JPH05273079A - Strain measuring method - Google Patents

Strain measuring method

Info

Publication number
JPH05273079A
JPH05273079A JP11788392A JP11788392A JPH05273079A JP H05273079 A JPH05273079 A JP H05273079A JP 11788392 A JP11788392 A JP 11788392A JP 11788392 A JP11788392 A JP 11788392A JP H05273079 A JPH05273079 A JP H05273079A
Authority
JP
Japan
Prior art keywords
optical fiber
strain
light
measured
cut portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11788392A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshino
俊彦 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11788392A priority Critical patent/JPH05273079A/en
Publication of JPH05273079A publication Critical patent/JPH05273079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To measure strain which is applied to an optical fiber with a high sensitivity. CONSTITUTION:A cut part 3 is formed in an optical fiber 1 and then the optical fiber is mounted to an object 6 to be measured. When light is applied to the optical fiber 1 from a light source 5, the light is transmitted through the optical fiber 1 and the intensity is detected by a photo detector 7. When strain or deformation is generated in the object 6 to be measured in the direction of an arrow, the optical fiber 1 is deformed together, thus expanding the spacing of the cut part 3. Therefore, light transmission decreases and strain of the object 6 to be measured can be measured according to the amount.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光ファイバを用いて
歪みあるいは変形を測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring strain or deformation using an optical fiber.

【0002】[0002]

【従来の技術】従来より、光ファイバを曲げることによ
って生じる伝送損失の変化あるいは光ファイバに発生す
るブリラン散乱におけるレーザ光の周波数移動等を利用
してファイバに発生する歪を測定する方法が知られてい
る。
2. Description of the Related Art Conventionally, there has been known a method of measuring a strain generated in a fiber by utilizing a change in transmission loss caused by bending an optical fiber or a frequency shift of laser light in Brillan scattering generated in the optical fiber. ing.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの従来
の方法では、歪測定の感度と位置分解能が低く、このた
めに適用できる用途に限界があった。
However, in these conventional methods, the sensitivity and position resolution of strain measurement are low, and therefore there are limits to the applications that can be applied.

【0004】[0004]

【課題を解決するための手段】本発明における歪測定方
法は、粘弾性材からなる光ファイバに切り込み部を形成
し、この光ファイバに加わる歪や応力によって切り込み
部の形状を変形させ、光ファイバを透過する光の切り込
み部の形状の変形に基づく変化により光ファイバに加わ
る歪や応力を測定する。
According to the strain measuring method of the present invention, a notch is formed in an optical fiber made of a viscoelastic material, and the shape of the notch is deformed by strain or stress applied to the optical fiber. The strain or stress applied to the optical fiber is measured by the change of the shape of the cut portion of the light transmitted through the optical fiber.

【0005】また、切り込み部に不定形物質を注入し、
切り込み部の形状の変形に応じた不定形物質の変化状態
により光の透過率または反射率を変化させる。
In addition, an amorphous material is injected into the cut portion,
The light transmittance or reflectance is changed according to the change state of the amorphous substance according to the deformation of the shape of the cut portion.

【0006】[0006]

【作用】歪を測定する物体に光ファイバを取り付ける
と、物体の変形によって光ファイバの切り込み部の形
状、すなわち切り込みの間隔が変化する。これによっ
て、光ファイバ内を透過する光の透過率や反射率がこの
切り込みの間隔により変化し、この変化状態は光ファイ
バに加えられた歪や応力に比例する。
When the optical fiber is attached to the object whose strain is to be measured, the shape of the cut portion of the optical fiber, that is, the distance between the cuts, changes due to the deformation of the object. As a result, the transmittance and reflectance of the light transmitted through the optical fiber changes depending on the intervals of the cuts, and this changed state is proportional to the strain and stress applied to the optical fiber.

【0007】また、切り込み部の形状が変形すると、そ
の中にある不定形物質もその形状に倣って変形するの
で、同様にこの部分の光の透過率や反射率が変化する。
Further, when the shape of the cut portion is deformed, the amorphous substance contained therein is also deformed following the shape, so that the light transmittance and reflectance of this portion also change.

