JPH05273064A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH05273064A
JPH05273064A JP4226275A JP22627592A JPH05273064A JP H05273064 A JPH05273064 A JP H05273064A JP 4226275 A JP4226275 A JP 4226275A JP 22627592 A JP22627592 A JP 22627592A JP H05273064 A JPH05273064 A JP H05273064A
Authority
JP
Japan
Prior art keywords
diaphragm
pressure
pressure sensor
mesa
stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4226275A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Furuta
一吉 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Publication of JPH05273064A publication Critical patent/JPH05273064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To prevent a diaphragm from exceeding a yield limit when pressure within a reference chamber is increased by forming a silicon wafer in a triple structure where both surfaces of the silicon wafer are held by glass wafers and forming a mesa on either of a diaphragm or the glass wafer. CONSTITUTION:In a pressure sensor, a glass wafer (glass substrate) where an opposing electrode 7 is provided and a diffusion layer 6 and a junction prevention film 11 are provided on the surface and then a silicon wafer 10 with a diaphragm 2 where a mesa 3 is formed on the opposing rear surface and a glass wafer (stopper) 5 where an external air introducing hole 8 is provided are provided, thus forming a triple structure where the wafer 10 is sandwiched by a substrate 1 and the stopper 5. When the outer pressure is equal to or less than atmospheric pressure and then the diaphragm 2 is deflected and the reference chamber 3 is inflated, the mesa 3 collides with the stopper 5 in a specified inflation, thus preventing the diaphragm 2 from being damaged. When the sensor is pressurized to a preset pressure, the reference chamber 3 shrinks, the mesa 3 is separated from the stopper 5, and the diaphragm 2 is activated in response to pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、気体、液体および固
体の圧力の変化をダイアフラムの変化量として受け止
め、その変化量を電気信号に変えて出力する圧力センサ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor which receives a change in pressure of gas, liquid and solid as a change amount of a diaphragm and converts the change amount into an electric signal for output.

【0002】[0002]

【従来の技術】従来、図3に示すように、ダイアフラム
構造を持つ圧力センサはシリコンウエハとガラス基板を
はりあわせた二層構造をしていた。これは、ピエゾ抵抗
型、静電容量型、接点スイッチ型ともに同じである。
2. Description of the Related Art Conventionally, as shown in FIG. 3, a pressure sensor having a diaphragm structure has a two-layer structure in which a silicon wafer and a glass substrate are bonded together. This is the same for the piezoresistive type, the electrostatic capacitance type, and the contact switch type.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の構造で
は、シリコンダイアフラムとガラス基板とで形成される
基準室内の圧力が外圧より高くなり、シリコンダイアフ
ラムの変位量が降伏限界を越えるとダイアフラムが破損
し、この結果、センサとして機能しなくなってしまうと
いう課題があった。この課題を回避するため従来のセン
サではダイアフラムの厚みを厚くして耐圧性をあげてい
た。しかし、〔式1〕に示すようにダイアフラムの厚み
が厚くなると、同一圧力でのダイアフラムの変位量は小
さくなり、感度の低下を招くという課題があった。
However, in the conventional structure, the pressure in the reference chamber formed by the silicon diaphragm and the glass substrate becomes higher than the external pressure, and the diaphragm is damaged when the displacement of the silicon diaphragm exceeds the yield limit. However, as a result, there is a problem that the sensor does not function. In order to avoid this problem, in the conventional sensor, the diaphragm is made thicker to increase the pressure resistance. However, as shown in [Equation 1], when the thickness of the diaphragm is increased, the amount of displacement of the diaphragm under the same pressure becomes small, which causes a problem that sensitivity is lowered.

【0004】〔式1〕 W=K(a4 /h3 )P ここで、Wはダイアフラムの変位量 Kはポアソン比、ヤング率を含む物質固有の定数 aはダイアフラムの一辺の長さ hはダイアフラムの厚み である。[Equation 1] W = K (a 4 / h 3 ) P where W is the displacement of the diaphragm K is the Poisson's ratio, a constant peculiar to the material including Young's modulus a is the length of one side of the diaphragm h It is the thickness of the diaphragm.

