JPH05273144A - Image processor - Google Patents

Image processor

Info

Publication number
JPH05273144A
JPH05273144A JP7089992A JP7089992A JPH05273144A JP H05273144 A JPH05273144 A JP H05273144A JP 7089992 A JP7089992 A JP 7089992A JP 7089992 A JP7089992 A JP 7089992A JP H05273144 A JPH05273144 A JP H05273144A
Authority
JP
Japan
Prior art keywords
light
image
subject
quantization
processing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7089992A
Other languages
Japanese (ja)
Inventor
Yuichi Matsui
祐一 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7089992A priority Critical patent/JPH05273144A/en
Publication of JPH05273144A publication Critical patent/JPH05273144A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an image processor using the surface inspecting method capable of physically detecting a surface flaw on the surface of a specimen at a high speed. CONSTITUTION:An image processor quantization-processing the surface image of a specimen 14 obtained by exposing and scanning the surface of the specimen 14 is linearly arranged with many shutter elements closed normally, opened when more than preset quantity of light is received, and having a small area, it is provided with an image extracting means 8 arranged on the passing passage of the light from the specimen 14, and it is also provided with a quantization processing means 13 arranged to face the shutter elements of the image extracting means 8, linearly arranged with many quantizing elements receiving the light passing through the shutter elements, outputting the quantized signal in response to the light quantity, and having a small area and provided behind the image extracting means 8 in the advance direction of the light from the specimen 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,鉄,非鉄金属,合成樹
脂,ガラス,半導体などの被検体の表面を2次元的に走
査する走査器において,上記被検体の表面から測定され
る反射光に基づいて,上記光検体表面の光学的に検出さ
れる画像を切り出して量子化処理する画像処理装置に係
わり,特に上記光学的に検出される画像を高速で切り出
し,量子化処理することのできる画像処理装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanner for two-dimensionally scanning the surface of an object such as iron, non-ferrous metal, synthetic resin, glass and semiconductor, and the reflected light measured from the surface of the object. On the basis of the above, the present invention relates to an image processing device for cutting out and quantizing an optically detected image on the surface of an optical specimen, and in particular, it is possible to cut out the optically detected image at high speed and perform a quantizing process. The present invention relates to an image processing device.

【0002】[0002]

【従来の技術】従来,この種の画像処理装置を応用した
表面検査装置としては,例えば第34回システム制御情
報学会研究発表講演会論文集(ISCIE,第103頁
乃至第104頁,’90−5)に開示された装置が挙げ
られる。上記開示の表面検査装置1a を図5に示す。同
図に示す表面検査装置1a によれば,画像センサ部が,
走行する鋼板等の被検体表面に光源からのレーザ光また
は白色光を照射し,上記被検体表面からの反射光を主走
査方向に画素毎に順次走査する受光部により受光し,反
射光の光強度をその強弱に応じた電気信号に変換し出力
する。そして,画像処理部は,図6に示すように,上記
画像センサ部からの画像毎の電気信号に基づいて,例え
ばある閾値を用いて画素毎に0(白い部分の画素)また
は1(ハッチングされた画素)の値に2値化された2次
元の量子化画像を作成する。そして,この量子化画像を
もとに,上記被検体表面の疵や欠陥と目される欠陥画像
の切り出し処理を行い,上記切り出された欠陥画像に関
する,例えば長さh,幅w,面積等の特徴量を抽出す
る。引き続いて,判定部は,画像処理部からの欠陥画像
の特徴量に基づいて,上記被検体表面の疵や欠陥の種別
やこれらの等級を判定する。上記判定部では,上記した
ような判定を行うために,例えば逆伝播重み学習型,い
わゆるバックプロパゲーション型のニューラルネットワ
ークが用いられており,上記各種の特徴量に対応して予
め用意された学習用入力データにより学習済のニューラ
ルネットワークに,上記画像処理部により演算された欠
陥画像に関する特徴量がデータ入力されて演算される。
このような表面検査装置は,判定部における演算を高速
に行うことができる利点を有している。上記従来例で
は,量子化処理の後に切り出し処理を行っているが,そ
の逆を行うことも当然可能である。本発明においてもい
ずれを先に行うことも可能である。
2. Description of the Related Art Conventionally, as a surface inspection apparatus to which this type of image processing apparatus is applied, for example, the 34th System Control Information Society Research Presentation Lecture Proceedings (ISCIE, pp. 103 to 104, '90- Examples include the device disclosed in 5). The surface inspection apparatus 1 a disclosed above is shown in FIG. According to the surface inspection apparatus 1 a shown in FIG.
Laser light or white light from a light source is applied to the surface of the running object such as a steel plate, and the reflected light from the surface of the object is received by a light receiving unit that sequentially scans each pixel in the main scanning direction. The strength is converted into an electric signal according to the strength and output. Then, as shown in FIG. 6, the image processing unit, based on the electric signal for each image from the image sensor unit, uses 0 (white pixel) or 1 (hatched) for each pixel using, for example, a certain threshold value. Pixel), and a two-dimensional quantized image binarized into the values of Then, based on this quantized image, a defect image which is regarded as a flaw or a defect on the surface of the subject is cut out, and the cut out defect image, for example, the length h, the width w, the area, etc. Extract feature quantities. Subsequently, the determination unit determines the types of flaws and defects on the surface of the subject and their grades based on the feature amount of the defect image from the image processing unit. In the determination unit, for example, a back-propagation weight learning type, a so-called back propagation type neural network is used to perform the determination as described above, and learning prepared in advance corresponding to the various feature amounts is performed. The feature amount related to the defect image calculated by the image processing unit is input as data to the neural network that has been learned from the input data for calculation.
Such a surface inspection apparatus has an advantage that the calculation in the determination unit can be performed at high speed. In the above-mentioned conventional example, the cutout process is performed after the quantization process, but it is naturally possible to perform the reverse process. In the present invention, either of them can be performed first.