【0008】[0008]

【実施例】以下、本発明に係る歪測定方法を詳細に説明
する。図1は、本発明を実施するための光ファイバの正
面断面図である。1は粘弾性のある例えばプラスチック
ファイバ等からなる光ファイバ、2aはそのコア、2b
はコア2aの周囲に形成されたクラッドである。3は光
ファイバ1に形成した切り込み部であり、この切り込み
部3は、光軸に対して垂直な方向にコア2aに達する深
さで形成されている。
EXAMPLES The strain measuring method according to the present invention will be described in detail below. FIG. 1 is a front sectional view of an optical fiber for carrying out the present invention. Reference numeral 1 is an optical fiber having viscoelasticity, such as a plastic fiber, 2a is its core, 2b
Is a clad formed around the core 2a. Reference numeral 3 denotes a cut portion formed in the optical fiber 1. The cut portion 3 is formed with a depth reaching the core 2a in a direction perpendicular to the optical axis.

【0009】ファイバ内を透過する光は、コア2a内を
クラッド2bとの境界面で全面反射しながら光軸に沿っ
て伝送するが、この切り込み部3の部分ではコア2aの
一部が欠如しているので、透過率の減少や反射率の増加
を起こす。その量は切り込み部3の開き間隔によって変
化する。したがって、光ファイバ1を歪を測定しようと
する物体に取り付けると、この物体の歪や変形で光ファ
イバ1も同じに変形し、これによって切り込み部3の間
隔も変化し、ここを透過する光の透過率や反射率が変化
する。この結果、光ファイバ1から出射される光の強さ
を測定することにより、物体の歪や変形を測定すること
ができる。
The light transmitted through the fiber is transmitted along the optical axis while being totally reflected inside the core 2a at the boundary surface with the cladding 2b, but a part of the core 2a is missing at the cut portion 3. Therefore, the transmittance is decreased and the reflectance is increased. The amount varies depending on the opening distance of the cut portion 3. Therefore, when the optical fiber 1 is attached to an object whose strain is to be measured, the optical fiber 1 is also deformed in the same manner due to the distortion or deformation of the object, which also changes the interval between the cut portions 3 and causes the light transmitted therethrough to change. The transmittance and reflectance change. As a result, the strain or deformation of the object can be measured by measuring the intensity of the light emitted from the optical fiber 1.

【0010】図2は、他の実施例を実施するための光フ
ァイバの正面断面図である。図1と同じものには同符号
を付してある。4は切り込み部3に注入したオイル等の
不定形物質である。図1の光ファイバ1と同様に歪を測
定しようとする物体に取り付けて使用する。図2の
(a)は物体の歪や変形がない場合の状態を示し、不定
形物質4はコア2aの上まで充満されている。図2の
(b)は物体に歪や変形が発生して光ファイバ1が変形
し、切り込み部3の間隔が増加して不定形物質4のレベ
ルはコア2aの部分まで下がってきている。
FIG. 2 is a front sectional view of an optical fiber for carrying out another embodiment. The same parts as those in FIG. 1 are designated by the same reference numerals. Reference numeral 4 denotes an amorphous substance such as oil injected into the cut portion 3. Like the optical fiber 1 of FIG. 1, the optical fiber 1 is used by being attached to an object whose strain is to be measured. FIG. 2A shows a state in which there is no distortion or deformation of the object, and the amorphous substance 4 is filled up to the top of the core 2a. In FIG. 2B, the optical fiber 1 is deformed due to distortion or deformation of the object, the interval between the cut portions 3 is increased, and the level of the amorphous substance 4 is lowered to the core 2a portion.

【0011】不定形物質4の光学的特性がコア2aのそ
れと類似したものであれば、図2(a)の状態では光の
透過率は殆ど低下せず、また切り込み部3での光の反射
もあまり起こらない。しかし、図2(b)の状態では、
切り込み部3の空気に接する部分が増加するので、透過
率の減少や反射光、散乱光の増加をもたらす。この結
果、光ファイバ1から出射される光の強さを測定するこ
とにより、物体の歪や変形を測定することができる。
If the optical properties of the amorphous substance 4 are similar to those of the core 2a, the light transmittance hardly decreases in the state of FIG. Does not happen much. However, in the state of FIG.
Since the portion of the notch 3 in contact with the air increases, the transmittance decreases and the reflected light and scattered light increase. As a result, the strain or deformation of the object can be measured by measuring the intensity of the light emitted from the optical fiber 1.