【0005】また、ダイアフラムを低圧測定用と同等の
厚みにすると、感度は同じであるが、外圧が高圧になる
とダイアフラムがガラスに接触し測定不可となってしま
うという課題があった。この発明の目的は、これら従来
の課題を解決するため、ダイアフラムの厚みが薄いまま
でも高圧の測定ができるセンサを得ることにある。
Further, if the diaphragm has the same thickness as that for low-pressure measurement, the sensitivity is the same, but when the external pressure becomes high, the diaphragm comes into contact with the glass and measurement becomes impossible. In order to solve these conventional problems, an object of the present invention is to obtain a sensor capable of measuring high pressure even when the diaphragm is thin.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明は基準室内の圧力が高くなった場合にダイ
アフラムが降伏限界を越えないように、ダイアフラムま
たはダイアフラムに対向して設けたストッパのどちらか
の一部にメサを設け、該メサを前記ストッパに衝止させ
ることで前記ダイアフラムが降伏限界を越えないように
し、同時に基準室内を所望の測定圧力と同等の圧力とし
ておくことにより、高圧領域においても低圧領域と同様
の感度が得られ、しかもダイアフラムを破損することが
ないようにした。
In order to solve the above problems, the present invention is directed to a diaphragm or a stopper provided so as to face the diaphragm so that the diaphragm does not exceed the yield limit when the pressure in the reference chamber increases. By providing a mesa in a part of either of the above, by preventing the diaphragm from exceeding the yield limit by hitting the mesa to the stopper, at the same time, by setting the pressure in the reference chamber to a pressure equivalent to the desired measurement pressure, Even in the high pressure region, the same sensitivity as in the low pressure region was obtained, and the diaphragm was not damaged.

【0007】[0007]

【作用】上記のように構成された圧力センサにおいて
は、基準室内の圧力が大気圧より高圧になっているた
め、大気圧下ではダイヤフラムが撓んで基準室が膨らん
だ時、所定の膨らみで前記メサの部分がストッパと衝止
することによりダイアフラムの破損が防止できる。そし
て、このセンサをあらかじめ設定した圧力まで加圧する
と基準室は縮まり、ストッパからメサの部分が離れ、ダ
イアフラムは圧力に対応して動くようになる。ここで、
圧力とダイアフラムのたわみは〔式1〕に示したように
正比例の関係にあるので、ダイアフラムの形状(すなわ
ち辺の長さ)とダイアフラムの厚みが同じセンサは感度
も同じである。したがって、低圧においても破壊せず、
なおかつ、高圧の測定領域において感度を損なわない圧
力センサをえることができる。
In the pressure sensor constructed as described above, since the pressure in the reference chamber is higher than the atmospheric pressure, when the diaphragm bends and the reference chamber swells under the atmospheric pressure, a predetermined swelling occurs. Diaphragm damage can be prevented by stopping the mesa part against the stopper. When this sensor is pressurized to a preset pressure, the reference chamber contracts, the mesa portion is separated from the stopper, and the diaphragm moves in response to the pressure. here,
Since the pressure and the deflection of the diaphragm are in direct proportion as shown in [Equation 1], the sensor having the same diaphragm shape (namely, side length) and the same diaphragm thickness has the same sensitivity. Therefore, it does not break even at low pressure,
Moreover, it is possible to obtain a pressure sensor that does not impair the sensitivity in the high pressure measurement region.