【0003】[0003]

【発明が解決しようとする課題】上述のように上記従来
の表面検査装置1a では,画像処理部において2次元の
量子化画像が作成される際に,全ての画素について個々
の画素毎に上記閾値処理を適用し,量子化(2値化)処
理を行う必要がある。また,上記2次元の量子化画像全
体から上記欠陥画像の切り出し処理を行う際に,上記欠
陥画像の輪郭(縁線)を求めることにより当該欠陥画像
を特定するために,全ての画素について,隣接する個々
の画素毎に2値化データの比較を行わなければならなか
った。上記したように,全ての画素について,量子化処
理を行ったり,或いは欠陥画像の切り出し処理を実行す
るのでは,上記画像処理部における演算時間を多く必要
とし,特に高速で走行する被検体の表面を正確に検査し
ようとする場合には,適切な方法とは言い難い。他方,
上記量子化画像全体の大きさが一定の場合に画像の解像
度を向上させようとしたり,或いは画素の大きさが一定
の場合に量子化画像全体を広くしようといった画像処理
機能の向上化を図ろうとする場合には,演算対象となる
画素数を多くしなければならない。この様な場合,従来
装置ではなおさら画像処理部における演算に時間がかか
り過ぎるといった問題があった。本発明は,上記従来の
問題点に鑑みてなされたものであって,被検体の表面
の,表面欠陥等の物理的に検出される状態の検出を高速
化することのできる表面検査方法に用いることのできる
画像処理装置の提供を目的とする。
In [0006] the conventional surface inspection apparatus as described above 1 a, when the image processing unit is a two-dimensional quantized image is created, the for all the pixels for each individual pixel It is necessary to apply threshold processing and perform quantization (binarization) processing. In addition, when the defect image is cut out from the entire two-dimensional quantized image, the contour (edge line) of the defect image is obtained to specify the defect image, so that all pixels are adjacent to each other. It has been necessary to compare the binarized data for each individual pixel. As described above, performing the quantization process or the defect image cutout process for all the pixels requires a large amount of calculation time in the image processing unit, and in particular, the surface of the subject running at a high speed. It is hard to say that it is an appropriate method when trying to accurately inspect. On the other hand,
In order to improve the image processing function such as improving the resolution of the image when the size of the entire quantized image is constant, or widening the entire quantized image when the size of the pixel is constant. In that case, the number of pixels to be calculated must be increased. In such a case, the conventional apparatus has a problem that the calculation in the image processing unit takes much longer. The present invention has been made in view of the above conventional problems, and is used for a surface inspection method capable of speeding up detection of a physically detected state such as a surface defect of a surface of a subject. It is an object of the present invention to provide an image processing device capable of performing the above.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する主たる手段は,その要旨とすると
ころが,被検体表面を露光走査して得た被検体表面画像
を量子化処理する画像処理装置において,常時は閉じて
おり所定光量以上の光を受光することにより開く微小面
積のシャッタ素子を直線状に多数配置してなり被検体か
らの光線の通過経路に設けられる画像切り出し手段と,
上記画像切り出し手段のシャッタ素子に対応して設けら
れ,上記シャッタ素子を通過した光を受光してその光量
に応じて量子化された信号を出力する微小面積の量子化
素子を直線状に多数配置してなり被検体からの光線の進
行方向に見て上記画像切り出し手段の後方に設けられる
量子化処理手段とを具備してなる画像処理装置である。
尚,この発明におけるシャッタ素子,画像切り出し手
段,量子化素子及び量子化処理手段は以下に述べる実施
例に示された構成に限定されず,上記の各機能を達成す
るあらゆる構成を含むものである。
In order to achieve the above object, the main means adopted by the present invention is the gist of the present invention, in which a subject surface image obtained by exposing and scanning the subject surface is quantized. In the image processing apparatus, an image cutting-out means provided in a passage path of a light beam from a subject, in which a large number of shutter elements having a small area which are normally closed and open by receiving a light of a predetermined light amount or more are arranged linearly When,
A large number of linear quantizing elements are provided corresponding to the shutter elements of the image clipping means and receive the light passing through the shutter elements and output a quantized signal according to the amount of light. In addition, the image processing apparatus comprises a quantization processing unit provided behind the image cutting unit as viewed in the traveling direction of the light beam from the subject.
It should be noted that the shutter element, the image cutting-out means, the quantizing element and the quantizing processing means in the present invention are not limited to the constitutions shown in the embodiments described below, but include all constitutions for achieving the above respective functions.

