JPH0527292B2 - - Google Patents

Info

Publication number
JPH0527292B2
JPH0527292B2 JP57170916A JP17091682A JPH0527292B2 JP H0527292 B2 JPH0527292 B2 JP H0527292B2 JP 57170916 A JP57170916 A JP 57170916A JP 17091682 A JP17091682 A JP 17091682A JP H0527292 B2 JPH0527292 B2 JP H0527292B2
Authority
JP
Japan
Prior art keywords
communication
station
rights
network
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57170916A
Other languages
Japanese (ja)
Other versions
JPS5962244A (en
Inventor
Koji Takao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17091682A priority Critical patent/JPS5962244A/en
Priority to CA000434460A priority patent/CA1226638A/en
Priority to EP83108136A priority patent/EP0101609B1/en
Priority to DE8383108136T priority patent/DE3378452D1/en
Publication of JPS5962244A publication Critical patent/JPS5962244A/en
Priority to US07/120,178 priority patent/US4779092A/en
Publication of JPH0527292B2 publication Critical patent/JPH0527292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/417Bus networks with decentralised control with deterministic access, e.g. token passing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/427Loop networks with decentralised control
    • H04L12/433Loop networks with decentralised control with asynchronous transmission, e.g. token ring, register insertion

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、通信回線により接続された複数の通
信ステーシヨン間で通信権の受け渡しを行い、通
信権を有する通信ステーシヨンが通信を行えるト
ークンパツシング方式の網制御方式に関し、特に
通信権を効率よく受け渡しできるとともに、途中
から通信に参加する通信ステーシヨンをできる限
り速やかに認識することを可能とした網制御方式
に関する。 従来技術 近年、オフイスオートメーシヨン化の高まりと
ともに、低価格で簡潔なネツトワーク伝送路を介
して各種事務機器を連結した、いわゆるローカル
エリアネツトワーク(以下LANと称する)が脚
光を浴びている。この種のLANでは一般に一本
の共通通信伝送路に多数のステーシヨンを接続
し、その伝送路を共用して各ステーシヨン間での
通信を行う形態のものが多い。そのため、2つ以
上のステーシヨンから同時に通信が開始される
と、通信信号の乱れ、いわゆる“通信の衝突”が
生じるおそれがある。 そこで、その“通信の衝突”を避けるために、
ネツトワーク内の全ステーシヨンの発信開始タイ
ミグを調整する網制御方式がこれまでいくつか提
案されているが、その中でもトークンパツシング
(TOKEN PASSING)方式が比較的秀れた方式
の1つとして一般に知られている。このトークン
パツシング方式では1つのステーシヨンがネツト
ワーク伝送路を占有して使用することのできる通
信権なるものを論理的に設定し、かつこの通信権
を有するステーシヨンはネツトワーク中に唯一個
存在するようにし、またそ通信権を有するステー
シヨンが通信動作を終了したとき、あるいは始め
から通信を行う必要がないときには別のステーシ
ヨンにその通信権を委譲して行くという原理に基
づくものである。 さらに、このトークンパツシング方式は、ネツ
トワーク内の各ステーシヨンに均等に通信する機
会を与えるために、通信を終えたステーシヨンが
隣りの下流ステーシヨンに通信権を次々受け渡し
て行き、その通信権がネツトワーク伝送路内を所
定方向に巡回する、いわゆるゴーアヘツド(GO
AHEAD)形式が一般に広く採用されている。ま
た、そのネツトワーク内の通信動作は、一般に所
定のプロトコル(通信規約)に基づいて進められ
ているので、その各ステーシヨンにはそのための
プロセツサがそれぞれ備えられ、所定のフアーム
ウエアにより通信制御動作を行つている。 ところで、上述のトークンパツシング方式によ
る網制御形態は、光フアイバを用いたりリング状
のネツトワークに適用されるようになつている。
この理由は、上述のゴーアヘツド(GO
AHEAD)型通信権巡回方式が、リング状のネツ
トワークという物理的形状に非常に良く適合する
ためである。例えば、第1図に示すように、リン
ク状ネツトワークではその伝送路aの信号の流れ
が通常一方向のものであるので、伝送路上の信号
をせき止める何らかのゲート回路を備えておき、
これをオン、オフすることで図中の矢印で示すよ
うに、隣接した下流のステーシヨンb〜gに対し
て通信権を順次委譲して行くようにすれば、上述
のようなゴーアヘツド(GO AHEAD)型通信権
巡回方式が容易に実現できる。 一方、従来のトークンパツシング方式による通
信方法、例えば特公昭56−19779号公報に開示の
ものは、予め定められた通信ステーシヨン、また
は予め決められた通信ステーシヨンが通信不能の
場合は通信可能な次の通信ステーシヨンへ通信権
を委譲していた。しかしながら、この場合、途中
から通信に参加する通信ステーシヨンの認識が困
難であり、途中参加の通信ステーシヨンへ速やか
に通信権を委譲することができない恐れがあつ
た。 目 的 本発明は、上述した従来技術の欠点を除去する
ものであり、通信権の委譲を効率よく行うことが
できるとともに、途中から通信に参加する通信ス
テーシヨンをできる限り速やかに認識することが
できる網制御方式の提供を目的とする。 実施例 以下、図面を参照して本発明を詳細に説明す
る。 第2図は本発明によるローカルエリアネツトワ
ークの構成の一例を示し、ここでaはリング状の
ネツトワーク伝送路、b〜gはこの伝送路aに接
続した各送受信ステーシヨンであり、そのステー
シヨンb〜gの各アドレス番号(ステーシヨン番
号)はステーシヨンの接続位置と無関係に、例え
ば次表のように任意に割当てる。
Technical Field The present invention relates to a token-passing network control system in which communication rights are transferred between a plurality of communication stations connected by communication lines, and the communication station that has the communication rights can communicate. The present invention relates to a network control method that allows for easy transfer and recognition of communication stations that participate in communication as quickly as possible. BACKGROUND OF THE INVENTION In recent years, with the rise of office automation, so-called local area networks (hereinafter referred to as LANs), which connect various types of office equipment via low-cost and simple network transmission lines, have been in the spotlight. In this type of LAN, a large number of stations are generally connected to a single common communication transmission path, and the transmission path is commonly used to communicate between the stations. Therefore, if two or more stations start communication at the same time, there is a risk that communication signals will be disrupted, or a so-called "communication collision" may occur. Therefore, in order to avoid that "communication collision",