【0012】図3は、本発明の一実施例を使用した歪測
定装置の構成図である。図1と同様の切り込み部3を有
する光ファイバ1を使用する。6はこの光ファイバ1を
取り付けた被測定物体、5はレーザ光などの光を出す光
源、7は光を受光してその光の強さに応じた電気信号を
出力する光検出器である。光源5から出た光8aは光フ
ァイバ1に入射し、その中を透過して出射光8bとなっ
て光検出器7に入射する。被測定物体6に歪が発生し矢
印の方向の曲げや引っ張りでその表面に応力が生ずる
と、切り込み部3の間隔が増加し、光ファイバ1中を透
過する光のこの部分における伝送損失が増加する。この
結果、光検出器7で検出される光の強さが減少し、この
値から被測定物体6の歪を測定できる。
FIG. 3 is a block diagram of a strain measuring apparatus using an embodiment of the present invention. An optical fiber 1 having a cut portion 3 similar to that of FIG. 1 is used. 6 is an object to be measured to which the optical fiber 1 is attached, 5 is a light source that emits light such as laser light, and 7 is a photodetector that receives the light and outputs an electrical signal according to the intensity of the light. The light 8a emitted from the light source 5 is incident on the optical fiber 1 and is transmitted through the optical fiber 1 to be emitted light 8b which is incident on the photodetector 7. When the object 6 to be measured is distorted and stress is generated on its surface by bending or pulling in the direction of the arrow, the gap between the notches 3 increases, and the transmission loss of light transmitted through the optical fiber 1 increases in this part. To do. As a result, the intensity of light detected by the photodetector 7 decreases, and the strain of the measured object 6 can be measured from this value.

【0013】図4はこの装置で測定したデータの一例を
示すもので、横軸に歪を示し、縦軸に光の透過率を示し
ている。歪の増加にしたがって光ファイバ中を透過する
光の透過率が減少して行く状態がよくわかる。
FIG. 4 shows an example of data measured by this apparatus, in which the horizontal axis represents strain and the vertical axis represents light transmittance. It can be clearly seen that the transmittance of light passing through the optical fiber decreases as the strain increases.

【0014】図5は1本の光ファイバで複数の物体の歪
を測定できる歪測定装置の構成図である。11は1と同
様な光ファイバ、13a,13b,13cは光ファイバ
11の光軸に沿って所定距離をおいて形成した切り込み
部、14a,14b,14cは切り込み部13a,13
b,13eにそれぞれ注入されたオイルである。15は
光源、16a,16b,16cは光ファイバ11の対応
した切り込み部13a,13b,13cの部分にそれぞ
れ取り付けられた被測定物体、17は光検出器、19は
ビームスプリッタ、20はCRT,液晶などを用いた表
示装置である。
FIG. 5 is a block diagram of a strain measuring device capable of measuring strains of a plurality of objects with one optical fiber. Reference numeral 11 is an optical fiber similar to 1, reference numerals 13a, 13b, 13c are notches formed at a predetermined distance along the optical axis of the optical fiber 11, and 14a, 14b, 14c are notches 13a, 13
It is the oil respectively injected into b and 13e. Reference numeral 15 is a light source, 16a, 16b and 16c are objects to be measured respectively attached to corresponding cut portions 13a, 13b and 13c of the optical fiber 11, 17 is a photodetector, 19 is a beam splitter, 20 is a CRT and liquid crystal. It is a display device using such as.

【0015】光源15から出射した光18aはビームス
プリッタ19を透過して光ファイバ11に入射し、その
中を光軸に沿って伝送する。この光は途中に切り込み部
13a,13b,13cがあるのでここでその一部が反
射し、反射した光は光ファイバ11から出射しビームス
プリッタ19で反射して光検出器17に入射する。光検
出器17からの電気信号により表示装置20において、
反射光の検出状態が表示される。
The light 18a emitted from the light source 15 passes through the beam splitter 19, enters the optical fiber 11, and is transmitted through the optical fiber 11 along the optical axis. Since this light has notches 13a, 13b, 13c in the middle, a part thereof is reflected here, and the reflected light is emitted from the optical fiber 11 and reflected by the beam splitter 19 to enter the photodetector 17. In the display device 20 by the electric signal from the photodetector 17,
The detection state of reflected light is displayed.

