JPH05271250A - Production of alkoxysilane - Google Patents

Production of alkoxysilane

Info

Publication number
JPH05271250A
JPH05271250A JP4105456A JP10545692A JPH05271250A JP H05271250 A JPH05271250 A JP H05271250A JP 4105456 A JP4105456 A JP 4105456A JP 10545692 A JP10545692 A JP 10545692A JP H05271250 A JPH05271250 A JP H05271250A
Authority
JP
Japan
Prior art keywords
alkoxysilane
cyclic
chain
branched
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4105456A
Other languages
Japanese (ja)
Other versions
JP2704344B2 (en
Inventor
Norio Shinohara
紀夫 篠原
Akio Yokoo
明男 横尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP4105456A priority Critical patent/JP2704344B2/en
Publication of JPH05271250A publication Critical patent/JPH05271250A/en
Application granted granted Critical
Publication of JP2704344B2 publication Critical patent/JP2704344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To produce a high-purity alkoxysilane containing no chlorine, usable as an insulating film material for semiconductor industry. CONSTITUTION:An alkoxysilane of the formula RnSi(OR<1>)4-n (n is 1-3 integer; R and R<1> are may be the same or different, substituted or nonsubstituted, straight-chain, branched-chain or cyclic 1-20C alkyl group or aryl group) and a carbinol of the formula R<2>OH (R<2> is substituted or nonsubstituted, straight- chain, branched-chain or cyclic 1-20C alkyl group different from R<1>) is subjected to transesterification reaction in the presence of a catalyst of an alkali metal hydroxide as a catalyst and distilled under heating in the presence of a salt obtained by neutralizing the alkali metal hydroxide with an inorganic acidic gas to produce an alkoxysilane of the formula RnSi(OR<2>)4-n (n, R and R<2> are as shown above).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルコキシシランの製
造方法に関し、特に半導体工業に使用される絶縁膜材料
として適した、高純度のアルコキシシランの製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing alkoxysilane, and more particularly to a method for producing high-purity alkoxysilane suitable as an insulating film material used in the semiconductor industry.

【0002】[0002]

【従来技術】従来、アルコキシシランの製造方法として
は、下記化1の反応機構で表される脱塩化水素法、下記
化2の反応機構で表される脱水素法及び下記化3の反応
機構で表されるエステル交換法が代表的な方法である。
2. Description of the Related Art Conventionally, as a method for producing an alkoxysilane, a dehydrochlorination method represented by the reaction mechanism of the following chemical formula 1, a dehydrogenation method represented by the reaction mechanism of the following chemical formula 2, and a reaction mechanism of the chemical formula 3 below. The transesterification method represented is a typical method.

【化1】 [Chemical 1]

【0003】[0003]

【化2】 [Chemical 2]

【化3】 [Chemical 3]

【0004】これらのうち、脱塩化水素法は、安価なク
ロロシランを原料として使用しているので工業的製造方
法として優れているものの、副生する塩化水素或いはア
ミン塩酸塩をアルコキシシランから除去することが困難
であるので、半導体工業用の絶縁膜材料として使用する
ことのできる、塩素を含有しない高純度のアルコキシシ
ランを製造することは困難であるという欠点があった。
また、脱水素法の場合には、副生物が水素ガスであるの
で、脱塩化水素法の場合のような問題がない上水素ガス
を生成物から除去することが容易であるものの、原料と
なる水素原子含有シランが極めて高価であるという欠点
があった。
Among these, the dehydrochlorination method is excellent as an industrial production method because inexpensive chlorosilane is used as a raw material, but hydrogen chloride or amine hydrochloride produced as a by-product is removed from the alkoxysilane. Therefore, it is difficult to produce a chlorine-free high-purity alkoxysilane that can be used as an insulating film material for the semiconductor industry.
Further, in the case of the dehydrogenation method, since the by-product is hydrogen gas, there is no problem as in the case of the dehydrochlorination method and it is easy to remove hydrogen gas from the product, but it becomes a raw material. There is a drawback that the hydrogen atom-containing silane is extremely expensive.