【0005】[0005]

【作用】被検体からの所定光量以上の光がシャッタ素子
に当たるとシャッタ素子が開き,その後方に配置された
量子化素子が露光される。量子化素子に当たった光の光
量が所定値以上であった場合にはその素子から量子化さ
れた信号が出力される。上記量子化素子は平面的に多数
配置されているので上記量子化された信号群は被検体表
面の量子化された画像を表すことになる。この装置で
は,通常行われるような各素子への駆動電圧の走査を行
う必要が全くなく,画像切り出し手段内のシャッタ素子
に被検体表面からの光が入射した瞬間に,画像の切り出
しならびに量子化処理を行うことができ,極めて高速動
作の画像処理装置が実現できる。
When the shutter element is exposed to a predetermined amount of light or more from the subject, the shutter element opens and the quantizing element arranged behind the shutter element is exposed. When the amount of light hitting the quantizing element is equal to or larger than a predetermined value, the element outputs a quantized signal. Since the plurality of quantizing elements are arranged in a plane, the quantized signal group represents a quantized image of the surface of the subject. In this device, it is not necessary to scan the drive voltage to each element, which is usually performed, and the image is cut out and quantized at the moment when the light from the surface of the object is incident on the shutter element in the image cutout means. It is possible to perform processing, and an image processing device with extremely high speed operation can be realized.

【0006】[0006]

【実施例】以下,添付図面を参照して,本発明を具体化
した実施例につき説明し,本発明の理解に供する。な
お,以下の実施例は,本発明を具体化した一例であっ
て,本発明の技術的範囲を限定する性格のものではな
い。また以下の実施例は2次元表面の画像検出に関する
ものであるが,本発明は一次元的な検出についても当然
適用可能である。ここに図1は本発明の一実施例に係る
画像処理装置Aの一構成要素である画像切り出し装置8
を示す配線ブロック図,図2は本発明の一実施例に係る
画像処理装置Aの一構成要素である量子化処理装置13
を示す配線ブロック図,図3は上記画像処理装置を用い
て被検体表面の表面欠陥画像などを切り出して量子化処
理する状態を示す概念図,図4は表面欠陥画像と画像処
理装置の関係を示す平面図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. In addition, the following embodiments are examples of embodying the present invention and are not intended to limit the technical scope of the present invention. Further, although the following embodiments relate to image detection of a two-dimensional surface, the present invention is naturally applicable to one-dimensional detection. Here, FIG. 1 shows an image cropping device 8 which is a component of an image processing device A according to an embodiment of the present invention.
2 is a wiring block diagram showing the quantization processing device 13 which is a component of the image processing device A according to the embodiment of the present invention.
3 is a schematic block diagram showing a state in which a surface defect image or the like on the surface of a subject is cut out and quantized by using the image processing device, and FIG. 4 shows a relationship between the surface defect image and the image processing device. It is a top view shown.