Several network control methods have been proposed so far to adjust the transmission start timing of all stations in the network, but among them, the TOKEN PASSING method is generally known as one of the better methods. It is being In this token passing method, a communication right is logically established that allows one station to occupy and use a network transmission path, and there is only one station in the network that has this communication right. This is based on the principle that when the station that has the communication right finishes its communication operation, or when there is no need to communicate from the beginning, the communication right is delegated to another station. Furthermore, in this token passing method, in order to give each station in the network an equal opportunity to communicate, a station that has finished communicating passes the communication rights to the adjacent downstream station one after another, and the communication rights are transferred to the network. The so-called go-ahead (GO) circulates in a predetermined direction within the workpiece transmission path.
AHEAD) format is generally widely adopted. Furthermore, since communication operations within the network are generally carried out based on predetermined protocols (communication rules), each station is equipped with a processor for this purpose, and communication control operations are performed using predetermined firmware. I'm going. By the way, the above-mentioned network control system based on the token passing method is being applied to networks using optical fibers or in a ring shape.
The reason for this is the GO-Ahead (GO) mentioned above.
This is because the AHEAD) type communication rights circulation system is very well suited to the physical form of a ring-shaped network. For example, as shown in Figure 1, in a link network, the signal flow on the transmission path a is usually unidirectional, so some kind of gate circuit is provided to block the signals on the transmission path.
By turning this on and off, communication rights are sequentially transferred to adjacent downstream stations b to g as shown by the arrows in the figure. type communication rights circulation system can be easily realized. On the other hand, the conventional communication method using the token passing method, for example, the one disclosed in Japanese Patent Publication No. 19779, uses a predetermined communication station or, if a predetermined communication station is unable to communicate, a next available communication method. communication rights were delegated to the communication station. However, in this case, it is difficult to recognize a communication station that joins the communication in the middle, and there is a possibility that communication rights cannot be promptly transferred to the communication station that joins in the middle. Purpose The present invention eliminates the drawbacks of the prior art described above, and allows communication rights to be delegated efficiently, as well as allowing communication stations that participate in communication to be recognized as quickly as possible. The purpose is to provide a network control method. EXAMPLES Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 2 shows an example of the configuration of a local area network according to the present invention, where a is a ring-shaped network transmission line, b to g are transmitting/receiving stations connected to this transmission line a, and the station b is Each address number (station number) of -g is arbitrarily assigned, for example, as shown in the following table, regardless of the connection position of the station.