【0005】[0005]

【発明が解決しようとする課題】一方、エステル交換法
の場合には、例えばアルコレート触媒の存在下に反応を
極めて容易に進行させることができるので、工業的製造
方法としては優れているが、生成したアルコキシシラン
を加熱蒸留して取り出す際に、前記触媒に基ずく逆反応
が生じて平衡混合生成物となるので、純度の高いアルコ
キシシランを製造することができないという欠点があっ
た。
On the other hand, in the case of the transesterification method, the reaction can be carried out extremely easily in the presence of, for example, an alcoholate catalyst, so that it is excellent as an industrial production method. When the generated alkoxysilane is taken out by heating and distilled, a reverse reaction occurs based on the catalyst to form an equilibrium mixed product, so that there is a drawback that it is not possible to produce a highly pure alkoxysilane.

【0006】そこで、本発明者等は上記欠点を解決する
ために鋭意検討した結果、原料として安価なアルコキシ
シラン及びカルビノールを使用すると共に、、触媒とし
てアルカリ金属塩を使用し、反応終了後に無機の酸性ガ
スによって触媒を中和することにより、塩素を含有しな
い、純粋なアルコキシシランを製造することができると
いうことを見出し本発明に到達した。従って、本発明の
目的は、塩素を含有せず、半導体工業用の絶縁膜材料と
して使用することのできる、純度の高いアルコキシシラ
ンの製造方法を提供することにある。
Therefore, as a result of intensive studies made by the present inventors in order to solve the above-mentioned drawbacks, inexpensive alkoxysilane and carbinol were used as raw materials, and an alkali metal salt was used as a catalyst. The present invention was found to be able to produce a pure alkoxysilane containing no chlorine by neutralizing the catalyst with the acidic gas of 1. Therefore, an object of the present invention is to provide a method for producing a highly pure alkoxysilane which does not contain chlorine and can be used as an insulating film material for the semiconductor industry.

【0007】[0007]

【課題を解決するための手段】本発明の上記の目的は、
n Si(OR1 4-n で表されるアルコキシシラン及
びR2 OHで表されるカルビノールを、アルカリ金属酸
化物の触媒の存在下でエステル交換反応させた後、該ア
ルカリ金属水酸化物を無機の酸性ガスで中和して得られ
た無機塩の存在下で加熱蒸留することを特徴とする、R
n Si(OR24-n で表されるアルコキシシランの製
造方法によって達成された。
The above objects of the present invention are as follows.
The alkoxysilane represented by R n Si (OR 1 ) 4-n and the carbinol represented by R 2 OH are transesterified in the presence of a catalyst of an alkali metal oxide, and then the alkali metal hydroxide R is characterized in that the product is heated and distilled in the presence of an inorganic salt obtained by neutralizing the product with an inorganic acid gas.
It was achieved by a method for producing an alkoxysilane represented by n Si (OR 2 ) 4-n .

【0008】上記の各式中、nは1〜3の整数、R及び
1 は同一又は異なっても良い置換又は非置換の、直鎖
状、分岐状又は環状で炭素数1〜20のアルキル基又は
アリール基であり、R2 はR1 と異なる置換又は非置換
の、直鎖状、分岐状又は環状の炭素数1〜20のアルキ
ル基である。R、R1 及びR2 の具体例としては、メチ
ル基、エチル基、n─プロピル基、イソプロピル基、2
─メトキシエトキシ基、2─フェノキシエトキシ基、シ
クロヘキシル基、ベンジル基、4─メトキシベンジル
基、フェニル基及びトリル基等が挙げられる。
In each of the above formulas, n is an integer of 1 to 3, R and R 1 may be the same or different and are substituted or unsubstituted, linear, branched or cyclic alkyl having 1 to 20 carbon atoms. R 2 is a group or an aryl group, and R 2 is a substituted or unsubstituted linear, branched or cyclic C 1-20 alkyl group different from R 1 . Specific examples of R, R 1 and R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, 2
—Methoxyethoxy group, 2-phenoxyethoxy group, cyclohexyl group, benzyl group, 4-methoxybenzyl group, phenyl group and tolyl group.

【0009】本発明で触媒として使用するアルカリ金属
水酸化物は、特に限定されるものではなく、公知のアル
カリ金属の水酸化物の中から適宜選択して使用すること
ができる。好ましいアルカリ金属水酸化物の具体例とし
ては、水酸化リチウム、水酸化ナトリウム、水酸化カリ
ウム、水酸化マグネシウム及び水酸化カルシウムを挙げ
ることができる。
The alkali metal hydroxide used as a catalyst in the present invention is not particularly limited and can be appropriately selected and used from known alkali metal hydroxides. Specific examples of preferable alkali metal hydroxides include lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide and calcium hydroxide.

