JPH05273224A - Measuring apparatus for flow velocity - Google Patents

Measuring apparatus for flow velocity

Info

Publication number
JPH05273224A
JPH05273224A JP6553292A JP6553292A JPH05273224A JP H05273224 A JPH05273224 A JP H05273224A JP 6553292 A JP6553292 A JP 6553292A JP 6553292 A JP6553292 A JP 6553292A JP H05273224 A JPH05273224 A JP H05273224A
Authority
JP
Japan
Prior art keywords
flow velocity
light
fluid
image
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6553292A
Other languages
Japanese (ja)
Inventor
Koji Ogino
浩二 荻野
Koji Obayashi
康二 大林
Norio Ogita
典男 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP6553292A priority Critical patent/JPH05273224A/en
Publication of JPH05273224A publication Critical patent/JPH05273224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and correctly measure the absolute value of the flow velocity irrespective of the concentration of a fluid in a flow velocity measuring apparatus which forms an image of particles in the fluid onto a detecting aperture of a predetermined size and measures the flow velocity of the fluid from several fluctuations of the image of particles passing the aperture. CONSTITUTION:The illuminating light for measuring purpose projected from a non-laser light source 18 which has an amplifying action of light illuminates the ocular fundus Er of a to be inspected eye E via an optical system including a lens 19 and the like. An image of particles in the blood flow of blood vessel of the fundus of the eye formed by the scattered light is focused on a detecting aperture 26 through a lens 17 to a mirror 25. The light of the image of particles passing the aperture is detected by a photomultiplier 27. The frequency of the numerical fluctuation of the image in the detecting aperture is analyzed by a frequency analyzer 28 from the output signals of the photomultiplier 27, and the flow velocity is calculated by a signal processor 29 based on the analyzing result. Since the illuminating light is not a laser light, the measurement is carried out correctly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を用いて流体中の粒
子速度で代表される流体の流速を絶対値測定する流速測
定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity measuring device for measuring an absolute value of a flow velocity of a fluid represented by particle velocity in the fluid by using light.

【0002】[0002]

【従来の技術】従来、光を用いて非侵襲で流体の流速を
測定する方法として、レーザードップラー現象に基づい
た方法、レーザースペックル現象に基づいた方法、及び
検出開口中の粒子像の数揺らぎを利用した方法が提案さ
れている。
2. Description of the Related Art Conventionally, as a method of non-invasively measuring the flow velocity of a fluid by using light, a method based on a laser Doppler phenomenon, a method based on a laser speckle phenomenon, and a number fluctuation of a particle image in a detection aperture are used. A method using is proposed.

【0003】レーザードップラー現象に基づく流速計で
絶対値測定を行う場合、ドップラーシフト量が散乱幾何
に依存するため、散乱幾何を限定しなければならず、高
精度のレーザードップラー流速計を構成する際には散乱
幾何を厳密に限定する必要があり、製造上また実際に使
用する上で難しいことが知られている。
When an absolute value is measured by a velocity meter based on the laser Doppler phenomenon, the amount of Doppler shift depends on the scattering geometry, so the scattering geometry must be limited, and when configuring a highly accurate laser Doppler velocity meter. Is required to be strictly limited to the scattering geometry, which is known to be difficult to manufacture and practically use.

【0004】レーザースペックル現象を利用した方法で
は、原理的に絶対値測定が不可能であり、何らかの校正
が必要となるために、校正に要する時間がかかるという
欠点があった。
The method utilizing the laser speckle phenomenon has a drawback in that the absolute value cannot be measured in principle, and some calibration is required, so that the calibration takes time.

【0005】一方、検出開口中の粒子像の数揺らぎを利
用した方法は、結像関係さえ満足すればよいので、光学
調整が容易な絶対測定可能な方法である。この方法を図
1により説明する。
On the other hand, the method utilizing the number fluctuation of the particle image in the detection aperture is an absolute measurable method in which optical adjustment is easy because it is sufficient to satisfy the imaging relationship. This method will be described with reference to FIG.