【0007】本実施例に係る画像処理装置Aは,図1に
示すように,受光によって電気的抵抗が変化する受光素
子2a と印加電圧によって光透過率が変化する光変調素
子3とを直列に接続してなる位置検知素子4a と,印加
電圧によって光透過率が変化する光変調素子3を複数個
直列に接続してなる形状認識素子5とからなり,該位置
検知素子4a と該形状認識素子5とを直列に接続して構
成された複数個の画像切り出し素子6を並列に接続し,
該位置検知素子4a と該形状認識素子5との各接続点に
おいて隣あう該接続点を抵抗7を有した配線で接続した
回路からなる画像切り出し装置8と,受光によって電気
抵抗が変化する受光素子2b とある一定の閾値以上の印
加電圧によって発光する発光素子9とを直列に接続して
なる量子化素子10を並列に接続して構成された量子化
回路11と,受光によって電気抵抗が変化する受光素子
b からなる位置検知素子4b を並列に接続して構成さ
れた位置検知回路12を,直列に接続してなる量子化処
理装置13とを具備し,図3に示す如く,被検体14の
直上に上記画像切り出し装置8を設置し,その上に上記
量子化処理装置13を設置し,露光走査器Lからの光の
被検体14表面での正反射光は,上記画像切り出し装置
8と上記量子化処理装置13に入射せず,被検体14表
面に異常部が存在した場合に異常部における乱反射光の
みが,上記画像切り出し装置8と上記量子化処理装置1
3に入射するように,画像切り出し装置8,量子化処理
装置13を有する画像処理装置Aの配設位置が決められ
ている。
As shown in FIG. 1, the image processing apparatus A according to the present embodiment comprises, in series, a light receiving element 2 a whose electric resistance changes by receiving light and a light modulation element 3 whose light transmittance changes by an applied voltage. position sensing element formed by connecting to 4 a and, made of a light modulation element 3 formed by connecting a plurality series shape recognition device 5 for light transmittance is changed by the applied voltage, the position detecting element 4 a and the A plurality of image cutting elements 6 configured by connecting the shape recognition element 5 in series are connected in parallel,
An image clipping device 8 including a circuit in which adjacent connection points of the position detecting element 4 a and the shape recognizing element 5 are connected to each other by a wiring having a resistor 7, and a light receiving device whose electric resistance changes by light receiving A quantizing circuit 11 constituted by connecting in parallel a quantizing element 10 in which an element 2 b and a light emitting element 9 which emits light by an applied voltage of a certain threshold value or more are connected in parallel, and an electric resistance by light reception A position detecting circuit 12 constituted by connecting position detecting elements 4 b composed of variable light receiving elements 2 b in parallel is provided with a quantization processing device 13 formed by connecting in series, and as shown in FIG. The image cutout device 8 is installed directly above the subject 14, and the quantization processing device 13 is installed thereon. The specular reflection light of the light from the exposure scanner L on the surface of the subject 14 is cut out from the image. Device 8 and the above quantization processing Not incident on the location 13, only diffusely reflected light at the abnormal portion when the abnormal portion in the subject 14 surface exist, the image clipping unit 8 and the quantization processing apparatus 1
The position of the image processing device A having the image cutting device 8 and the quantization processing device 13 is determined so that the image processing device A enters the image processing device 3.

【0008】この実施例では,画像切り出し装置8内の
位置検知素子4a は100個設け,形状認識素子5内の
光変調素子3は4個ずつ100列形成された。また,量
子化処理装置13内の位置検知素子4b は100個設け
られ,量子化素子10は4個ずつ100列形成された。
上記画像切り出し素子6が本発明のシャッタ素子に,画
像切り出し装置8が画像切り出し手段に,位置検知回路
12が量子化素子に,また量子化処理装置13が量子化
処理手段にそれぞれ該当する。そして,量子化処理装置
13内の各位置検知素子4b が,画像切り出し装置8内
の各位置検知素子4a 内の光変調素子3の真上になるよ
うに配置し,量子化処理装置13内の各量子化素子10
内の受光素子2b が,画像切り出し装置8内の各形状認
識素子5内の各光変調素子3の真上になるように配置し
た。そして図1のa端子とb端子との間にa端子側が正
となるように約5Vの電圧を印加し,図2のc端子に+
5Vの電圧を印加した状態で,図3に示した様に,定常
光を照射しながら被検体14である鉄板を,画像処理装
置Aの下部に通過させた。その際に,鉄板表面が平滑で
あれば,正反射光は表面検査装置には照射されない。
[0008] In this embodiment, the position sensing element 4 a of the image clipping device 8 is provided 100, the light modulation device 3 of shape recognition element 5 is formed by four 100 columns. Further, 100 position detecting elements 4b were provided in the quantization processing device 13, and 100 rows of 4 quantizing elements 10 were formed.
The image cutout element 6 corresponds to the shutter element of the present invention, the image cutout device 8 corresponds to the image cutout means, the position detection circuit 12 corresponds to the quantization element, and the quantization processing device 13 corresponds to the quantization processing means. Then, the position detection elements 4 b in the quantization processing device 13 are arranged so as to be directly above the light modulation elements 3 in the position detection elements 4 a in the image clipping device 8, and the quantization processing device 13 is arranged. Each quantization element 10 in
The light receiving element 2 b in the inside is arranged so as to be directly above each light modulation element 3 in each shape recognition element 5 in the image clipping device 8. Then, a voltage of about 5V is applied between the a terminal and the b terminal in FIG. 1 so that the a terminal side becomes positive, and the + terminal is applied to the c terminal in FIG.
With a voltage of 5 V applied, as shown in FIG. 3, the iron plate, which is the subject 14, was passed under the image processing apparatus A while irradiating with stationary light. At that time, if the surface of the iron plate is smooth, the specular reflection light is not applied to the surface inspection device.

