOWN(メインチャージャ
電圧を下げる)が行われる。もし、次の優先度の修復が
登録されていない場合は、その時点で処理は終わる。
Then, it is judged whether or not this repair is successful (step S12). Whether or not the restoration is successful is made by performing copying after the restoration and reading the density of the copy output as a result by the copy density sensor Os. If the repair was unsuccessful, step S
Returning to 9, the count value of the counter x is incremented by 1, and the restoration of the next priority is performed. For example, the priority N
o. Vn: DOWN (reducing the main charger voltage), which is the second restoration, is performed. If the restoration of the next priority is not registered, the processing ends at that point.

【0058】ステップS12において、修復が成功した
と判別されると、ステップS13に進み、IF法が実行
され、処理が終わる。上述のステップS13で行われる
IF法の処理内容を、図9に示す。次に、図9を参照し
てIF法について詳述する。故障修復に成功すると、診
断/修復推論部11によって、光量センサX、表面電位
センサVsおよびトナー濃度センサDsの検出値が読取
られる(ステップS21)。このとき読取られた各セン
サの検出値は、たとえば、X:2.9(V)、Vs:
1.6(V)、Ds:1.4(V)であったとする。
When it is determined in step S12 that the repair is successful, the process proceeds to step S13, the IF method is executed, and the process ends. FIG. 9 shows the processing content of the IF method performed in step S13 described above. Next, the IF method will be described in detail with reference to FIG. When the failure repair is successful, the diagnostic / repair inference unit 11 reads the detection values of the light amount sensor X, the surface potential sensor Vs, and the toner concentration sensor Ds (step S21). The detection value of each sensor read at this time is, for example, X: 2.9 (V), Vs:
It is assumed that they are 1.6 (V) and Ds: 1.4 (V).

【0059】次いで、疑似故障発生部14(図2参照)
により、ハロゲン光量コントローラ3Cが操作され、ハ
ロゲンランプ3の光量が下げられる(ステップS2
2)。そして、ハロゲンランプ3の光量を微小量ずつ下
げるごとに、電子写真複写機にコピー動作をさせ、その
とき得られるコピーの濃度がコピー濃度センサOsで検
出され、その検出値が読取られる(ステップS23)。
コピー濃度センサOsの検出値は、上述した図7の故障
有無判別基準値に照らされ、Osの値が画像かぶりが発
生する基準値に達したとき、ハロゲンランプ3の光量を
下降する処理は中止される(ステップS24)。
Next, the pseudo fault generating section 14 (see FIG. 2)
Thus, the halogen light amount controller 3C is operated, and the light amount of the halogen lamp 3 is reduced (step S2).
2). Then, each time the light amount of the halogen lamp 3 is reduced by a small amount, the electrophotographic copying machine is caused to perform a copying operation, the copy density obtained at that time is detected by the copy density sensor Os, and the detected value is read (step S23). ).
The detected value of the copy density sensor Os is compared with the reference value for determining the presence / absence of failure in FIG. 7, and when the value of Os reaches the reference value at which image fog occurs, the process of lowering the light amount of the halogen lamp 3 is stopped. (Step S24).

【0060】そして、画像かぶりが発生するまでハロゲ
ンランプ3の光量を下げたときの光量センサX、表面電
位センサVsおよびトナー濃度センサDsの検出値が読
取られる(ステップS25)。読取られた検出値は、た
とえばX:2.6(V)、Vs:2.5(V)、Ds:
1.8(V)であったとする。ステップS21で読取ら
れた故障修復後のX,Vs,Dsの検出値およびステッ
プS25で読取られた画像かぶりが発生した時点での
X,Vs,Dsの検出値は、境界標生成部13へ与えら
れ、画像かぶり時のメンバーシップ関数が生成される。
つまり、ステップS21で検出された値が正常時の境界
標、ステップS25で読取られた値が画像かぶり発生開
始時の境界標とされ、図4に示す画像かぶり時のメンバ
ーシップ関数は、図10に示すメンバーシップ関数に修
復される。
Then, the detection values of the light quantity sensor X, the surface potential sensor Vs and the toner density sensor Ds when the light quantity of the halogen lamp 3 is lowered until the image fog occurs are read (step S25). The read detection values are, for example, X: 2.6 (V), Vs: 2.5 (V), Ds:
It is assumed to be 1.8 (V). The detected values of X, Vs, Ds after the failure read in step S21 and the detected values of X, Vs, Ds at the time when the image fog occurred in step S25 are given to the boundary mark generator 13. Then, the membership function at the time of fogging the image is generated.
That is, the value detected in step S21 is used as the boundary marker at the normal time, and the value read in step S25 is used as the boundary marker at the start of image fog generation. The membership function at the time of image fog shown in FIG. It is restored to the membership function shown in.