【0006】図1において、レーザー光源1より発する
レーザー光を被測定流体が流れる光学的に透明な管2に
照射すると、管2中を流れる流体中の粒子3によってレ
ーザー光は散乱される。その散乱光を絞り4、レンズ5
からなる結像光学系で矩形の検出開口6上に結像する。
即ち、粒子3の像を結像する。そして、検出開口6を横
切る粒子像の光を光電子増倍管7で検出し、その検出信
号により光子相関法に基づく演算処理を行なう。この場
合、検出信号の強度の自己相関関数は、
In FIG. 1, when laser light emitted from a laser light source 1 is applied to an optically transparent tube 2 in which a fluid to be measured flows, the laser light is scattered by particles 3 in the fluid flowing in the tube 2. The scattered light is diaphragm 4, lens 5
An image is formed on the rectangular detection aperture 6 by the image forming optical system.
That is, the image of the particle 3 is formed. Then, the light of the particle image that crosses the detection aperture 6 is detected by the photomultiplier tube 7, and the calculation processing based on the photon correlation method is performed by the detection signal. In this case, the autocorrelation function of the intensity of the detected signal is

【0007】[0007]

【数1】 [Equation 1]

【0008】となる。但し、 M:測定体積/コヒーレントな領域の体積、 N:検出開口中に存在する粒子数、 |g(τ)|2乗:レーザー光が粒子に散乱されるため
に生じる位相揺らぎに起因する強度揺らぎの自己相関関
数、 f(τ):粒子が検出開口を横切るために生じる粒子数
の揺らぎに起因する強度揺らぎの自己相関関数、であ
る。
[0008] Where M: measurement volume / volume of coherent region, N: number of particles existing in detection aperture, | g (τ) | square: intensity due to phase fluctuation caused by scattering of laser light by particles Fluctuation autocorrelation function, f (τ): Autocorrelation function of intensity fluctuation due to fluctuations in the number of particles caused by particles crossing the detection aperture.

【0009】上記(1)式の第2項The second term of the above equation (1)

【0010】[0010]

【数2】 [Equation 2]

【0011】はレーザー光の位相が粒子で散乱されて揺
らぐことによって発生する項で粒子の移動速度に依存す
る。
Is a term generated when the phase of the laser beam is scattered and fluctuated by the particles and depends on the moving speed of the particles.

【0012】また第3項The third term

【0013】[0013]

【数3】 [Equation 3]

【0014】は粒子が測定体積内を通過するために測定
体積内に存在する粒子の数が時間的に変動することによ
って生ずる項でやはり粒子の移動速度に依存する。
Is a term produced by the number of particles present in the measurement volume varying with time as the particles pass through the measurement volume, which is also dependent on the moving speed of the particles.

【0015】第2項には、コヒーレンス度Mの逆数と測
定体積内の粒子数Nの2乗が係数としてかかっており、
第3項には粒子数Nが係数としてかかっている。従っ
て、コヒーレンス度Mが良いほど(小さいほど)、また
粒子数Nが多いほど位相揺らぎの項が支配的になる。位
相揺らぎの項はスペックル現象そのものであるので、位
相揺らぎが支配的になると絶対測定が不可能になる。
The second term is multiplied by the reciprocal of the coherence degree M and the square of the number N of particles in the measurement volume as a coefficient,
The number of particles N is applied to the third term as a coefficient. Therefore, the better (smaller) the coherence degree M and the larger the number N of particles, the more dominant the term of phase fluctuation. Since the term of phase fluctuation is the speckle phenomenon itself, if the phase fluctuation becomes dominant, absolute measurement becomes impossible.

【0016】一方、数揺らぎの項が支配的になると、図
2に示すように開口サイズdの検出開口6上に管2の像
2’が結像して粒子像3’が開口6’を横切った場合に
は、図3に示すような3角形状の強度揺らぎの自己相関
関数が得られる。図3のτ0を測定する事によって、 (粒子速度)=(開口サイズd)/τ0 …(2) なる関係から非常に容易に粒子の速度すなわち流速が測
定できる。
On the other hand, when the term of the number fluctuation becomes dominant, as shown in FIG. 2, the image 2'of the tube 2 is formed on the detection aperture 6 having the aperture size d, and the particle image 3'makes up the aperture 6 '. In the case of crossing, an autocorrelation function of triangular intensity fluctuation as shown in FIG. 3 is obtained. By measuring τ0 in FIG. 3, the particle velocity, that is, the flow velocity can be very easily measured from the relationship of (particle velocity) = (aperture size d) / τ0 (2).