【0008】[0008]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。図1は本発明による圧力センサ(静電容量型)の
第1の実施例の断面図であり、対向電極7を設けたガラ
スウエハ(以下、ガラス基板と言う)1と、表面に拡散
層と接合防止膜を設け、その対向裏面にメサ3を形成し
たダイアフラム2を有するシリコンウエハ10と、外気
導入穴8を形成したガラスウエハ(以下、ストッパと言
う)5とからなり、前記シリコンウエハ10を前記ガラ
ス基板1とストッパ5とで挟んだ三層構造として形成さ
れており、図1(a)は外圧が測定領域にある場合を示
し、図1(b)は外圧が大気圧の場合を示したものであ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a first embodiment of a pressure sensor (electrostatic capacitance type) according to the present invention. A glass wafer (hereinafter referred to as a glass substrate) 1 provided with a counter electrode 7 and a diffusion layer on the surface are provided. The silicon wafer 10 is provided with a bonding prevention film and has a diaphragm 2 having a mesa 3 formed on the opposite back surface thereof, and a glass wafer (hereinafter, referred to as a stopper) 5 having an outside air introduction hole 8 formed therein. It is formed as a three-layer structure sandwiched between the glass substrate 1 and the stopper 5, FIG. 1 (a) shows the case where the external pressure is in the measurement region, and FIG. 1 (b) shows the case where the external pressure is atmospheric pressure. It is a thing.

【0009】図2に本発明による圧力センサ(静電容量
型)のプロセスの概略を示す。まず結晶方位が(10
0)で厚みが300μmのn型シリコンウエハ10にフ
ォトリソグラフィの手法を用いてキャビティの部分とし
て1μmのエッチングをし、次に、マスク材として使用
したSiO2 を剥離し、SiNxを形成し、同様にダイ
アフラム形成のためのエッチングをする。なお、今回作
製したダイアフラムの厚みは30μmである。
FIG. 2 schematically shows the process of the pressure sensor (capacitance type) according to the present invention. First, the crystal orientation is (10
In step 0), the n-type silicon wafer 10 having a thickness of 300 μm is etched by 1 μm as a cavity portion using a photolithography method, and then SiO 2 used as a mask material is peeled off to form SiNx. Etch to form a diaphragm. The diaphragm produced this time has a thickness of 30 μm.

【0010】次に、電極としてボロンの拡散層6を基準
室側のダイアフラム表面に形成し、接合防止膜11とし
てのSiO2 をダイアフラム2の表面とメサ3の表面に
形成する。一方、対向電極としてAlパターン7を形成
した厚み300μmのガラス基板1と、メサの当たる部
分に2μmのエッチングを行ってダイアフラム変位穴9
を形成し、さらに、超音波加工により外気導入穴8を設
けた厚み300μmのストッパ5を用意する。
Next, a boron diffusion layer 6 as an electrode is formed on the surface of the diaphragm on the reference chamber side, and SiO 2 as a bonding prevention film 11 is formed on the surface of the diaphragm 2 and the surface of the mesa 3. On the other hand, a glass substrate 1 having a thickness of 300 μm, on which an Al pattern 7 is formed as a counter electrode, and a portion to which the mesa hits are etched by 2 μm to form a diaphragm displacement hole 9
Then, a stopper 5 having a thickness of 300 μm provided with an outside air introduction hole 8 is prepared by ultrasonic processing.

【0011】次に、シリコンウエハ10とストッパ5を
陽極接合によって接合する。ただし、この場合の接合雰
囲気圧力は大気圧である。さらに、前記ストッパ5を陽
極接合したシリコンウエハ10の対向面側にガラス基板
1を陽極接合により接合する。ただし、この場合の接合
雰囲気は測定レンジの圧力(本例では8kg/cm2
である。
Next, the silicon wafer 10 and the stopper 5 are bonded by anodic bonding. However, the bonding atmosphere pressure in this case is atmospheric pressure. Further, the glass substrate 1 is bonded by anodic bonding to the facing surface side of the silicon wafer 10 to which the stopper 5 is anodically bonded. However, the bonding atmosphere in this case is the pressure of the measurement range (8 kg / cm 2 in this example).
Is.