【0061】次いで、疑似故障発生部14により、ハロ
ゲン光量コントローラ3Cが操作され、ハロゲンランプ
3の光量が上昇される(ステップS26)。そして、ハ
ロゲンランプ3の光量を微小量ずつ上昇させるごとに、
電子写真複写機にコピーを行わせ、そのとき得られるコ
ピー濃度がコピー濃度センサOsで検出され、その値が
読取られる(ステップS27)。
Next, the pseudo failure generating section 14 operates the halogen light amount controller 3C to increase the light amount of the halogen lamp 3 (step S26). Then, each time the light quantity of the halogen lamp 3 is increased by a small amount,
The electrophotographic copying machine is made to copy, the copy density obtained at that time is detected by the copy density sensor Os, and the value is read (step S27).

【0062】そして、コピー濃度センサOsの読取値
が、図7の故障有無判別基準値に照らされ、画像が薄い
コピーに達したとき(ステップS28)、そのときの光
量センサX、表面電位センサVsおよびトナー濃度セン
サDsの検出値が読取られる(ステップS29)。この
読取値は、たとえばX:3.5(V)、Vs:0.6
(V)、Ds:0.5(V)であったとする。
Then, when the read value of the copy density sensor Os is illuminated by the reference value for determining the presence / absence of failure in FIG. 7 and the image reaches a light copy (step S28), the light quantity sensor X and the surface potential sensor Vs at that time are detected. And the detection value of the toner density sensor Ds is read (step S29). This read value is, for example, X: 3.5 (V), Vs: 0.6.
(V) and Ds: 0.5 (V).

【0063】この読取られた値は境界標生成部13へ送
られる。境界標生成部13では、ステップS21で読取
られた正常時のセンサ値と、ステップS29で読取られ
た低濃度画像生成時のセンサ値とを、それぞれ境界標と
して、濃度低下時のメンバーシップ関数の生成が行われ
る。その結果、図5に示す濃度低下時のメンバーシップ
関数は、図11に示すものに修復される。
The read value is sent to the boundary mark generator 13. In the boundary mark generating unit 13, the normal sensor value read in step S21 and the sensor value in low density image generation read in step S29 are used as boundary marks for the membership function at the time of density decrease. Generation is done. As a result, the membership function at the time of concentration decrease shown in FIG. 5 is restored to that shown in FIG.

【0064】以上のIF法の説明では、境界標としての
メンバーシップ関数を修復する場合を例にとって説明し
たが、定性量空間に定義される境界標は、メンバーシッ
プ関数ではなく、特定の値であってもよい。その場合、
IF法を用いれば、特定の境界標は、次のように修正さ
れる。たとえば、装置修復前の定性量空間に定義された
境界標を、図12に示すものとする。図12において
は、光量センサXの検出定量値が2.5(V)未満では
ロー(−)、2.5(V)以上で3.5(V)未満では
正常(N)、3.5(V)以上ではハイ(+)に定性値
化されることを意味している。同様に、この境界標によ
れば、表面電位センサVsの検出定量値が0.5(V)
未満ではロー(−)、0.5(V)以上でかつ2.7
(V)未満では正常(N)、2.7(V)以上ではハイ
(+)に定性値化される。また、トナー濃度センサDs
の検出定量値は、0.5(V)未満ではロー(−)、
0.5(V)以上でかつ2.1(V)未満では正常
(N)、2.1(V)以上ではハイ(+)に定性値化さ
れる。
In the above description of the IF method, the case where the membership function as a boundary marker is restored has been described as an example, but the boundary marker defined in the qualitative space is not a membership function but a specific value. It may be. In that case,
Using the IF method, a particular boundary marker is modified as follows. For example, it is assumed that the boundary mark defined in the qualitative quantity space before device repair is shown in FIG. In FIG. 12, when the detected quantitative value of the light amount sensor X is less than 2.5 (V), it is low (−), and when it is 2.5 (V) or more and less than 3.5 (V), it is normal (N), 3.5. Above (V), it means that the value is qualitatively set to high (+). Similarly, according to this boundary marker, the detected quantitative value of the surface potential sensor Vs is 0.5 (V).
Is less than, low (-), 0.5 (V) or more and 2.7.
If it is less than (V), it is normal (N), and if it is 2.7 (V) or more, it is qualitatively converted to high (+). Also, the toner concentration sensor Ds
The detected quantitative value of is low (-) below 0.5 (V),
If it is 0.5 (V) or more and less than 2.1 (V), it is qualitatively set to normal (N), and if it is 2.1 (V) or more, it is qualitatively set to high (+).