【0017】さらに、数揺らぎを利用するメリットとし
て、位相揺らぎに比べて現象が変化する時間が10倍以
上遅い。そのため、光子相関法で検出する場合には光電
子パルスをカウントするためのサンプリングタイムを1
0倍以上長く設定でき、充分な検出カウント数を得るこ
とが可能になり、光電子統計上の計数揺らぎの影響を押
さえることができ、信号のS/N比向上が容易になる。
従って、位相揺らぎより数揺らぎの現象を利用する方が
有利である。
Further, as a merit of using the number fluctuation, the time for the phenomenon to change is ten times or more as long as the phase fluctuation. Therefore, when detecting by the photon correlation method, the sampling time for counting photoelectron pulses is set to 1
It can be set to be 0 times or more longer, a sufficient number of detection counts can be obtained, the influence of counting fluctuation in photoelectron statistics can be suppressed, and the signal S / N ratio can be easily improved.
Therefore, it is more advantageous to use the phenomenon of the number fluctuation than the phase fluctuation.

【0018】[0018]

【発明が解決しようとする課題】上述のように流速測定
には検出開口中の粒子像の数揺らぎを利用した方法が有
利である。しかし、この方法でレーザー光のようなコヒ
ーレント光を用いて流体を測定する場合、数揺らぎを測
定しようとしても対象流体の濃度(粒子数の密度)によ
っては位相揺らぎの成分の影響が生じ、測定誤差を生じ
る問題点があった。
As described above, the method utilizing the number fluctuation of the particle image in the detection aperture is advantageous for measuring the flow velocity. However, when measuring a fluid using coherent light such as laser light with this method, the effect of the phase fluctuation component occurs depending on the concentration of the target fluid (particle number density), even when trying to measure the number fluctuation. There was a problem that caused an error.

【0019】そこで本発明の課題は、上記粒子像の数揺
らぎを利用して流速を測定する流速測定装置において、
上記の問題点を解消し、流体の濃度に拘らず流速測定を
正確に行なえる構成を提供することにある。
Therefore, an object of the present invention is to provide a flow velocity measuring device for measuring a flow velocity by utilizing the number fluctuation of the particle image,
It is an object of the present invention to solve the above problems and provide a structure capable of accurately measuring a flow velocity regardless of the concentration of a fluid.

【0020】[0020]

【課題を解決するための手段】上記の課題を解決するた
め、本発明によれば、上記粒子像の数揺らぎを利用して
流速を測定する流速測定装置において、測定用の照明光
を発生する非レーザー光源と、前記照明光を被測定流体
に対し導光する光学系と、前記流体で散乱された前記照
明光の散乱光による粒子像を検出開口上に結像する光学
系と、該結像された粒子像の光を検出する光電変換手段
と、該光電変換手段の出力信号により前記粒子像の検出
開口中の数揺らぎの周波数を周波数解析する手段と、該
周波数解析の結果に基づき前記流体の流速を算出する演
算手段を有する構成を採用した。
In order to solve the above-mentioned problems, according to the present invention, an illumination light for measurement is generated in a flow velocity measuring device for measuring the flow velocity by utilizing the number fluctuation of the particle image. A non-laser light source, an optical system that guides the illumination light to a fluid to be measured, an optical system that forms a particle image of the scattered light of the illumination light scattered by the fluid on a detection aperture, and the optical system. Photoelectric conversion means for detecting the light of the image of the particle image, means for frequency-analyzing the frequency of the number fluctuation in the detection aperture of the particle image by the output signal of the photoelectric conversion means, and based on the result of the frequency analysis A structure having a calculation means for calculating the flow velocity of the fluid is adopted.