【0009】鉄板表面にキズがあれば,鉄板の移動方向
に対するキズの先端部分で光が乱反射され,反射光の一
部が画像切り出し装置8下部から画像切り出し装置8の
位置検知素子4a に入射される。その結果,反射光の入
射した位置検知素子4a 内の受光素子2a の電気抵抗が
減少し,この受光素子2a と直列に接続された光変調素
子3に印加される電圧が増大し,この光変調素子3は光
透過状態になる。ゆえに,反射光は,この光変調素子3
を透過して,画像切り出し装置8の上部に設置された量
子化処理装置13内の1個の位置検知素子4b に入射
し,量子化処理装置13を作動させる。すなわち,画像
切り出し装置8が作動するときには,量子化処理装置1
3もほぼ同時に作動する。画像切り出し装置8内の1個
の位置検知素子4a 内の受光素子2a に反射光が入射す
ると,位置検知素子4a に印加される電圧が減少し,逆
に,形状認識素子5に印加される電圧は増大する。さら
に、反射光の照射された位置検知素子4aから,遠い位
置にある形状認識素子5ほど配線抵抗が大きくなり,そ
の結果,それぞれの形状認識素子5に印加される電圧
は,遠い位置にある形状認識素子5ほど小さくなる。す
なわち,反射光の照射された位置検知素子4a から,遠
い位置にある形状認識素子5内の光変調素子3には,閾
値以上の電圧が印加されず,光吸収状態になる。
[0009] If a flaw on the surface of the iron plate, the irregular reflection light at the tip portion of the flaw with respect to the moving direction of the steel plate, a portion of the reflected light is incident from the image cutout unit 8 lower the position sensing element 4 a of the image cutout unit 8 To be done. As a result, the electrical resistance of the light receiving element 2 a of the incident of the reflected light position detecting element in 4 a is reduced, the voltage applied to the light receiving element 2 a and the optical modulation element 3 connected in series is increased, The light modulation element 3 is in a light transmitting state. Therefore, the reflected light is reflected by the light modulator 3
After passing through, the light enters the one position detection element 4 b in the quantization processing device 13 installed on the upper part of the image clipping device 8 and operates the quantization processing device 13. That is, when the image cropping device 8 operates, the quantization processing device 1
3 also operates almost at the same time. When the reflected light is incident on the light receiving element 2 a in one position detecting element 4 a in the image clipping device 8, the voltage applied to the position detecting element 4 a is decreased, and conversely, it is applied to the shape recognition element 5. The applied voltage increases. Moreover, from the irradiated position sensing element 4 a of the reflected light, the wiring resistance as shape recognition element 5 is increased in the distant position, as a result, the voltage applied to each of the shape recognition element 5, located far The shape recognition element 5 becomes smaller. That is, from the irradiated position sensing element 4 a of the reflected light, the shape recognition element light modulation element 3 in 5 located far, not higher than the threshold voltage is applied, the light-absorbing state.

【0010】本実施例の場合,距離の単位として,図1
における隣あう形状認識素子5間の間隔を採用すると,
反射光の照射された位置検知素子4a から,距離2単位
よりも大きい範囲にある形状認識素子5内の光変調素子
3は,すべて光吸収状態であった。その結果,キズによ
る反射光が,画像切り出し装置8内の1個の位置検知素
子4a に入射したことによって,距離2単位以下にある
形状認識素子5のみを通して,キズの全体または一部か
らの反射光を透過させることができた。このことによ
り,キズ画像の場所を認識しキズ画像の一部または全体
を切り出すことができた。さらに、画像切り出し装置8
を透過してきた反射光は,量子化処理装置13に入射さ
れる。すなわち,画像切り出し装置8内で光透過状態に
ある光変調素子3の真上にある量子化処理装置13内の
受光素子2b にのみ,反射光が入射する。その結果,距
離の単位として図2における量子化処理装置13内の隣
あう位置検知素子4b 間の間隔を採用すると,量子化処
理装置13内の反射光の入射した1個の位置検知素子4
b (受光素子2b )の電気抵抗と,その位置検知素子4
b からの距離(2単位)以内にある位置検知素子4b
直列に接続された量子化素子10内の受光素子2b の電
気抵抗は,いずれも減少する。本実施例においては,量
子化処理装置13内の位置検知素子4a内の1個と,量
子化回路11内の20個からなる合計21個の受光素子
b の電気抵抗が減少した。その結果,電気抵抗が減少
した受光素子2b に直列に接続された発光素子9に印加
される電圧が増大する。そして,印加電圧が閾値以上に
なった発光素子9のみが発光する。すなわち、閾値を基
準にした2値化(量子化)処理が行われる。以上の実施
例においては,CRTやCCD,液晶などで行われてい
るような,各画素に印加される電圧を走査する必要が全
くなく、光の並列性をそのまま利用しているために,キ
ズの場所の認識,切り出し,量子化処理をほぼ同時に行
うことができ,高速処理ができる。このようにして得ら
れたキズ画像の一部または全体に対して,ニューラルネ
ットワークを用いた認識処理を施した。
In the case of this embodiment, the unit of distance is as shown in FIG.
If the space between the adjacent shape recognition elements 5 in is adopted,
From the irradiated position sensing element 4 a of the reflected light, the light modulation device 3 of a distance in a range greater than 2 units shape recognition element 5 were all light-absorbing state. As a result, light reflected by the flaw, by entering into one position detecting element 4 a of the image clipping device 8, the distance only through the shape recognizing device 5 in the following two units, from all or part of the flaw The reflected light could be transmitted. As a result, it was possible to recognize the location of the scratch image and cut out a part or the whole of the scratch image. Furthermore, the image cropping device 8
The reflected light that has passed through is incident on the quantization processing device 13. That is, the reflected light is incident only on the light receiving element 2 b in the quantization processing device 13 which is directly above the light modulation element 3 in the light transmitting state in the image clipping device 8. As a result, if the distance between the adjacent position detection elements 4 b in the quantization processing device 13 in FIG. 2 is adopted as the unit of distance, one position detection element 4 in which the reflected light is incident in the quantization processing device 13 is adopted.
b (light receiving element 2 b ) electric resistance and its position detecting element 4
The electric resistance of the light receiving element 2 b in the quantizing element 10 connected in series with the position detecting element 4 b within a distance (2 units) from b is reduced. In the present embodiment, and one in the position detecting elements 4a of the quantization processor 13, the electrical resistance of the total of 21 light receiving elements 2 b of twenty quantization circuit 11 is reduced. As a result, the voltage applied to the light emitting element 9 connected in series with the light receiving element 2 b whose electric resistance has decreased increases. Then, only the light emitting element 9 whose applied voltage becomes equal to or higher than the threshold value emits light. That is, the binarization (quantization) process based on the threshold value is performed. In the above embodiments, there is no need to scan the voltage applied to each pixel as is done with CRTs, CCDs, liquid crystals, etc., and since the parallelism of light is used as it is, there is a flaw. The location recognition, segmentation, and quantization can be performed almost simultaneously, and high-speed processing can be performed. A recognition process using a neural network was applied to a part or the whole of the scratch image thus obtained.