【0012】以上の工程で圧力センサのセンサチップが
できあがり、以降通常の方法で容量計と配線し、加圧減
圧テストを行った。この結果、7.5kg/cm2 から
8.5kg/cm2 の圧力変化に対して約35pFの容
量変化を得ることができた。一方、図3に示す従来の方
法で製作したメサ付きで本実施例と同様構造の圧力セン
サ(すなわち、本圧力センサの構造からストッパ5を除
いた構造)で同様の加圧減圧テストを課したところ7.
5kg/cm2 から8.5kg/cm2 の圧力変化に対
して、わずか4pFの容量変化しか得られなかった。
The sensor chip of the pressure sensor was completed through the above steps, and thereafter, the pressure sensor was connected to the capacitance meter by the usual method and the pressure reduction test was conducted. As a result, it was possible to obtain a capacitance change of about 35 pF with respect to a pressure change of 7.5 kg / cm 2 to 8.5 kg / cm 2 . On the other hand, the same pressurization / decompression test was applied to the pressure sensor having the same structure as that of the present embodiment (that is, the structure of this pressure sensor except for the stopper 5) manufactured by the conventional method shown in FIG. Where 7.
For a pressure change of 5 kg / cm 2 to 8.5 kg / cm 2 , only a capacity change of 4 pF was obtained.

【0013】また、従来のセンサ構造を製作する過程で
陽極接合を8kg/cm2 に加圧しながら行ったもの
は、大気圧に戻す途中で破壊した。さらに、従来の圧力
センサの構造でダイアフラムの厚みを40μmにしたも
のを同様の加圧減圧テストを行ったところ同一レンジで
の容量変化は12pFであった。
Also, the anodic bonding performed while applying a pressure of 8 kg / cm 2 in the process of manufacturing the conventional sensor structure broke while returning to the atmospheric pressure. Furthermore, when the same pressure sensor structure as that of the conventional pressure sensor having a diaphragm thickness of 40 μm was subjected to the same pressurization and depressurization test, the capacitance change in the same range was 12 pF.

【0014】次に、本発明の他の実施例を図面に基づい
て説明する。図4は本発明の他の実施例を示す圧力セン
サ(静電容量型)の断面図であり、対向電極7を設けた
ガラス基板1と、表面に拡散層と接合防止膜を設け、そ
の対向裏面にメサ3を形成したダイアフラム2を有する
シリコンウエハ10と、外気導入穴8を形成したストッ
パ5とからなり、前記シリコンウエハ10を前記ガラス
基板1とストッパ5とで挟んだ三層構造として形成され
ている。図4(a)は外圧が測定領域にある場合を示
し、図4(b)は外圧が大気圧の場合を示したものであ
る。
Next, another embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a cross-sectional view of a pressure sensor (capacitance type) showing another embodiment of the present invention, in which a glass substrate 1 provided with a counter electrode 7 and a diffusion layer and an anti-bonding film are provided on the surface of the glass substrate 1. It is composed of a silicon wafer 10 having a diaphragm 2 having a mesa 3 formed on its back surface and a stopper 5 having an outside air introduction hole 8, and the silicon wafer 10 is formed as a three-layer structure sandwiched between the glass substrate 1 and the stopper 5. Has been done. 4A shows the case where the external pressure is in the measurement region, and FIG. 4B shows the case where the external pressure is the atmospheric pressure.

【0015】この実施例は、前記第1の実施例に対し、
メサ3はストッパ5に形成されている。したがって、そ
の製造プロセス、全体の構成等は前記第1の実施例とほ
ぼ同様であるが、ストッパ構造については外気導入穴8
をあけた後、以下の加工を施す。
This embodiment differs from the first embodiment in that
The mesa 3 is formed on the stopper 5. Therefore, the manufacturing process, the overall configuration, etc. are almost the same as those of the first embodiment, but the stopper structure has the outside air introduction hole 8
After opening, the following processing is performed.

【0016】まず、n型の厚み265μmの両面研磨シ
リコンウエハを前記ストッパ5の接合表面に陽極接合の
手法を用いて接合し、ダイアフラム辺長のパターンを用
いてパターニングし、KOHにより異方性エッチングを
施す。ここで、エッチングはガラス基板面が現れるまで
行い、メサ3を形成する。
First, an n-type double-sided polished silicon wafer having a thickness of 265 μm is bonded to the bonding surface of the stopper 5 by an anodic bonding method, patterned using a diaphragm side length pattern, and anisotropically etched by KOH. Apply. Here, the etching is performed until the surface of the glass substrate appears to form the mesa 3.