【0021】[0021]

【作用】このような構成によれば、測定用照明光を非レ
ーザー光とすることにより、測定誤差を生じさせる光の
干渉性に基づく位相揺らぎの成分の影響を排除すること
が可能になり、測定を正確に行なえる。
According to such a configuration, by making the measurement illumination light non-laser light, it is possible to eliminate the influence of the phase fluctuation component based on the coherence of light that causes a measurement error. You can make accurate measurements.

【0022】[0022]

【実施例】以下、図を参照して本発明の実施例を説明す
る。ここでは人の眼の眼底血流の流速を測定する流速測
定装置を示す。
Embodiments of the present invention will be described below with reference to the drawings. Here, a flow velocity measuring device for measuring the flow velocity of the fundus blood flow of the human eye is shown.

【0023】図4は実施例の流速測定装置の概略構成を
示している。図4において、符号8は被検眼Eの眼底E
rを検者が観察するための観察用照明光の光源であるハ
ロゲンランプであり、被検眼Eの角膜に対し共役な面に
配置される。ハロゲンランプ8から放射される光は、レ
ンズ9、絞り10、レンズ11を通過し、色分離ミラー
12で反射されてリングスリット13に結像する。そし
てリングスリット13のリング状の開口を通過した光は
レンズ14、15を通り、穴あきミラー16で反射さ
れ、対物レンズ17によって被検眼Eの角膜近傍Epに
リング状に結像し、被検眼Eの眼底Erを照明する。
FIG. 4 shows a schematic structure of the flow velocity measuring device of the embodiment. In FIG. 4, reference numeral 8 is a fundus E of the eye E to be examined.
It is a halogen lamp which is a light source of observation illumination light for the examiner to observe r, and is arranged on a plane conjugate with the cornea of the eye E to be inspected. The light emitted from the halogen lamp 8 passes through the lens 9, the diaphragm 10 and the lens 11, is reflected by the color separation mirror 12 and forms an image on the ring slit 13. Then, the light passing through the ring-shaped opening of the ring slit 13 passes through the lenses 14 and 15 and is reflected by the perforated mirror 16, and the objective lens 17 forms a ring-shaped image in the vicinity of the cornea Ep of the eye E to be inspected. The fundus Er of E is illuminated.

【0024】一方、符号18は測定用照明光の光源であ
る光増幅作用を有する非レーザー光源であり、同様に角
膜共役面に配置される。この非レーザー光源18として
は、例えば浜松ホトニクス(株)製のスーパールミネッ
セントダイオードL3302(商品名)などを用いるこ
とができる。非レーザー光源18から放射された光はレ
ンズ19、20、21を通って色分離ミラー12よりリ
ングスリット13〜対物レンズ17の照明光学系に導か
れ、同様に被検眼Eの眼底Erを照明する。
On the other hand, reference numeral 18 is a non-laser light source having a light amplification function which is a light source of the illumination light for measurement and is similarly arranged on the corneal conjugate plane. As the non-laser light source 18, for example, a super luminescent diode L3302 (trade name) manufactured by Hamamatsu Photonics KK can be used. The light emitted from the non-laser light source 18 passes through the lenses 19, 20, and 21 and is guided from the color separation mirror 12 to the illumination optical system of the ring slit 13 to the objective lens 17, and similarly illuminates the fundus Er of the eye E to be examined. ..

【0025】色分離ミラー12は、図5に示すように、
測定用光源、即ち非レーザー光源18の発光波長域を透
過し、それ以外の波長帯域を反射する特性を有するもの
とする。
The color separation mirror 12 is, as shown in FIG.
The light source for measurement, that is, the non-laser light source 18, transmits light in the emission wavelength range and reflects the other wavelength bands.

【0026】被検眼Eの眼底Erで散乱される観察用照
明光および測定用照明光の散乱光は、対物レンズ17、
穴あきミラー16の穴およびレンズ22を通って波長分
離ミラー23に達する。
The scattered light of the observation illumination light and the measurement illumination light scattered by the fundus Er of the eye E to be examined is reflected by the objective lens 17,
The wavelength separation mirror 23 is reached through the hole of the perforated mirror 16 and the lens 22.