【表】 通信権委譲に際しては、上述のステーシヨンb
〜gのうち、通信権を有するステーシヨンが自己
のアドレス番号に最も近くてかつ大きな値のアド
レス番号を有するステーシヨンに通信権を委譲す
る。このようにして通信権を順次受け渡して行く
ので、第3図の矢印で示すように、通信権はアド
レス番号順に次々と受け渡されて行き、伝送路a
内を巡回することとなる。すなわち、第2図の矢
印で示すように、通信権はステーシヨンd→b→
f→g→c→e→d…の順序で委譲されるため、
第1図のような隣接の下流ステーシヨンへ委譲し
て行く従来の通信権委譲形態に比べて一見不規則
のように見えるが、実際には第3図に示すよう
に、通信権の委譲されて行くステーシヨンアドレ
スを追跡すると、1〜6のアドレス番号順で連結
する完全なゴーアヘツド型委譲形態となる。 第4図は本発明をバス状ネツトワークに適用し
た一例を示し、ここではAはバス状ネツトワーク
伝送路であり、この伝送路Aに接続した各送受信
ステーシヨンb〜gとそのアドレス番号1〜6と
の関係、および通信権委譲方式は上述の第1実施
例と同様とする。 その結果、第4図の矢印で示すように、通信権
を受けわたす順序は第3図に示すと同様に、各ス
テーシヨンb〜gのアドレス番号順となり、第2
図のリング状ネツトワークの場合と同様にゴーア
ヘツド型網制御形態となる。このように、従来方
式では通信権を隣接した下流ステーシヨンにに委
譲して巡回するため、閉じたループ状伝送路を要
したが、本方式ではステーシヨンのアドレス番号
順に通信権を委譲するようにしているので、ネツ
トワークの伝送路の物理的形状に影響されず、バ
ス状伝送路Aでもリング状伝送路aでも同様に適
用できる。 ところで、第2図および第4図で示した第1お
よび第2の実施例の制御動作例は、ネツトワーク
内の全てのステーシヨンb〜gが全て動作可能状
態にあると仮定した場合のものである。しかし、
実際にネツトワークを運転中に電源を切断した
り、あるいは故障その他の原因で動作不可能とな
るステーシヨンが出現して、有効なステーシヨン
アドレスが連続せず歯抜け状態になる場合が多
い。それ故、ネツトワーク内で動作可能なステー
シヨンのみ選択して、上述のようなアドレス順に
制御されるゴーアヘツド型通信権巡回動作を行わ
せる必要がある。この要請に応じた第5図および
第6図に示す本発明の実施例の制御動作例を、第
7図のフローチヤートを参照して説明する。 第5図および第6図において、×印を附された
ステーシヨンdおよびfは動作不能なステーシヨ
ンとする。また、それぞれのネツトワークには次
のような通信制御手順を備えている。 (T1) 伝送路aまたはAを介してステーシヨンb
〜g間を伝送する通信データは、その中のデー
タ領域に通信制御命令を備え、かつ、この通信
制御命令の一つとして通信権委譲命令を有す
る。この通信権委譲命令のデータには、その命
令を受け取ずべき受信ステーシヨンのアドレス
コードが(アドレス番号)が含まれる。さら
に、本通信権委譲命令がステーシヨンから発信
されたときには、上記受信ステーシヨンアドレ
スに一致するアドレス番号を有するステーシヨ
ンのみが、その通信権委譲命令を受信する。 (T2) 受信ステーシヨンが上述の通信権委譲命令
を受信したときには(ステツプS1)、その命令
を受け取つた旨を示す返答通信データが受信ス
テーシヨンから命令を送信した送信ステーシヨ
ンへ返信される(ステツプS2)。 (T3) さらに、上述の通信権の委譲と、その巡回
動作を確実に行わしめるために、各ステーシヨ
ンb〜gはそれぞれ次のような処理を行う通信
制御手段を有する。なお、これらの手段はいず
れも通信制御用フアームウエアを用いて実現で
きる。すなわち、通信権委譲命令を受信したス
テーシヨンは自己の通信処理を終了し、もしく
は通信処理が初めから存在しない場合には、他
のステーシヨンに対して通信権委譲命令を発し
ようとする。だが、各ステーシヨンはネツトワ
ークシステムのスタートアツプ直後、例えば電
源投入直後等には、次に通信権を渡すべきステ
ーシヨンアドレスを記憶していない(ステツプ
S3)。このステーシヨンアドレスとは、自己の
ステーシヨンアドレスに最も近くかつ大きな値
のアドレス番号で動作可能なステーシヨンのア
ドレスを指すものとする。そこで、通信権を委
譲するステーシヨンは、まず次のような試行と
判定処理とを順次行う。 (t‐1) まず、ステーシヨンの立上げ直後であれ
ば、ステツプS3からステツプS7に飛んでカウ
ント値をクリアした後、自己のステーシヨンア
ドレスに+1を加算した受信者アドレスを作り
(ステツプS8)、これを通信権委譲命令に附し
て発信する(ステツプS11)。その後もし、命
令が受け取つた旨の応答(返答通信データ)が
規定時間以内にないときには(ステツプS12)、
その受信者アドレスをもつステーシヨンはネツ
トワーク内に存在しないか、あるいは電源切断
その他の原因で動作不能状態にあると見なして
ステツプS8に戻り、さらに、上述の受信者ア
ドレスに“+1”を加算し、応答があるまで上
述と同じ手順を順次繰り返す。 (t‐2) 次いで、上述の受信者アドレスが、ネツ
トワークであらかじめ規定した最大ステーシヨ
ンアドレスに達してもまだ命令を受け取つた旨
の返答がないときには(ステツプS9)、ネツト
ワークであらかじめ規定した最小ステーシヨン
アドレスに受信者アドレスをセツトしなおして
(ステツプS10)、通信権委譲命令を送出する
(ステツプS11)。 (t‐3) ここで、ネツトワーク内に動作可能なス
テーシヨンが2つ以上存在すれば、上述の(t
−1)および(t−2)項に示すステツプS11
の命令発信動作に対して、必ず命令を受け取つ
た旨の応答が返されるはずである。その応答が
あつたときには(ステツプS12)、通信権委譲
動作は終了するが、その際その受信ステーシヨ
ンアドレスは、通信権を委譲したステーシヨン
のメモリ(RAM)に記憶され(ステツプ
S13)、上述の(t−1)および(t−2)項
の処理を省き通信効率を高めるため、以後の通
信権委譲動作では、この記憶した受信ステーシ
ヨンアドレスを附して通信権委譲動作を行う
(ステツプS6)。 (t‐4) ただし、ネツトワーク運用中にステーシ
ヨンが電源切断その他の原因で動作不能となつ
た場合、および動作可能となつたステーシヨン
が新たに通信に参入してくる場合を考慮して、
通信権委譲動作を所定回数終了した後は(ステ
ツプS4およびS5)、記憶した受信ステーシヨン
アドレスを用いずに、上述の(t−1)および
(t−2)項のステーシヨンS7〜S12の処理を
行い、通信権を委譲すべきステーシヨンアドレ
スの記憶を更新する(ステツプS13)。 (t‐5) また、上述の(t−3)項のステツプ
S12の処理によつて発見された受信者アドレス
を使つて通信権委譲命令を出したが(ステツプ
S6および11)、命令を受け取つた旨の返答が得
られなくなつた場合には(ステツプS12)、通
信権委譲先のステーシヨンが動作不能状態にな
つたと見なして、再び上述の(t−1)および
(t−2)項のステツプS8からの処理に戻り、
新たな通信権委譲先のステーシヨンを検出す
る。 以上の通信制御処理により、第5および第6図
に示す第3および第4実施例のような通信権委譲
動作が可能となる。なお、図中、矢印は通信権の
委譲先を示し、また第8図はこのときの通信権が
委譲されるステーシヨンアドレスを追跡したとき
の様子を示している。 第9図は第2図および第4図〜第6図の各ステ
ーシヨン構成の一例を示し、ここで11はネツト
ワーク伝送路a(またはA)との送受信を行うト
ランシーバ、13はトランシーバ11に結合さ
れ、伝送路a(またはA)におけるデータ伝送型
式に応じて設けられ、伝送路a(またはA)との
仲介役の機能をもつシリアルコントローラであ
る。伝送路a(またはA)上の第10図に示すよ
うな通信データは、トランシーバ11からシリア
ルコントローラ13を経てDMAコントローラ1
5に転送され、更にメモリ16に格納される。中
央処理装置(CPU)17は、この受信した通信
データのネツトワークアドレスを上述した第7図
のフローチヤートの流れに従つて解析する。 18はCPU17に接続するアドレススイツチ、
19は同じくCPU17に接続するインターフエ
ース制御部であり、インターフエース制御部19
は各種事務機器等20の入出力制御を行う。 第10図は第2図および第4図〜第6図の各ネ
ツトワークで用いられる通信データのフオーマツ
トの一例を示し、ここで31は受信者アドレス、
32は送信者アドレス、33はデータの種類、お
よび34はデータの領域である。 効 果 以上説明したように、本発明によれば、通信権
を有する通信ステーシヨンは通信権を受け渡す通
信ステーシヨンを探索する探索処理を所定回数の
通信権を受け渡し毎に実行するものであり、これ
により、通信権を受け渡す際にその都度探索処理
を行うものに比べ、通信効率を向上することがで
き、また、本発明は全く探索処理を行わないので
はなく、所定回通信権の受け渡しを行うと、探索