【0017】以上の工程で圧力センサのセンサチップが
できあがり、以降通常の方法で容量計と配線し、加圧減
圧テストを行った。この結果、7.5kg/cm2 から
8.5kg/cm2 の圧力変化に対して約40pFの容
量変化を得ることができた。一方、図5に示す従来の方
法で製作した本実施例と同様構造の圧力センサ(すなわ
ち、本圧力センサの構造からストッパ5を除いた構造)
で同様の加圧減圧テストを課したところ7.5kg/c
2 から8.5kg/cm2 の圧力変化に対して、わず
か4pFの容量変化しか得られなかった。
The sensor chip of the pressure sensor was completed in the above steps, and thereafter, the pressure sensor was connected to the capacitance meter by the usual method and the pressure reduction test was conducted. As a result, it was possible to obtain a capacitance change of about 40 pF with respect to a pressure change of 7.5 kg / cm 2 to 8.5 kg / cm 2 . On the other hand, a pressure sensor manufactured by the conventional method shown in FIG. 5 and having the same structure as that of this embodiment (that is, a structure in which the stopper 5 is removed from the structure of this pressure sensor).
When the same pressurization / decompression test was applied at 7.5 kg / c
Only a capacitance change of 4 pF was obtained for a pressure change of m 2 to 8.5 kg / cm 2 .

【0018】また、従来のセンサ構造を政策する過程で
陽極接合を8kg/cm2 に加圧しながら行ったもの
は、大気圧に戻す途中で破壊した。さらに、従来の圧力
センサの構造でダイアフラムの厚みを40μmにしたも
のを同様の加圧減圧テストを行ったところ同一レンジで
の容量変化は15pFであった。
In the conventional sensor structure, the anodic bonding was carried out while applying a pressure of 8 kg / cm 2 , and it was destroyed during the return to atmospheric pressure. Furthermore, when the same pressure sensor structure as that of the conventional pressure sensor having a diaphragm thickness of 40 μm was subjected to the same pressurization and depressurization test, the capacitance change in the same range was 15 pF.

【0019】最後に、従来のセンサ構造を製作し、1.
5kg/cm2 から2.5kg/cm2 までのレンジで
加圧減圧テストを実施したところ容量変化は41pFで
あった。
Finally, a conventional sensor structure is manufactured, and 1.
When a pressurization / decompression test was conducted in a range of 5 kg / cm 2 to 2.5 kg / cm 2 , the capacity change was 41 pF.

【0020】[0020]

【発明の効果】この発明は、以上説明したように、基準
室内を測定レンジの圧力とし、なおかつ、ストッパによ
りダイアフラムが破壊限界を越えないという構成とした
ので、高圧な測定レンジにおいて、低圧用と同等な感度
で感圧できるという効果がある。
As described above, according to the present invention, the pressure in the reference chamber is set to the measurement range, and the diaphragm does not exceed the breaking limit by the stopper. There is an effect that pressure can be sensed with the same sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の圧力センサの第1の実施例を示した説
明図である。
FIG. 1 is an explanatory view showing a first embodiment of a pressure sensor of the present invention.

【図2】本発明による圧力センサ製造プロセスの説明図
である。
FIG. 2 is an explanatory diagram of a pressure sensor manufacturing process according to the present invention.

【図3】本発明の圧力センサの他の実施例を示した説明
図である。
FIG. 3 is an explanatory view showing another embodiment of the pressure sensor of the present invention.