【0027】波長分離ミラー23は、図6に示すよう
に、測定用光源、即ち非レーザー光源18の発光波長域
を反射し、それ以外の波長帯域(ハロゲンランプ8の発
光波長域を含む)を透過する特性を有するものとする。
As shown in FIG. 6, the wavelength separation mirror 23 reflects the emission wavelength range of the measurement light source, that is, the non-laser light source 18, and the other wavelength bands (including the emission wavelength range of the halogen lamp 8). It shall have the property of transmitting.

【0028】測定用照明光の散乱光は色分離ミラー23
で反射され、レンズ24、ミラー25を介して、眼底共
役面に配置された所定寸法の矩形の検出開口26上に結
像される。即ち血流中の粒子像が結像される。そして検
出開口26を横切る粒子像の光が光電子増倍管27に受
光されて光電変換され、その出力信号が周波数解析器2
8に入力され、粒子像の数揺らぎの周波数解析が行なわ
れ、その解析結果に基づいて信号処理装置29で血流速
度が算出される。
The scattered light of the measuring illumination light is separated by the color separation mirror 23.
And is imaged on a rectangular detection aperture 26 of a predetermined size arranged on the fundus conjugate plane via the lens 24 and the mirror 25. That is, a particle image in the bloodstream is formed. Then, the light of the particle image that crosses the detection opening 26 is received by the photomultiplier tube 27 and photoelectrically converted, and the output signal is output from the frequency analyzer 2.
8, the frequency analysis of the number fluctuation of the particle image is performed, and the blood flow velocity is calculated by the signal processing device 29 based on the analysis result.

【0029】すなわち、周波数解析器28では光電子増
倍管27の出力信号から粒子像の数揺らぎによる強度揺
らぎの自己相関関数が算出され、信号処理装置29では
得られた強度揺らぎの自己相関関数より図2に示すτ0
を求め、(2)式より血流速度を算出する。その算出結
果がモニター30に表示される。
That is, the frequency analyzer 28 calculates the autocorrelation function of the intensity fluctuation due to the number fluctuation of the particle image from the output signal of the photomultiplier tube 27, and the signal processing device 29 uses the obtained autocorrelation function of the intensity fluctuation. Τ0 shown in Fig. 2
Then, the blood flow velocity is calculated from the equation (2). The calculation result is displayed on the monitor 30.

【0030】一方、観察用照明光の散乱光は色分離ミラ
ー23を透過し、ミラー31、32、レンズ33を介し
て検者の眼Sに達し、被検眼Eの眼底Erの観察を行な
うことができる。
On the other hand, the scattered light of the illumination light for observation passes through the color separation mirror 23, reaches the eye S of the examiner through the mirrors 31, 32 and the lens 33, and observes the fundus Er of the eye E to be examined. You can