【0065】画像形成装置のセンサ検出値を定性値化す
るための境界標が、図12に示すものである場合におい
て、上述した図9に示すIF法が実行されると、図12
に示す境界標は、図13に示す境界標に修正される。図
13において、たとえば光量センサXの境界標を例にと
れば、2.9(V)は、図9のステップS21において
読取られた故障修復後の光量センサXの読取値である。
一方、2.6(V)は、図9のステップS25において
読取られた光量センサXの読取値である。つまり、IF
法により強制的にこの電子写真複写機に画像かぶりを発
生させたときの画像かぶり発生開始時の光量センサXの
読取値である。また、3.2(V)は、図9のステップ
S29で読取られた光量センサXの読取値である。つま
り、修復後の電子写真複写機にIF法により強制的に画
像濃度低下という故障症状を発現させたとき、その故障
症状が発現開始するときの光量センサXの読取値であ
る。
When the boundary mark for qualifying the sensor detection value of the image forming apparatus is as shown in FIG. 12, when the IF method shown in FIG.
The boundary mark shown in is corrected to the boundary mark shown in FIG. In FIG. 13, for example, taking the boundary mark of the light amount sensor X as an example, 2.9 (V) is the read value of the light amount sensor X after the failure repair read in step S21 of FIG.
On the other hand, 2.6 (V) is the read value of the light amount sensor X read in step S25 of FIG. That is, IF
This is the read value of the light amount sensor X at the start of image fogging when image fogging is forcibly generated in this electrophotographic copying machine by the method. Further, 3.2 (V) is the read value of the light amount sensor X read in step S29 of FIG. In other words, it is the read value of the light amount sensor X when the failure symptom of image density reduction is forcibly caused by the IF method in the repaired electrophotographic copying machine and the failure symptom starts to appear.

【0066】それゆえ、図13に示すIF法により修正
した後の境界標は、修復した電子写真複写機に合わせて
訂正されていることになる。よって、境界標をたとえメ
ンバーシップ関数を用いて定義しなくても、装置の故障
が修復されるごとに、境界標は動的に修正され、修復さ
れた装置に適合されているわけである。なお、図13に
おける表面電位センサVsおよびトナー濃度センサDs
についても同様である。
Therefore, the boundary mark after being corrected by the IF method shown in FIG. 13 is corrected in accordance with the restored electrophotographic copying machine. Therefore, even if the boundary mark is not defined by using the membership function, the boundary mark is dynamically corrected and adapted to the repaired device each time the failure of the device is repaired. The surface potential sensor Vs and the toner concentration sensor Ds in FIG.
Is also the same.

【0067】上述のIF法は、故障修復に成功した後に
行われる以外、たとえばサービスマン等がマニュアルで
IF法実行信号を入力したことに応答して行われてもよ
い。この発明は、上述した実施例の内容に制限されるこ
となく、請求の範囲に記載の範囲に基づき、種々の変更
が可能である。たとえば、上述の実施例では小型の電子
写真複写機を例にとって説明したが、この発明にかかる
自己診断および自己修復システムは、レーザビームプリ
ンタ、ファクシミリ等の他の画像形成装置に対しても適
用することができる。
The above-described IF method may be performed in response to the manual input of the IF method execution signal by a service person, for example, other than after the failure repair is successful. The present invention is not limited to the contents of the embodiments described above, and various modifications can be made based on the scope of the claims. For example, although the above-described embodiment has been described by taking a small electrophotographic copying machine as an example, the self-diagnosis and self-repair system according to the present invention is also applied to other image forming apparatuses such as a laser beam printer and a facsimile. be able to.