【0010】本発明においては、カルビノールをアルコ
キシシランのアルコキシ基1モルに対して1.0〜2.
0モル添加することが好ましく、特に1.1〜1.3モ
ル添加することが好ましい。反応温度は、用いるカルビ
ノールの沸点に応じて適宜選択されるが、一般的には5
0〜250℃の範囲とすることが好ましく、特に60〜
180℃の範囲とすることが好ましい。
In the present invention, carbinol is added in an amount of 1.0 to 2.
It is preferable to add 0 mol, and particularly preferably 1.1 to 1.3 mol. The reaction temperature is appropriately selected depending on the boiling point of the carbinol used, but is generally 5
The temperature is preferably in the range of 0 to 250 ° C., particularly 60 to
It is preferable to set it in the range of 180 ° C.

【0011】本発明において使用する無機の酸性ガス
は、水に溶解させた場合に、該水溶液が酸性を呈するガ
スであれば特に限定されるものではない。具体的には、
炭酸ガス、亜硝酸ガス及び亜硫酸ガス等が挙げられる。
これらのガスの中でも炭酸ガスを使用することが特に好
ましい。無機の酸性ガスの使用量は、用いたアルカリ水
酸化物1モルに対して1モル以上とすることが好ましい
が、通常1〜10モルの範囲とすることが好ましい。
The inorganic acidic gas used in the present invention is not particularly limited as long as it is a gas whose aqueous solution exhibits acidity when dissolved in water. In particular,
Examples thereof include carbon dioxide gas, nitrous acid gas, and sulfurous acid gas.
Of these gases, it is particularly preferable to use carbon dioxide gas. The amount of the inorganic acid gas used is preferably 1 mol or more with respect to 1 mol of the alkali hydroxide used, but is usually preferably in the range of 1 to 10 mol.

【0012】無機の酸性ガスを導入する際の反応系の温
度は、ガスの液相への溶解度を高くする観点及び反応速
度を速める観点から適宜の温度が選択されるが、通常、
−50℃〜+100℃の温度範囲が好ましい。反応温度
が高いと反応速度は速くなるが逆にガスの溶解度が低下
する、一方反応温度が低いとガスの溶解度は上昇するも
のの、反応速度が遅くなる。上記反応終了後の生成物混
合液を、蒸留塔を使用し、常圧下或いは減圧下において
分留することにより、目的とするアルコキシシランを得
ることができる。この場合、前記混合液中に固体の無機
塩が析出する場合があるが、これを分離しないで分留し
ても逆反応は起こらない。
The temperature of the reaction system at the time of introducing the inorganic acid gas is appropriately selected from the viewpoints of increasing the solubility of the gas in the liquid phase and accelerating the reaction rate.
A temperature range of -50 ° C to + 100 ° C is preferred. When the reaction temperature is high, the reaction rate is high, but on the contrary, the gas solubility is low. On the other hand, when the reaction temperature is low, the gas solubility is high, but the reaction rate is low. The target alkoxysilane can be obtained by fractionally distilling the product mixture after the above reaction using a distillation column under normal pressure or reduced pressure. In this case, a solid inorganic salt may be precipitated in the mixed solution, but the reverse reaction does not occur even if fractional distillation is performed without separating the inorganic salt.

【0013】[0013]

【発明の効果】本発明の製造方法は、原料としてアルコ
キシシラン及びカルビノール、触媒としてアルカリ金属
水酸化物を用いると共に、エステル交換反応終了後に無
機の酸性ガスを反応系に導入して該触媒を失活させ、分
留の際の加熱による逆反応が生じることを防止している
ので、半導体工業に使用する絶縁膜用の材料として有用
な、純度の高いアルコキシシランを極めて高収率で製造
することができる。
EFFECTS OF THE INVENTION In the production method of the present invention, alkoxysilane and carbinol are used as raw materials, and an alkali metal hydroxide is used as a catalyst, and an inorganic acid gas is introduced into the reaction system after the transesterification reaction to complete the catalyst. Since it deactivates and prevents the reverse reaction due to heating during fractional distillation, a highly pure alkoxysilane useful as a material for an insulating film used in the semiconductor industry is produced in an extremely high yield. be able to.