【0031】以上のような本実施例によれば、測定用照
明光を非レーザー光とすることにより、前述した測定誤
差を生じさせる光の干渉性に基づく位相揺らぎの成分の
影響を排除することが可能である。また、測定用照明光
の光源としてハロゲンランプのような通常の非レーザー
光源を用いると、単位面積あたり(あるいは単位立体角
あたり)の輝度が低いため、微小な測定体積中を充分な
パワーで照明することができないが、光増幅作用を有す
る非レーザー光源18を用いることにより、高輝度で充
分なパワーで照明でき、充分な検出光量を得られる。従
って、眼底血管の血流のように高濃度の流体についても
流速の絶対値測定を容易に正確に行なうことができる。
According to the present embodiment as described above, the influence of the phase fluctuation component based on the coherence of light which causes the above-mentioned measurement error is eliminated by making the measurement illumination light non-laser light. Is possible. In addition, when a normal non-laser light source such as a halogen lamp is used as the light source for the measurement illumination light, the brightness per unit area (or per unit solid angle) is low. However, by using the non-laser light source 18 having a light amplification function, it is possible to illuminate with high brightness and sufficient power, and obtain a sufficient amount of detected light. Therefore, the absolute value of the flow velocity can be easily and accurately measured even for a high-concentration fluid such as the blood flow in the fundus blood vessel.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
によれば、被測定流体中の粒子像を所定寸法の検出開口
上に結像し、該検出開口を横切る前記粒子像の数揺らぎ
によって前記流体の流速を測定する流速測定装置におい
て、測定用の照明光を発生する非レーザー光源と、前記
照明光を被測定流体に対し導光する光学系と、前記流体
で散乱された前記照明光の散乱光による粒子像を前記検
出開口上に結像する光学系と、該結像された粒子像の光
を検出する光電変換手段と、該光電変換手段の出力信号
により前記粒子像の検出開口中の数揺らぎの周波数を周
波数解析する手段と、該周波数解析の結果に基づき前記
流体の流速を算出する演算手段を有する構成を採用した
ので、測定誤差を生じさせる光の干渉性に基づく位相揺
らぎの成分の影響を排除することが可能になり、被測定
流体の濃度に拘らず流速の絶対値測定を容易に正確に行
なえるという優れた効果が得られる。
As is apparent from the above description, according to the present invention, a particle image in a fluid to be measured is imaged on a detection aperture having a predetermined size, and the number fluctuation of the particle image traversing the detection aperture is fluctuated. In a flow velocity measuring device for measuring the flow velocity of the fluid, a non-laser light source for generating illumination light for measurement, an optical system for guiding the illumination light to a fluid to be measured, and the illumination scattered by the fluid An optical system for forming a particle image by the scattered light of light on the detection aperture, a photoelectric conversion means for detecting the light of the formed particle image, and detection of the particle image by an output signal of the photoelectric conversion means. Since a structure having a means for frequency-analyzing the frequency of the number fluctuations in the aperture and a means for calculating the flow velocity of the fluid based on the result of the frequency analysis is adopted, the phase based on the coherence of light that causes a measurement error is adopted. Effect of fluctuation component It is possible to eliminate the absolute value excellent effect of easily and accurately performed measurements regardless flow rate on the concentration of the fluid to be measured can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】検出開口中の粒子像の数揺らぎを利用した流速
測定のための従来の概略構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a conventional schematic configuration for measuring a flow velocity using a number fluctuation of a particle image in a detection aperture.

【図2】検出開口上を粒子像が横切る様子を示す説明図
である。
FIG. 2 is an explanatory diagram showing a state in which a particle image crosses over a detection aperture.

【図3】粒子像が検出開口を横切った場合の強度揺らぎ
の自己相関関数を示す線図である。
FIG. 3 is a diagram showing an autocorrelation function of intensity fluctuation when a particle image crosses a detection aperture.

【図4】本発明の実施例による流速測定装置の構成を示
す構成図である。
FIG. 4 is a configuration diagram showing a configuration of a flow velocity measuring device according to an embodiment of the present invention.

【図5】図4中の色分離ミラー12の光の波長による反
射率、透過率特性を示す線図である。
5 is a diagram showing the reflectance / transmittance characteristics of the color separation mirror 12 in FIG. 4 depending on the wavelength of light.

【図6】図4中の波長分離ミラー23の光の波長による
反射率、透過率特性を示す線図である。
FIG. 6 is a diagram showing reflectance / transmittance characteristics of the wavelength separation mirror 23 in FIG. 4 depending on the wavelength of light.

【符号の説明】[Explanation of symbols]