処理を実行するので、途中から通信に参加する通
信ステーシヨンをできる限り速やかに認識するこ
とが可能となる。
[Table] When transferring communication rights, station b mentioned above
.about.g, the station that has the communication right delegates the communication right to the station that has the address number that is closest to its own address number and has a larger value. In this way, the communication rights are transferred sequentially, so as shown by the arrows in Figure 3, the communication rights are transferred one after another in the order of address numbers, and the transmission path a.
I will be patrolling inside. That is, as shown by the arrow in Fig. 2, the communication right is from station d→b→
Since the delegation is in the order of f → g → c → e → d...,
At first glance, this appears to be irregular compared to the conventional form of communication rights delegation, in which communication rights are delegated to adjacent downstream stations as shown in Figure 1, but in reality, communication rights are delegated as shown in Figure 3. Tracking the station addresses that go will result in a complete go-ahead type delegation that concatenates in address number order from 1 to 6. FIG. 4 shows an example in which the present invention is applied to a bus-like network, where A is a bus-like network transmission line, and each transmission/reception station b to g connected to this transmission line A and their address numbers 1 to 1 are connected to the transmission line A. 6 and the communication rights delegation method are the same as in the first embodiment described above. As a result, as shown by the arrows in FIG. 4, the order in which communication rights are handed over is the same as shown in FIG.
As in the case of the ring-shaped network shown in the figure, a go-ahead type network control mode is adopted. In this way, in the conventional method, communication rights are delegated to adjacent downstream stations for circulation, which requires a closed loop transmission path, but in this method, communication rights are delegated in the order of station address numbers. Therefore, it is not affected by the physical shape of the transmission path of the network, and can be applied to both the bus-shaped transmission path A and the ring-shaped transmission path a. By the way, the control operation examples of the first and second embodiments shown in FIGS. 2 and 4 are based on the assumption that all stations b to g in the network are in an operable state. be. but,
In reality, some stations often become inoperable due to power being cut off while the network is in operation, or due to malfunction or other reasons, resulting in a situation where valid station addresses are not continuous and the station is left blank. Therefore, it is necessary to select only operable stations within the network and perform the go-ahead type communication rights circulation operation controlled in the order of addresses as described above. An example of the control operation of the embodiment of the present invention shown in FIGS. 5 and 6 in response to this request will be explained with reference to the flowchart shown in FIG. 7. In FIGS. 5 and 6, stations d and f marked with an X are inoperable stations. Additionally, each network is equipped with the following communication control procedures. (T1) Station b via transmission line a or A
The communication data transmitted between . The data of this communication right transfer command includes the address code (address number) of the receiving station that should not receive the command. Further, when this communication rights transfer command is transmitted from a station, only the station having an address number matching the receiving station address receives the communication rights transfer command. (T2) When the receiving station receives the communication rights transfer command described above (step S1), response communication data indicating that the command has been