【0016】図6は表示装置の表示状態の1例を示すも
ので、実線は各被測定物体に歪が加わっていないときの
反射光の検出状態を示す。光源15に最も近い切り込み
部13aからの反射光がT1の時点で発生し、その次に
近い切り込み部13bからの反射光がT2の時点で発生
し、さらに切り込み部13cからの反射光がT3の時点
で発生する。光ファイバ11上の入射端からの切り込み
部の形成位置に応じて所定時間遅れて順次反射光が検出
される。
FIG. 6 shows an example of the display state of the display device, and the solid line shows the detection state of reflected light when no distortion is applied to each measured object. The reflected light from the cut portion 13a closest to the light source 15 is generated at time T1, the reflected light from the next cut portion 13b is generated at time T2, and the reflected light from the cut portion 13c is generated at time T3. Occurs at some point. The reflected light is sequentially detected with a predetermined time delay according to the position where the cut portion is formed from the incident end on the optical fiber 11.

【0017】図6の例では、今回検出した反射光の強度
は点線で示しているが、被測定物体16aと16cでは
歪が発生していないので、T1とT3の時点で検出した
反射光は実線と点線が一致するが、被測定物体16bで
は歪が発生しているので、T2の時点で検出した反射光
は実線と点線が一致しない。切り込み部13bの間隔が
広がり、この部分での反射率が大きくなっているので、
反射光は増大し点線の方が実線より大きくなっている。
このように1つの光ファイバで複数の物体の歪を測定す
ることができる。図3の実施例でオイル入りの切り込み
部を有する光ファイバを使用してもよいし、図5の実施
例でオイルなしの切り込み部を有する光ファイバを使用
してもよいのはいうまでもない。
In the example of FIG. 6, the intensity of the reflected light detected this time is shown by a dotted line, but since no distortion occurs in the measured objects 16a and 16c, the reflected light detected at the time points T1 and T3 is The solid line and the dotted line coincide with each other, but since the measured object 16b is distorted, the reflected light detected at time T2 does not coincide with the solid line and the dotted line. Since the interval between the cut portions 13b is widened and the reflectance at this portion is large,
The reflected light increases and the dotted line is larger than the solid line.
In this way, the strain of a plurality of objects can be measured with one optical fiber. It goes without saying that an optical fiber having a cut portion containing oil may be used in the embodiment of FIG. 3, and an optical fiber having a cut portion without oil may be used in the embodiment of FIG. ..

【0018】[0018]

【発明の効果】本発明によると、切り込みを有する光フ
ァイバを使用して、光ファイバに加わ歪や変形に応じた
切り込み部の間隔変化により、光ファイバの透過光の強
さの変化を検出することにより、簡単な構成によって、
高感度になり、高い空間的分解能の測定ができ、適用用
途を拡大することが可能となるなど優れた効果が得られ
る。
According to the present invention, an optical fiber having a notch is used to detect a change in the intensity of transmitted light of the optical fiber by a change in the interval between the notches in response to strain or deformation applied to the optical fiber. By the simple structure,
It is possible to obtain excellent effects such as high sensitivity, high spatial resolution measurement, and expansion of application.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための光ファイバの正面断面
図である。
FIG. 1 is a front sectional view of an optical fiber for carrying out the present invention.

【図2】他の実施例を実施するための光ファイバの正面
断面図である。
FIG. 2 is a front sectional view of an optical fiber for carrying out another embodiment.

【図3】本発明の一実施例を使用した歪測定装置の構成
図である。
FIG. 3 is a configuration diagram of a strain measuring device using an embodiment of the present invention.

【図4】図3の装置で測定したデータの一例を示すグラ
フである。
4 is a graph showing an example of data measured by the apparatus of FIG.

【図5】1本の光ファイバで複数の物体の歪を測定でき
る歪測定装置の構成図である。
FIG. 5 is a configuration diagram of a strain measuring device capable of measuring strain of a plurality of objects with one optical fiber.

【図6】図5の装置で測定したデータの一例を示すグラ
フである。
6 is a graph showing an example of data measured by the device of FIG.

【符号の説明】[Explanation of symbols]