【0068】また、実施例は、電子写真複写機におい
て、得られたコピー画像が美しく仕上がっていない場合
に故障症状が発現したとして、その故障症状の発現の原
因である故障を自己修復する装置の説明に終始してい
る。しかしながら、この発明は、コピー画像が美しく仕
上がっているか否かとは異なる画像形成装置の他の故障
のための自己診断および自己修復に対しても適用するこ
とができる。
Further, in the embodiment, in an electrophotographic copying machine, it is assumed that a failure symptom appears when the obtained copy image is not beautifully finished, and an apparatus for self-repairing the failure which is the cause of the development of the failure symptom. I have been explaining all the time. However, the present invention can also be applied to self-diagnosis and self-repair for other malfunctions of the image forming apparatus that differ from whether or not the copy image is beautifully finished.

【0069】その他、種々の変更が可能である。Other various changes are possible.

【0070】[0070]

【発明の効果】この発明によれば、センサ検出値を定性
値化する際にその基礎をなす境界標を、装置毎に精度良
く定義することができる。しかも、その境界標を所定の
タイミングで更新できるから、センサ検出値の定性値化
が常に正確に行え、誤診断や誤修復のない装置とするこ
とができる。
According to the present invention, it is possible to accurately define, for each device, a boundary mark that serves as a basis for converting a sensor detection value into a qualitative value. Moreover, since the boundary mark can be updated at a predetermined timing, the sensor detection value can always be qualitatively and accurately, and a device without erroneous diagnosis or erroneous repair can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明が適用された小型の電子写真複写機の
機械構成図である。
FIG. 1 is a machine configuration diagram of a small electrophotographic copying machine to which the present invention is applied.

【図2】図1に示す小型の電子写真複写機の機能ブロッ
ク図である。
FIG. 2 is a functional block diagram of the small electrophotographic copying machine shown in FIG.

【図3】図1に示す小型の電子写真複写機の簡略化した
パラメータモデルである。
FIG. 3 is a simplified parameter model of the small electrophotographic copying machine shown in FIG.

【図4】画像かぶり時に用いるX,Vs,Dsのメンバ
ーシップ関数を示す図である。
FIG. 4 is a diagram showing membership functions of X, Vs, and Ds used for image fogging.

【図5】画像濃度低下時に用いるX,Vs,Dsのメン
バーシップ関数を示す図である。
FIG. 5 is a diagram showing membership functions of X, Vs, and Ds used when image density is reduced.

【図6】ファジイ定性推論のアルゴリズムを表わすフロ
ーチャートである。
FIG. 6 is a flowchart showing an algorithm of fuzzy qualitative inference.

【図7】故障有無判別基準値の一例を示す図である。FIG. 7 is a diagram showing an example of a failure presence / absence determination reference value.

【図8】故障症状「画像かぶり」の定性値の組に列挙さ
れた故障を、X,Vs,Dsの3次元量空間で表現した
図である。
FIG. 8 is a diagram in which the failures listed in the set of qualitative values of the failure symptom “image fog” are expressed in a three-dimensional quantity space of X, Vs, and Ds.

【図9】疑似故障法(IF法)の処理内容を表わすフロ
ーチャートである。
FIG. 9 is a flowchart showing the processing contents of a pseudo failure method (IF method).

【図10】IF法により修正された画像かぶり時のメン
バーシップ関数を示す図である。
FIG. 10 is a diagram showing a membership function when an image is fogged and corrected by the IF method.

【図11】IF法により修正された画像濃度低下時のメ
ンバーシップ関数を示す図である。
FIG. 11 is a diagram showing a membership function corrected by the IF method when the image density is reduced.