received is returned from the receiving station to the transmitting station that sent the command (step S2). . (T3) Furthermore, in order to ensure the above-mentioned transfer of communication rights and the cyclic operation thereof, each of the stations b to g has a communication control means that performs the following processing. Note that all of these means can be realized using communication control firmware. That is, the station that receives the communication rights transfer command ends its own communication processing, or if no communication processing exists from the beginning, attempts to issue a communication rights transfer command to another station. However, immediately after the network system starts up, for example, immediately after the power is turned on, each station does not remember the station address to which it should next transfer communication rights.
S3). This station address refers to the address of a station that is closest to its own station address and can operate with a larger address number. Therefore, the station to which communication rights are to be delegated first sequentially performs the following trial and determination processing. (t-1) First, if the station has just been started up, jump from step S3 to step S7, clear the count value, and then create a recipient address by adding +1 to the own station address (step S8). This is sent along with the communication rights transfer command (step S11). After that, if there is no response (response communication data) indicating that the command has been received within the specified time (step S12),
It is assumed that the station with that recipient address does not exist in the network or is in an inoperable state due to a power cut or other reason, and the process returns to step S8. Furthermore, "+1" is added to the above-mentioned recipient address. , repeat the same steps as above until a response is received. (t-2) Next, when the above-mentioned recipient address reaches the maximum station address predefined in the network and there is still no response indicating that the command has been received (step S9), the maximum station address predefined in the network is reached (step S9). The recipient address is reset to the station address (step S10), and a communication right transfer command is sent (step S11). (t-3) Here, if there are two or more operable stations in the network, the above (t-3)
-1) and step S11 shown in (t-2)
In response to the command issuing operation, a response indicating that the command has been received should always be returned. When the response is received (step S12), the communication rights transfer operation ends, but at that time, the receiving station address is stored in the memory (RAM) of the station to which the communication rights have been transferred (step S12).
S13) In order to improve communication efficiency by omitting the processing in (t-1) and (t-2) above, in subsequent communication rights transfer operations, this memorized receiving station address is attached to the communication rights transfer operation. (Step S6). (t-4) However, taking into account cases in which a station becomes inoperable due to a power cut or other reasons during network operation, and cases in which a station that becomes operational newly joins the communication network,
After completing the communication rights transfer operation a predetermined number of times (steps S4 and S5), the processing of stations S7 to S12 in the above-mentioned (t-1) and (t-2) sections is performed without using the memorized receiving station address. and updates the memory of the station address to which communication rights should be transferred (step S13). (t-5) Also, step (t-3) above
A communication rights transfer command was issued using the recipient address discovered in the process of S12 (step