【0011】本実施例によると,画像切り出し装置8に
よる位置検知後には,複数個からなる位置検知素子4a
の内のいずれか1個の光変調素子3から,キズに起因し
た反射光が透過することになる。また,光透過状態にな
った形状認識素子5内の光変調素子3の分布を,画像処
理装置Aの上部から見た場合,光透過状態になった位置
検知素子4a 内の光変調素子3を含む面(走査方向に平
行の面)に対して,左右対象となっている。すなわち、
切り出した領域の中で,キズ画像の先端は,必ず切り出
し領域の上部中央に位置することになり,切り出し領域
内でのキズ画像の位置を,このレベルで特定できる。そ
して,画像切り出し装置8によって切り出された反射光
による画像に対して,量子化処理装置13によってほぼ
同時に発光素子9による量子化画像が得られるが,この
量子化画像についても,キズ画像の先端に対応した光信
号が,必ず切り出し領域の上部中央の発光素子9から発
光する。このことは,切り出された画像の中で対象画像
の位置が変わると一般に認識率が低下するニューラルネ
ットワークに対して,有効に寄与し,認識率を向上させ
ることができる。以上の構成によって,キズの形状によ
る分類を,高速にかつ高い認識率で行うことができた。
According to this embodiment, after the position is detected by the image clipping device 8, a plurality of position detecting elements 4 a are formed.
From any one of the light modulation elements 3, the reflected light caused by the flaw is transmitted. Further, when the distribution of the light modulation elements 3 in the shape recognition element 5 in the light transmission state is viewed from above the image processing apparatus A, the light modulation elements 3 in the position detection element 4 a in the light transmission state are shown. Left and right are symmetrical with respect to the surface including (the surface parallel to the scanning direction). That is,
In the clipped area, the tip of the scratched image is always located at the upper center of the clipped area, and the position of the scratched image in the clipped area can be specified at this level. Then, with respect to the image by the reflected light cut out by the image cutout device 8, a quantized image by the light emitting element 9 can be obtained almost simultaneously by the quantization processing device 13, and this quantized image also appears at the tip of the scratch image. The corresponding optical signal always emits from the light emitting element 9 in the upper center of the cutout area. This effectively contributes to the neural network in which the recognition rate generally decreases when the position of the target image changes in the clipped image, and the recognition rate can be improved. With the above configuration, it was possible to perform classification by the shape of scratches at high speed and with high recognition rate.

【0012】本実施例では,表面走査装置に印加する電
圧が5Vの場合について述べたが,印加電圧が1V,1
0V,30V,100Vの場合においても,各素子の電
気抵抗を変えることにより,同様の手法でキズの認識を
することができた。また,キズに限らず,被検体表面の
異物質や汚れなども認識することができた。
In this embodiment, the case where the voltage applied to the surface scanning device is 5V has been described, but the applied voltage is 1V, 1V.
Even in the case of 0V, 30V, and 100V, it was possible to recognize the flaw by the same method by changing the electric resistance of each element. Moreover, not only scratches but also foreign substances and dirt on the surface of the subject could be recognized.