1 光ファイバ 2a コア 2b クラッド 3 切り込み部 4 不定形物質 5 光源 6 被測定物体 7 光検出器 11 光ファイバ 13a、13b、13c 切り込み部 14a、14b、14c 不定形物質 15 光源 16a、16b、16c 被測定物体 17 光検出器 19 ビームスプリッタ 20 表示装置 1 Optical fiber 2a Core 2b Clad 3 Cut part 4 Amorphous substance 5 Light source 6 Object to be measured 7 Photodetector 11 Optical fiber 13a, 13b, 13c Cut part 14a, 14b, 14c Amorphous substance 15 Light source 16a, 16b, 16c Covered Measurement object 17 Photodetector 19 Beam splitter 20 Display device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粘弾性材からなる光ファイバに切り込み
部を形成し、この光ファイバに加わる歪や応力によって
切り込み部の形状を変形させ、光ファイバを透過する光
の切り込み部の形状の変形に基づく変化により光ファイ
バに加わる歪や応力を測定する歪測定方法。
1. A cut portion is formed in an optical fiber made of a viscoelastic material, and the shape of the cut portion is deformed by strain or stress applied to the optical fiber to change the shape of the cut portion of light transmitted through the optical fiber. Strain measurement method that measures the strain and stress applied to the optical fiber by the change based on
【請求項2】 請求項1に記載の歪測定方法において、
切り込み部に不定形物質を注入し、切り込み部の形状の
変形に応じた不定形物質の変化状態により光の透過率ま
たは反射率を変化させる歪測定方法。
2. The strain measuring method according to claim 1, wherein
A strain measuring method in which an amorphous material is injected into a cut portion and light transmittance or reflectance is changed according to a change state of the amorphous material according to the deformation of the shape of the cut portion.
JP11788392A 1992-03-27 1992-03-27 Strain measuring method Pending JPH05273079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11788392A JPH05273079A (en) 1992-03-27 1992-03-27 Strain measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11788392A JPH05273079A (en) 1992-03-27 1992-03-27 Strain measuring method

Publications (1)

Publication Number Publication Date
JPH05273079A true JPH05273079A (en) 1993-10-22

Family

ID=14722595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11788392A Pending JPH05273079A (en) 1992-03-27 1992-03-27 Strain measuring method

Country Status (1)

Country Link
JP (1) JPH05273079A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048676A (en) * 2000-08-02 2002-02-15 Takenaka Komuten Co Ltd Optical fiber for detecting damage and damage detection method using the same
JP2007139693A (en) * 2005-11-22 2007-06-07 Univ Of Tokyo Visual optical strain meter for notifying setup strain
JP2014522483A (en) * 2011-06-29 2014-09-04 エンパイア テクノロジー ディベロップメント エルエルシー Slotted optical fiber and method and apparatus for slotted optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048676A (en) * 2000-08-02 2002-02-15 Takenaka Komuten Co Ltd Optical fiber for detecting damage and damage detection method using the same
JP2007139693A (en) * 2005-11-22 2007-06-07 Univ Of Tokyo Visual optical strain meter for notifying setup strain
JP2014522483A (en) * 2011-06-29 2014-09-04 エンパイア テクノロジー ディベロップメント エルエルシー Slotted optical fiber and method and apparatus for slotted optical fiber

Similar Documents

Publication Publication Date Title
Hotate et al. Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing
US10151626B2 (en) Fibre optic distributed sensing
US4342907A (en) Optical sensing apparatus and method
EP0007312B1 (en) Optical sensing apparatus
JP4350380B2 (en) Optical fiber backscatter polarization analysis
CA2274505A1 (en) Distributed strain and temperature sensing system
EP1865290A2 (en) Method and system for adjusting the sensitivity of optical sensors
Liehr et al. Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry
DE19514852A1 (en) Method for measuring acceleration and vibration
KR20110075680A (en) Apparatus and method of distributed fiber sensor using brillouin optical time domain analysis based on brillouin dynamic grating
KR20050084946A (en) Method of evaluating fiber pmd using polarization optical time domain recflectometry
Lu et al. Spectral properties of the signal in phase-sensitive optical time-domain reflectometry with direct detection
US4659215A (en) Optical fiber test method and apparatus
CN111238680B (en) Method for improving spatial resolution of distributed Raman temperature measurement of double-width pulse optical fiber
EP0605301A1 (en) Optical time domain reflectometer
CN108957209B (en) Automatic broken line detection device for communication optical fiber cable production
JPH05273079A (en) Strain measuring method
JP3063063B2 (en) Optical fiber temperature distribution measurement system
EP0245091A1 (en) Method of and apparatus for fiber optic sensing
CN110518967B (en) Single-axis optical fiber interferometer and positioning device for eliminating optical fiber vibration blind area
JP3384927B2 (en) Transparent long body defect detection device
CN106525278A (en) High temperature sensing method based on coreless FBG (Fiber Bragg Grating)
JP3257197B2 (en) Method and apparatus for evaluating single mode optical fiber characteristics
JPH02242119A (en) Optical fiber displacement measuring system
JP3207323B2 (en) Optical fiber test method