S6 and 11), if no response is received to the effect that the command has been received (step S12), it is assumed that the station to which communication rights have been delegated has become inoperable, and the process described above (t-1) is resumed. Then, return to the process from step S8 of the (t-2) term,
Detects a new station to which communication rights are to be transferred. The communication control processing described above enables communication rights delegation operations as in the third and fourth embodiments shown in FIGS. 5 and 6. In the figure, the arrow indicates the destination to which the communication right is transferred, and FIG. 8 shows how the station address to which the communication right is transferred at this time is tracked. FIG. 9 shows an example of the configuration of each station in FIGS. 2 and 4 to 6, where 11 is a transceiver that performs transmission and reception with network transmission path a (or A), and 13 is coupled to transceiver 11. It is a serial controller that is provided according to the data transmission type on transmission path a (or A) and has the function of acting as an intermediary with transmission path a (or A). Communication data as shown in FIG. 10 on transmission path a (or A) is transmitted from the transceiver 11 to the DMA controller 1 via the serial controller 13.
5 and further stored in the memory 16. The central processing unit (CPU) 17 analyzes the network address of the received communication data according to the flowchart of FIG. 7 described above. 18 is an address switch connected to CPU 17,
19 is an interface control unit that is also connected to the CPU 17;
performs input/output control of various office equipment 20. FIG. 10 shows an example of the format of communication data used in each of the networks shown in FIGS. 2 and 4 to 6, where 31 is the recipient address;
32 is a sender address, 33 is a data type, and 34 is a data area. Effects As explained above, according to the present invention, the communication station that has the communication right executes a search process for searching for a communication station to which the communication right is to be transferred every time the communication right is transferred a predetermined number of times. As a result, communication efficiency can be improved compared to a method in which search processing is performed each time communication rights are transferred.Furthermore, the present invention does not perform search processing at all, but transfers communication rights a predetermined number of times. If this is done, a search process is executed, so that it is possible to recognize communication stations that participate in communication as quickly as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方式によるローカルエリアネツト
ワークの構成の一例を示す説明図、第2図は本発
明によるローカルエリアネツトワークの構成の一
例を示す説明図、第3図は第2図の通信権委譲順
序を示す説明図、第4図〜第6図はそれぞれ本発
明によるローカルエリアネツトワークの他の構成
例を示す説明図、第7図は第5図および第6図の
制御動作例を示すフローチヤート、第8図は第5
図および第6図の通信権委譲順序を示す説明図、
第9図は第2図および第4図〜第6図の各ステー
シヨンの構成例を示すブロツク図、第10図は第
2図および第4図〜第6図のネツトワークで用い
られる通信データのフオーマツト例を示す説明図
である。 A,a…ネツトワーク伝送路、b〜g…送受信
ステーシヨン、1〜6…ステーシヨンアドレス。
FIG. 1 is an explanatory diagram showing an example of the configuration of a local area network according to a conventional method, FIG. 2 is an explanatory diagram showing an example of the configuration of a local area network according to the present invention, and FIG. FIG. 4 to FIG. 6 are explanatory diagrams showing other configuration examples of the local area network according to the present invention, and FIG. 7 is an explanatory diagram showing an example of the control operation of FIGS. 5 and 6. Flowchart, Figure 8 is 5th
An explanatory diagram showing the order of communication rights delegation in FIGS.
FIG. 9 is a block diagram showing an example of the configuration of each station shown in FIGS. 2 and 4 to 6, and FIG. FIG. 3 is an explanatory diagram showing a format example. A, a...Network transmission line, b-g...Sending/receiving station, 1-6...Station address.