【0013】[0013]

【発明の効果】本発明は,上記したように構成されてい
る。それによって,被検体表面の画像の切り出し処理と
量子化処理とをほぼ同時に行うことができ,しかも光の
並列性を利用した並列処理を行うことができ,画像の各
画素ごとに時分割処理を行う必要がなく、高速な画像切
り出し処理,画像量子化処理が実現できる。そして,量
子化処理された表面異常の画像に対して,ニューラルネ
ットワークによる認識を行うことにより,表面異常部の
形状による分類を,高速かつ高い認識率で行うことがで
きる。
The present invention is constructed as described above. As a result, it is possible to perform the clipping processing and the quantization processing of the image of the surface of the subject almost at the same time, and the parallel processing utilizing the parallelism of light can be performed, and the time division processing can be performed for each pixel of the image. It is not necessary to perform it, and high-speed image cutout processing and image quantization processing can be realized. Then, the quantized image of the surface abnormality is recognized by the neural network, so that the shape of the surface abnormality portion can be classified at high speed and with a high recognition rate.

【0014】[0014]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る画像処理装置Aの一
構成要素である画像切り出し装置8を示す配線ブロック
図。
FIG. 1 is a wiring block diagram showing an image clipping device 8 which is a component of an image processing device A according to an embodiment of the present invention.

【図2】 本発明の一実施例に係る画像処理装置Aの一
構成要素である量子化処理装置13を示す配線ブロック
図。
FIG. 2 is a wiring block diagram showing a quantization processing device 13 which is a component of the image processing device A according to an embodiment of the present invention.

【図3】 上記画像処理装置を用いて被検体表面の表面
欠陥画像などを切り出して量子化処理する状態を示す概
念図。
FIG. 3 is a conceptual diagram showing a state in which a surface defect image or the like on the surface of a subject is cut out and quantized by using the image processing apparatus.

【図4】 表面欠陥画像と画像処理装置の関係を示す平
面図。
FIG. 4 is a plan view showing the relationship between a surface defect image and an image processing apparatus.

【図5】 従来の表面検査装置の概念図。FIG. 5 is a conceptual diagram of a conventional surface inspection device.

【図6】 従来の量子化画像から特徴部を抽出する手順
を示す機能ブロック図。
FIG. 6 is a functional block diagram showing a procedure for extracting a characteristic portion from a conventional quantized image.

【符号の説明】[Explanation of symbols]

a ,2b …受光素子 3…光変調素子 4a ,4b …位置検知素子 5…形状認識素子 6…画像切り出し
素子 7…抵抗 8…画像切り出し
装置 9…発光素子 10…量子化素子 11…量子化回路 12…位置検知回
路 13…量子化処理装置 14…被検体
2 a , 2 b ... Light receiving element 3 ... Light modulation element 4 a , 4 b ... Position detecting element 5 ... Shape recognition element 6 ... Image cutting element 7 ... Resistor 8 ... Image cutting device 9 ... Light emitting element 10 ... Quantization element 11 ... Quantization circuit 12 ... Position detection circuit 13 ... Quantization processing device 14 ... Subject