【図4】従来の圧力センサの構造を示した説明図であ
る。
FIG. 4 is an explanatory diagram showing a structure of a conventional pressure sensor.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ダイアフラム 3 メサ 4 基準室 5 ストッパ 6 拡散層 7 対向電極 8 外気導入穴 9 ダイアフラム変位穴 10 シリコンウエハ 11 接合防止膜 1 Glass Substrate 2 Diaphragm 3 Mesa 4 Reference Chamber 5 Stopper 6 Diffusion Layer 7 Counter Electrode 8 Outside Air Introduction Hole 9 Diaphragm Displacement Hole 10 Silicon Wafer 11 Bonding Prevention Film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板の一部分をダイアフラム構
造とし、圧力変化を該ダイアフラムのたわみ量として検
出し、このたわみ量を電気信号に変換する半導体圧力セ
ンサにおいて、シリコンウエハをガラスウエハで両面を
挟み込んだ三重構造とし、該ダイアフラムまたはガラス
ウエハのどちらか一方にメサを形成したことを特徴とす
る圧力センサ。
1. A semiconductor pressure sensor in which a part of a silicon substrate has a diaphragm structure, a pressure change is detected as a deflection amount of the diaphragm, and the deflection amount is converted into an electric signal. A silicon wafer is sandwiched between glass wafers on both sides. A pressure sensor having a triple structure, wherein a mesa is formed on either the diaphragm or the glass wafer.
【請求項2】 前記メサはダイアフラムの一部に形成さ
れることを特徴とする請求項1記載の圧力センサ。
2. The pressure sensor according to claim 1, wherein the mesa is formed on a part of a diaphragm.
【請求項3】 前記メサは基準室を構成しない一方のガ
ラスウエハの一部に形成されることを特徴とする請求項
1記載の圧力センサ。
3. The pressure sensor according to claim 1, wherein the mesa is formed on a part of one glass wafer that does not form a reference chamber.
【請求項4】 電気信号変換機構がホイートストンブリ
ッジを利用したピエゾ抵抗型であることを特徴とする請
求項1記載の圧力センサ。
4. The pressure sensor according to claim 1, wherein the electric signal conversion mechanism is a piezoresistive type using a Wheatstone bridge.
【請求項5】 電気信号変換機構が対向電極をコンデン
サとして利用する静電容量型であることを特徴とする請
求項1記載の圧力センサ。
5. The pressure sensor according to claim 1, wherein the electric signal conversion mechanism is a capacitance type using the counter electrode as a capacitor.
【請求項6】 電気信号変換機構が接点スイッチである
ことを特徴とする請求項1記載の圧力センサ。
6. The pressure sensor according to claim 1, wherein the electric signal conversion mechanism is a contact switch.
JP4226275A 1992-01-28 1992-08-25 Pressure sensor Pending JPH05273064A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1294692 1992-01-28
JP4-12946 1992-05-01

Publications (1)

Publication Number Publication Date
JPH05273064A true JPH05273064A (en) 1993-10-22

Family

ID=11819450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4226275A Pending JPH05273064A (en) 1992-01-28 1992-08-25 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH05273064A (en)

Similar Documents

Publication Publication Date Title
US4188258A (en) Process for fabricating strain gage transducer
JP3444639B2 (en) Manufacturing method and apparatus for integrated pressure transducer
US5369544A (en) Silicon-on-insulator capacitive surface micromachined absolute pressure sensor
EP0629286B1 (en) Soi actuators and microsensors
JP3464657B2 (en) Device configured using diaphragm-based sensor
JP3327553B2 (en) High pressure, low range pressure sensor
US9170164B2 (en) Capacitive pressure sensor and a method of fabricating the same
US5589810A (en) Semiconductor pressure sensor and related methodology with polysilicon diaphragm and single-crystal gage elements
JP3506932B2 (en) Semiconductor pressure sensor and method of manufacturing the same
US4287772A (en) Strain gage transducer and process for fabricating same
Wolffenbuttel et al. Polysilicon bridges for the realization of tactile sensors
US6860154B2 (en) Pressure sensor and manufacturing method thereof
US4872945A (en) Post seal etching of transducer diaphragm
US8552513B2 (en) Semiconductor pressure sensor
US5310610A (en) Silicon micro sensor and manufacturing method therefor
US5744725A (en) Capacitive pressure sensor and method of fabricating same
JPH0618345A (en) Production of pressure sensor
JPH0797643B2 (en) Method for manufacturing pressure transducer
JPH05273064A (en) Pressure sensor
US6308575B1 (en) Manufacturing method for the miniaturization of silicon bulk-machined pressure sensors
JPH05235377A (en) Semiconductor pressure sensor
JPH11304615A (en) Pressure sensor
JPH10256565A (en) Manufacture of semiconductor device having micromechanical structure
JPH0536992A (en) Semiconductor pressure detector
JPH09113390A (en) Semiconductor pressure measuring device and fabrication thereof