【図12】IF法により修正される前の境界標(メンバ
ーシップ関数を用いないもの)の一例を示す図である。
FIG. 12 is a diagram showing an example of a boundary mark (which does not use a membership function) before being corrected by the IF method.

【図13】IF法により修正された後の境界標(メンバ
ーシップ関数を用いないもの)の一例を表わす図であ
る。
FIG. 13 is a diagram illustrating an example of a boundary marker (one that does not use a membership function) after being modified by the IF method.

【符号の説明】[Explanation of symbols]

1 感光体ドラム 2 メインチャージャ 3 ハロゲンランプ 4 現像装置 5 転写・分離チャージャ 2C メインチャージャコントローラ 3C ハロゲン光量コントローラ 5C 転写チャージャコントローラ 11 診断/修復推論部 12 出力部 13 境界標生成部 14 疑似故障発生部 X 光量センサ Vs 表面電位センサ Ds トナー濃度センサ Os コピー濃度センサ 1 Photoreceptor Drum 2 Main Charger 3 Halogen Lamp 4 Developing Device 5 Transfer / Separation Charger 2C Main Charger Controller 3C Halogen Light Intensity Controller 5C Transfer Charger Controller 11 Diagnostic / Repair Inference Section 12 Output Section 13 Boundary Mark Generation Section 14 Pseudo-fault Generation Section X Light intensity sensor Vs Surface potential sensor Ds Toner density sensor Os Copy density sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨山 哲男 千葉県千葉市花園町1035 東大宿舎2− 203 (72)発明者 ▲吉▼川 弘之 東京都千代田区四番町8四番町住宅804 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuo Tomiyama 1035 Hanazonocho, Chiba City, Chiba Prefecture 2-203 (2) Inventor ▲ Yoshi ▼ Hiroyuki Kawa 804 Yonbancho, Yonbancho, Chiyoda-ku, Tokyo 804

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】装置に生じている故障を自己診断すること
のできる画像形成装置であって、 装置の故障状態を表わすパラメータの定性値の組を出力
する出力手段と、 装置の予め定める複数の部位の状態を検出するための複
数のセンサと、 各センサに対応して設けられ、各センサの検出値を定性
値に変換する際に必要な定性量空間の境界標が記憶され
た境界標記憶手段と、 所定のタイミングで、装置に故障を強制的に引き起こ
し、少なくとも故障を引き起こしたときに読取った前記
複数のセンサの検出値とを用いて、前記境界標記憶手段
に記憶された境界標を修正する境界標修正手段と、 装置に故障症状が発現したとき、前記複数のセンサの検
出値を読取り、前記境界標記憶手段に記憶された境界標
を用いて、各センサの検出値を定性値に変換する変換手
段と、 前記変換手段で変換された定性値と前記出力手段から出
力される定性値の組とを比較し、発現中の故障症状を引
き起こしている故障を特定するために、定性値と所定の
関係にある定性値の組を選択する選択手段と、を含むこ
とを特徴とする自己診断可能な画像形成装置。
1. An image forming apparatus capable of self-diagnosing a failure occurring in the apparatus, comprising: output means for outputting a set of qualitative values of parameters representing a failure state of the apparatus; A plurality of sensors for detecting the state of the body part, and a boundary marker memory that is provided corresponding to each sensor and stores the boundary marker of the qualitative amount space necessary when converting the detection value of each sensor into a qualitative value. Means and the detection values of the plurality of sensors read at the time of forcibly causing a failure in the device and at least when the failure is caused, the boundary markers stored in the boundary marker storage means are stored. Boundary mark correcting means for correcting and when a failure symptom appears in the device, the detection values of the plurality of sensors are read, and the detection values of the respective sensors are qualitative values by using the boundary marks stored in the boundary mark storing means. Strange Converting means to compare, the qualitative value converted by the converting means and a set of qualitative values output from the output means, in order to identify the fault causing the failure symptom under development, qualitative value and An image forming apparatus capable of self-diagnosis, comprising: selecting means for selecting a set of qualitative values having a predetermined relationship.
【請求項2】請求項1記載の画像形成装置において、 前記境界標生成手段は、故障を引き起こす前に読取った
前記複数のセンサの検出値と、故障を引き起こしたとき
に読取った前記複数のセンサの検出値とを用いて、境界
標を修正することを特徴とするものである。
2. The image forming apparatus according to claim 1, wherein the boundary marker generation unit reads the detection values of the plurality of sensors before the failure and the plurality of sensors read when the failure occurs. The boundary mark is corrected by using the detected value of.
【請求項3】請求項1または2記載の画像形成装置は、
さらに、 前記選択手段で選択された定性値の組に設定されている
故障を修復するように作動する故障修復手段を含むこと
を特徴とするものである。
3. The image forming apparatus according to claim 1 or 2,
Further, it is characterized in that it includes a fault repairing unit which operates to repair the fault set in the set of qualitative values selected by the selecting unit.
【請求項4】請求項3記載の画像形成装置において、 前記境界標修正手段が境界標を修正するために、装置に
故障を強制的に引き起こすタイミングは、前記故障修復
手段により故障修復が完了される度であることを特徴と
するものである。
4. The image forming apparatus according to claim 3, wherein the failure repair means completes the failure repair at a timing at which the boundary repair means corrects the boundary target and thus causes a failure in the apparatus. It is characterized by the fact that it is
【請求項5】請求項3記載の画像形成装置において、 前記境界標修正手段が境界標を修正するために、装置に
故障を強制的に引き起こすタイミングは、マニュアル操
作等により修正要求信号が入力されたときであることを
特徴とするものである。
5. The image forming apparatus according to claim 3, wherein the correction target signal is input by a manual operation or the like at the timing at which the boundary mark correcting means forcibly causes a failure in the device in order to correct the boundary mark. The feature is that it is the time.
JP4066444A 1992-03-24 1992-03-24 Self-diagnosable image forming device Expired - Lifetime JP2793423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4066444A JP2793423B2 (en) 1992-03-24 1992-03-24 Self-diagnosable image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4066444A JP2793423B2 (en) 1992-03-24 1992-03-24 Self-diagnosable image forming device