【0014】[0014]

【実施例】以下本発明を実施例に従って更に詳述する
が、本発明はこれによって限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited thereto.

【0015】実施例1.蒸留塔、滴下ロート及び温度計
を備えた1リットルのフラスコに、10ppmの加水分
解性塩素を含有する市販のメチルトリメトキシシラン3
40.5g(2.5モル)と水酸化ナトリウム0.34
g(メチルトリメトキシシランに対して0.1重量%)
を仕込み、フラスコ内の温度を60〜100℃に保ちな
がら、滴下ロートを用いて、2─メトキシエタノール
(CH3 OCH 2 CH2 OH) 684.9g(9モル)を1時間
かけて滴下した。該2─メトキシエタノールが滴下され
ると直ちに蒸留塔の塔頂からメタノールが留出した。
Example 1. Commercially available methyltrimethoxysilane 3 containing 10 ppm of hydrolyzable chlorine in a 1 liter flask equipped with a distillation column, a dropping funnel and a thermometer.
40.5 g (2.5 mol) and sodium hydroxide 0.34
g (0.1% by weight based on methyltrimethoxysilane)
Then, 684.9 g (9 mol) of 2 -methoxyethanol (CH 3 OCH 2 CH 2 OH) was added dropwise over 1 hour while maintaining the temperature in the flask at 60 to 100 ° C. Immediately after the 2-methoxyethanol was dropped, methanol was distilled from the top of the distillation column.

【0016】2─メトキシエタノールの滴下が終了した
後、フラスコ内の温度を100〜150℃とし、更に2
時間反応させて得られた溶液を25℃に冷却した後、炭
酸ガス3.7gを該溶液中に導入して水酸化ナトリウム
触媒を中和した。次いで、中和によって生じた塩を除去
することなく、圧力20mmHgで減圧蒸留し、20m
mHgにおける沸点が151℃のメチルトリス(2─メ
トキシエトキシ)シラン610.6gを得た。収率は9
1%であった。得られたメチルトリス(2─メトキシエ
トキシ)シランの塩素含有量を、電位差滴定法(MCI
−オートマチックタイトレイターGT−05:三菱化成
株式会社製の測定器の商品名)によって測定したとこ
ろ、0ppmであった。
After the dropwise addition of 2-methoxyethanol was completed, the temperature inside the flask was adjusted to 100 to 150 ° C., and further 2
After the solution obtained by reacting for a time was cooled to 25 ° C., 3.7 g of carbon dioxide gas was introduced into the solution to neutralize the sodium hydroxide catalyst. Then, without removing the salt generated by the neutralization, vacuum distillation was carried out at a pressure of 20 mmHg to obtain 20 m
610.6 g of methyltris (2-methoxyethoxy) silane having a boiling point of 151 ° C. in mHg was obtained. Yield is 9
It was 1%. The chlorine content of the obtained methyltris (2-methoxyethoxy) silane was measured by potentiometric titration (MCI
-Automatic Tie Traiter GT-05: trade name of measuring instrument manufactured by Mitsubishi Kasei Co., Ltd.), and it was 0 ppm.

【0017】実施例2.蒸留塔、滴下ロート及び温度計
を備えた1リットルのフラスコに、市販の9ppmの加
水分解性塩素を含有するフェニルトリメトキシシラン4
95.8g(2.5モル)と水酸化ナトリウム0.5g
(フェニルトリメトキシシランに対して0.1重量%)
を仕込み、フラスコ内の温度を60〜100℃に保ちな
がら、滴下ロートを用いて、2─メトキシエタノール
(CH3 OCH 2 CH2 OH) 684.9g(9モル)を1時間
かけて滴下した。該2─メトキシエタノールが滴下され
ると直ちに蒸留塔の塔頂からメタノールが留出した。
Embodiment 2. In a 1 liter flask equipped with a distillation column, a dropping funnel and a thermometer, commercially available phenyltrimethoxysilane 4 containing 9 ppm of hydrolyzable chlorine.
95.8g (2.5mol) and sodium hydroxide 0.5g
(0.1% by weight based on phenyltrimethoxysilane)
Then, 684.9 g (9 mol) of 2 -methoxyethanol (CH 3 OCH 2 CH 2 OH) was added dropwise over 1 hour while maintaining the temperature in the flask at 60 to 100 ° C. Immediately after the 2-methoxyethanol was dropped, methanol was distilled from the top of the distillation column.