Claims (1)

【特許請求の範囲】 1 通信回線により接続された複数の通信ステー
シヨン間で通信権の受け渡しを行い、通信権を有
する通信ステーシヨンが通信を行えるトークンパ
ツシング方式の網制御方式において、 前記複数のステーシヨンのうち通信権を受け渡
されたそれぞれの通信ステーシヨンは、 通信権を受け渡すべく通信可能な通信ステーシ
ヨンを探索処理し、 前記探索処理により探索された通信可能な通信
ステーシヨンへ通信権を受け渡すとともに、 通信権を受け渡した通信ステーシヨンのアドレ
ス情報をメモリに記憶し、 次回の通信権受け渡しの際には前記メモリに記
憶されているアドレス情報の通信ステーシヨンへ
前記探索処理を行うことなく通信権を受け渡すこ
とを特徴とし、 さらに、前記それぞれの通信ステーシヨンは前
記メモリに格納されているアドレス情報に基づく
通信権の受け渡し処理を所定回数行う毎に、前記
通信可能な通信ステーシヨンを探索する探索処理
を実行することを特徴とする網制御方式。
[Scope of Claims] 1. A token passing network control system in which communication rights are transferred between a plurality of communication stations connected by a communication line, and a communication station having communication rights can communicate, comprising: Each of the communication stations to which the communication rights have been transferred searches for a communication station with which it can communicate in order to transfer the communication rights, and transfers the communication rights to the communication stations that are searched by the search process and is capable of communication. , stores the address information of the communication station to which the communication right has been transferred in the memory, and the next time the communication right is transferred, the communication right is received without performing the search process to the communication station for the address information stored in the memory. Further, each of the communication stations executes a search process of searching for the communication station with which the communication is possible every time the communication rights are transferred a predetermined number of times based on the address information stored in the memory. A network control method characterized by:
JP17091682A 1982-08-19 1982-10-01 Network control system Granted JPS5962244A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17091682A JPS5962244A (en) 1982-10-01 1982-10-01 Network control system
CA000434460A CA1226638A (en) 1982-08-19 1983-08-12 Data communication method
EP83108136A EP0101609B1 (en) 1982-08-19 1983-08-17 Data communication method
DE8383108136T DE3378452D1 (en) 1982-08-19 1983-08-17 Data communication method
US07/120,178 US4779092A (en) 1982-08-19 1987-11-13 Method and apparatus for effecting multi-station data transmission having a variable next station address