8 ハロゲンランプ 9、11 レンズ 10 絞り 12 色分離ミラー 13 リングスリット 14、15 レンズ 16 穴あきミラー 17 対物レンズ 18 光増幅作用を有する非レーザー光源 19〜22 レンズ 23 波長分離ミラー 24 レンズ 25 ミラー 26 検出開口 27 光電子増倍管 28 周波数解析器 29 信号処理装置 30 モニター 8 Halogen Lamp 9, 11 Lens 10 Aperture 12 Color Separation Mirror 13 Ring Slit 14, 15 Lens 16 Perforated Mirror 17 Objective Lens 18 Non-laser Light Source with Optical Amplification 19-22 Lens 23 Wavelength Separation Mirror 24 Lens 25 Mirror 26 Detection Aperture 27 Photomultiplier tube 28 Frequency analyzer 29 Signal processing device 30 Monitor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定流体中の粒子像を所定寸法の検出
開口上に結像し、該検出開口を横切る前記粒子像の数揺
らぎによって前記流体の流速を測定する流速測定装置に
おいて、 測定用の照明光を発生する非レーザー光源と、 前記照明光を被測定流体に対し導光する光学系と、 前記流体で散乱された前記照明光の散乱光による粒子像
を前記検出開口上に結像する光学系と、 該結像された粒子像の光を検出する光電変換手段と、 該光電変換手段の出力信号により前記粒子像の検出開口
中の数揺らぎの周波数を周波数解析する手段と、 該周波数解析の結果に基づき前記流体の流速を算出する
演算手段を有することを特徴とする流速測定装置。
1. A flow velocity measuring device for forming a particle image in a fluid to be measured on a detection aperture having a predetermined size, and measuring the flow velocity of the fluid by the number fluctuation of the particle image traversing the detection aperture. A non-laser light source that generates illumination light, an optical system that guides the illumination light to a fluid to be measured, and a particle image formed by scattered light of the illumination light scattered by the fluid is formed on the detection aperture. An optical system, photoelectric conversion means for detecting the light of the formed particle image, means for frequency-analyzing the frequency of the number fluctuations in the detection aperture of the particle image by the output signal of the photoelectric conversion means, A flow velocity measuring device comprising a calculation means for calculating the flow velocity of the fluid based on the result of frequency analysis.
【請求項2】 前記非レーザー光源は光増幅作用を有す
る光源であることを特徴とする請求項1に記載の流速測
定装置。
2. The flow velocity measuring device according to claim 1, wherein the non-laser light source is a light source having a light amplification function.
JP6553292A 1992-03-24 1992-03-24 Measuring apparatus for flow velocity Pending JPH05273224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6553292A JPH05273224A (en) 1992-03-24 1992-03-24 Measuring apparatus for flow velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6553292A JPH05273224A (en) 1992-03-24 1992-03-24 Measuring apparatus for flow velocity

Publications (1)

Publication Number Publication Date
JPH05273224A true JPH05273224A (en) 1993-10-22

Family

ID=13289721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6553292A Pending JPH05273224A (en) 1992-03-24 1992-03-24 Measuring apparatus for flow velocity

Country Status (1)

Country Link
JP (1) JPH05273224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210100A (en) * 2007-02-26 2008-09-11 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Pointing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210100A (en) * 2007-02-26 2008-09-11 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Pointing device

Similar Documents

Publication Publication Date Title
US4166695A (en) Method and apparatus for measuring retinal blood flow
EP0707823B1 (en) Short coherence length doppler velocimetry system
JP3194000B2 (en) Retinal laser Doppler device
US5163437A (en) Ophthalmic measuring device
JP3332535B2 (en) Ophthalmic measurement device
US4848897A (en) Ophthalmological diagnosis apparatus
JP2002034921A (en) Fundus examining device
US5074307A (en) Ophthalmological diagnosis apparatus
US6332683B1 (en) Fundus examination apparatus
US6454722B1 (en) Doppler velocimeter for blood flow
US4950070A (en) Ophthalmological diagnosis method and apparatus
JPH08215150A (en) Ophthalmological diagnosis device
JPH05273224A (en) Measuring apparatus for flow velocity
JPH05273225A (en) Measuring apparatus for flow velocity
Aizu et al. Bio‐speckle flowmetry for retinal blood flow diagnostics
JP3762025B2 (en) Ophthalmic examination equipment
JP2003010140A (en) Eyeground rheometer
JP3997030B2 (en) Fundus blood flow meter
JP2001112717A (en) Eye fundus blood flow meter and method for processing its signal
JPH07163534A (en) Fundus oculi blood flow velocity measuring method and measuring instrument therefor
JPH10314118A (en) Method for measuring eyeground blood flow and its device
JP4194187B2 (en) Fundus blood flow meter
JP3437230B2 (en) Fundus blood flow meter
JPH02232028A (en) Ophthalmology diagnostic device
JP4478286B2 (en) Fundus blood flow meter and fundus blood flow velocity measuring method