Publications (2)

Publication Number Publication Date
JPH05273810A true JPH05273810A (en) 1993-10-22
JP2793423B2 JP2793423B2 (en) 1998-09-03

Family

ID=13315955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4066444A Expired - Lifetime JP2793423B2 (en) 1992-03-24 1992-03-24 Self-diagnosable image forming device

Country Status (1)

Country Link
JP (1) JP2793423B2 (en)

Also Published As

Publication number Publication date
JP2793423B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP2706399B2 (en) Control device for image forming device
JP2534387B2 (en) Self-diagnosis system for image forming apparatus
JP2793424B2 (en) Self-diagnosable image forming device
JP2793419B2 (en) Self-diagnosable image forming device
JP2793420B2 (en) Self-diagnosable image forming device
JPH06124012A (en) Image forming device provided with self-repairing function
JP2793423B2 (en) Self-diagnosable image forming device
JP2793422B2 (en) Self-diagnosable image forming device
JP2793421B2 (en) Self-diagnosable image forming device
JP2534385B2 (en) Self-diagnosis and self-healing system for image forming apparatus
JP2534384B2 (en) Self-diagnosis system for image forming apparatus
JP2534386B2 (en) Self-diagnosis and self-healing system for image forming apparatus
JP2534389B2 (en) Self-diagnosis and self-healing system for image forming apparatus
JP2534388B2 (en) Self-diagnosis and self-healing system for image forming apparatus
JP2534390B2 (en) Self-diagnosis and self-healing system for image forming apparatus
JP2579048B2 (en) Self-diagnosis and repair system for image forming equipment
JP2534393B2 (en) Self-diagnosis and self-healing system for image forming apparatus
JP2534395B2 (en) Self-diagnosis and self-healing system for image forming apparatus
JPH06124021A (en) Image forming device provided with self-repairing function
JP2534396B2 (en) Self-diagnosis and self-healing system for image forming apparatus
JPH06124014A (en) Image forming device provided with self-repairing function
JP2534394B2 (en) Self-diagnosis and self-healing system for image forming apparatus
JPH06124015A (en) Image forming device provided with self-repairing function
JPH06124018A (en) Image forming device provided with self-repairing function
JPH06124013A (en) Image forming device provided with self-repairing function