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検体表面を露光走査して得た被検体表
面画像を量子化処理する画像処理装置において,常時は
閉じており所定光量以上の光を受光することにより開く
微小面積のシャッタ素子を直線状に多数配置してなり被
検体からの光線の通過経路に設けられる画像切り出し手
段と,上記画像切り出し手段のシャッタ素子に対応して
設けられ,上記シャッタ素子を通過した光を受光してそ
の光量に応じて量子化された信号を出力する微小面積の
量子化素子を直線状に多数配置してなり被検体からの光
線の進行方向に見て上記画像切り出し手段の後方に設け
られる量子化処理手段とを具備してなる画像処理装置。
1. An image processing apparatus for quantizing an image of a surface of a subject obtained by exposing and scanning the surface of the subject, the shutter element having a small area which is normally closed and is opened by receiving light of a predetermined light amount or more. A plurality of linearly arranged image cut-out means provided in the passage path of the light beam from the subject, and the shutter element of the image cut-out means, which are provided in correspondence with each other and receive the light passing through the shutter element. Quantization provided in the rear of the image cutting-out means as seen in the traveling direction of the light beam from the subject by arranging a large number of quantizing elements having a small area that output a quantized signal according to the light quantity An image processing apparatus comprising a processing means.
【請求項2】 被検体の表面を2次元的に露光走査する
露光走査器によって,上記被検体表面から測定される反
射光の測定量に基づいて,上記被検体表面の光学的に検
出される状態からの反射光でなる画像から所定領域を切
り出し,量子化処理する画像処理装置において,受光に
よって電気抵抗が変化する受光素子と印加電圧によって
光透過率が変化する光変調素子とを直列に接続してなる
位置検知素子と,印加電圧によって光透過率が変化する
光変調素子を複数個直列に接続してなる形状認識素子と
からなり,該位置検知素子と該形状認識素子とを直列に
接続して構成された複数個の画像切り出し素子を並列に
接続し,該位置検知素子と該形状認識素子との各接続点
において隣りあう該接続点を抵抗を有した配線で接続し
た回路からなることを特徴とする画像切り出し装置と,
受光によって電気抵抗が変化する受光素子とある一定の
閾値以上の印加電圧によって発光する発光素子とを直列
に接続してなる量子化素子を並列に接続して構成された
量子化回路と,受光によって電気抵抗が変化する受光素
子からなる位置検知素子を並列に接続して構成された位
置検知回路とを,直列に接続した回路からなることを特
徴とする量子化処理装置とを,被検体の直上に該画像切
り出し装置を設置し,その上に該量子化処理装置を設置
し,露光走査器からの光の被検体表面での正反射光は,
該画像切り出し装置と該量子化処理装置に入射せず,被
検体表面に異常部が存在した場合に異常部における乱反
射光のみが,該画像切り出し装置と該量子化処理装置に
入射するように,露光走査器,該画像切り出し装置,該
量子化処理装置,被検体を相互配置したことを特徴とす
る画像処理装置。
2. An exposure scanner that two-dimensionally exposes and scans the surface of the subject to optically detect the surface of the subject based on the amount of reflected light measured from the surface of the subject. In an image processing device that cuts out a predetermined area from an image formed by reflected light from a state and performs quantization processing, a light receiving element whose electric resistance changes by light reception and a light modulation element whose light transmittance changes by applied voltage are connected in series. And a shape recognition element in which a plurality of light modulation elements whose light transmittance changes according to an applied voltage are connected in series, and the position detection element and the shape recognition element are connected in series. A circuit in which a plurality of image cutout elements configured as described above are connected in parallel, and the adjacent connection points of the position detection element and the shape recognition element are connected by wiring having resistance. An image cropping device characterized by
A quantizer circuit composed of a light-receiving element whose electric resistance changes by receiving light and a light-emitting element that emits light when an applied voltage exceeds a certain threshold value are connected in series A quantization processing device comprising a position detection circuit configured by connecting in parallel a position detection element including a light receiving element whose electric resistance changes, and a quantization processing device characterized by a circuit connected in series. The image cut-out device is installed in, and the quantization processing device is installed thereon, and the specular reflection light of the light from the exposure scanner on the object surface is
The image cut-out device and the quantization processing device do not enter, and when an abnormal part exists on the surface of the subject, only the diffused reflected light in the abnormal part enters the image cut-out device and the quantization processing device, An image processing apparatus characterized in that an exposure scanner, the image cutting-out apparatus, the quantization processing apparatus, and a subject are mutually arranged.
JP7089992A 1992-03-27 1992-03-27 Image processor Pending JPH05273144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7089992A JPH05273144A (en) 1992-03-27 1992-03-27 Image processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7089992A JPH05273144A (en) 1992-03-27 1992-03-27 Image processor

Publications (1)

Publication Number Publication Date
JPH05273144A true JPH05273144A (en) 1993-10-22

Family

ID=13444842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7089992A Pending JPH05273144A (en) 1992-03-27 1992-03-27 Image processor

Country Status (1)

Country Link
JP (1) JPH05273144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6324564B1 (en) * 2017-03-03 2018-05-16 東北電力株式会社 Solar cell module cover glass abnormality detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6324564B1 (en) * 2017-03-03 2018-05-16 東北電力株式会社 Solar cell module cover glass abnormality detection method
JP2018146322A (en) * 2017-03-03 2018-09-20 東北電力株式会社 Method for detecting cover glass abnormality in solar cell module

Similar Documents

Publication Publication Date Title
US8139117B2 (en) Image quality analysis with test pattern
US5076692A (en) Particle detection on a patterned or bare wafer surface
US5703960A (en) Lumber defect scanning including multi-dimensional pattern recognition
JP4351522B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
JP3820348B2 (en) Method for identifying scattered material, dirt and other defects in a transported object
JPH0674907A (en) Detection method for defect of tranparent plate-like body
US3864042A (en) Fingerprint scanning system
KR102419540B1 (en) Determining the module size of an optical code
US5220178A (en) Apparatus and process for detecting the presence of defects on a moving sheet of material
Hu et al. Automatic detection of sound knots and loose knots on sugi using gray level co-occurrence matrix parameters
US3893767A (en) Electro-optical system for cancellation of the effects of red blood cells in a sample of biological cells
JPS6234097B2 (en)
US8135207B2 (en) Optical inspection tools featuring parallel post-inspection analysis
JP2005189113A (en) Surface inspecting device and surface inspection method
JPH05273144A (en) Image processor
KR20040017838A (en) Autothresholding of noisy images
CN105321253B (en) Photoelectric detection system and method based on adhesive tape on laser reflection identification banknote
JPH05273143A (en) Image quantization processor
CN111638226B (en) Detection method, image processor and detection system
JPH05276453A (en) Image segmenting device
JPH0511574B2 (en)
JPH1063913A (en) Quality decision device
US6201623B1 (en) Surface topography enhancement
Batchelor et al. Defect detection on the internal surfaces of hydraulics cylinders for motor vehicles
JPH04238207A (en) Defect inspecting device