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17091682A JPS5962244A (en) 1982-10-01 1982-10-01 Network control system

Publications (2)

Publication Number Publication Date
JPS5962244A JPS5962244A (en) 1984-04-09
JPH0527292B2 true JPH0527292B2 (en) 1993-04-20

Family

ID=15913717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17091682A Granted JPS5962244A (en) 1982-08-19 1982-10-01 Network control system

Country Status (1)

Country Link
JP (1) JPS5962244A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348933A (en) * 1986-08-18 1988-03-01 Sumitomo Electric Ind Ltd Loop communication system
JPS63227147A (en) * 1987-03-16 1988-09-21 M Syst Giken:Kk Network controller
KR100385116B1 (en) * 2000-09-02 2003-05-22 국방과학연구소 Packet processing method using multiple fault tolerant network arrangement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619779A (en) * 1979-07-26 1981-02-24 Ricoh Co Ltd Device for adjusting position of rear plate
JPS56156301A (en) * 1980-02-02 1981-12-03 Shiyubihaagu G Fuyuaa Aizenbaa Curved clamp tool for clamping rail in railroad installation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619779A (en) * 1979-07-26 1981-02-24 Ricoh Co Ltd Device for adjusting position of rear plate
JPS56156301A (en) * 1980-02-02 1981-12-03 Shiyubihaagu G Fuyuaa Aizenbaa Curved clamp tool for clamping rail in railroad installation

Also Published As

Publication number Publication date
JPS5962244A (en) 1984-04-09

Similar Documents

Publication Publication Date Title
US5235592A (en) Dynamic switch protocols on a shared medium network
EP0101609B1 (en) Data communication method
US6657973B1 (en) Communications node, network system and method of controlling network system
JPH04213251A (en) Communication system
JPH0527292B2 (en)
EP1058427B1 (en) Method and device for establishing a routing table in a communication network
JPH0365702B2 (en)
JP2522847B2 (en) Programmable controller system
JPS61210740A (en) Emergency communicating control system for token bus type local network system
JPS61200734A (en) Data transmission system
JPS6348215B2 (en)
JPS582496B2 (en) Data transfer method
JP2935242B2 (en) Wireless communication system
JPS6069935A (en) Data communication system
JPS6215953A (en) Data transmission control system
JPS63153936A (en) Repeater
JPS589620B2 (en) Peer communication system
JPH05160834A (en) Local area network relay controller
JPH10178439A (en) Communication line, line control method and camera system
JPH0646735B2 (en) Communication network control method
JPS63124644A (en) Data communication equipment having automatic station recognizing function
JPS63153935A (en) Repeater
JPH0543638U (en) Information and communication control device
JPS5970057A (en) Device for controlling transmission of mesh type network
JPS62111546A (en) Serial number managing system of decentralized type loop transmission system