【0018】2─メトキシエタノールの滴下が終了した
後、フラスコ内の温度を100〜150℃とし、更に2
時間反応させて得られた溶液を25℃に冷却した後、炭
酸ガス5.5gを該溶液中に導入して水酸化ナトリウム
触媒を中和した。次いで、中和によって生じた塩を除去
することなく、圧力が2.5mmHgの条件で減圧蒸留
し、2.5mmHgの圧力における沸点が165℃のフ
ェニルトリス(2─メトキシエトキシ)シラン768.
4gを得た。収率は93%であった。得られたフェニル
トリス(2─メトキシエトキシ)シランの塩素含有量
を、電位差滴定法(MCI−オートマチックタイトレイ
ターGT−05:三菱化成株式会社製の測定器の商品
名)によって測定したところ、0ppmであった。
After the addition of 2-methoxyethanol was completed, the temperature inside the flask was adjusted to 100 to 150 ° C., and then 2
After the solution obtained by reacting for a period of time was cooled to 25 ° C., 5.5 g of carbon dioxide gas was introduced into the solution to neutralize the sodium hydroxide catalyst. Next, without removing the salt generated by the neutralization, vacuum distillation was carried out under the condition of a pressure of 2.5 mmHg, and the boiling point of phenyltris (2-methoxyethoxy) silane 768.
4 g was obtained. The yield was 93%. The chlorine content of the obtained phenyltris (2-methoxyethoxy) silane was measured by potentiometric titration (MCI-Automatic Titerator GT-05: trade name of measuring instrument manufactured by Mitsubishi Kasei Co., Ltd.), and it was 0 ppm. there were.

【0019】比較例1.炭酸ガスを導入しなかった他
は、実施例1と全く同様にしてメチルトリス(2─メト
キシエトキシ)シランの製造を行ったところ、得られた
留出物はCH3 Si(OCH2 CH2 O CH 3(OCH3 ) 2 、CH3 Si(
OCH 2 CH2 OCH 3 ) 2 (OCH3 ) 及びCH3 Si(OCH2 CH2 OC
H 3 ) 3 との混合物であり、純度の高いメチルトリス
(2─メトキシエトキシ)シランを得ることができなか
った。得られた混合物を再蒸留したところ、収率8%で
メチルトリス(2─メトキシエトキシ)シランが得られ
たに過ぎなかった。 得られたメチルトリス(2─メト
キシエトキシ)シランについて実施例1と同様にして塩
素濃度を測定したところ、0ppmであった。
Comparative Example 1. When methyltris (2-methoxyethoxy) silane was produced in exactly the same manner as in Example 1 except that carbon dioxide gas was not introduced, the obtained distillate was CH 3 Si (OCH 2 CH 2 O CH 3 (OCH 3 ) 2 , CH 3 Si (
OCH 2 CH 2 OCH 3 ) 2 (OCH 3 ) and CH 3 Si (OCH 2 CH 2 OC
Since it was a mixture with H 3 ) 3 , highly pure methyltris (2-methoxyethoxy) silane could not be obtained. The resulting mixture was redistilled and only methyltris (2-methoxyethoxy) silane was obtained in a yield of 8%. When the chlorine concentration of the obtained methyltris (2-methoxyethoxy) silane was measured in the same manner as in Example 1, it was 0 ppm.

【0020】実施例3〜8及び比較例2〜3.原料、触
媒及び炭酸ガス導入の有無を変えた他は、実施例1と全
く同様にしてアルコキシシランを製造した。結果は表1
に示した通りである。
Examples 3-8 and Comparative Examples 2-3. An alkoxysilane was produced in exactly the same manner as in Example 1 except that the raw materials, the catalyst, and the introduction of carbon dioxide were changed. The results are shown in Table 1.
As shown in.

【0021】[0021]

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Rn Si(OR1 4-n (式中、nは1〜
3の整数、R及びR1 は同一又は異なっても良い、置換
又は未置換の、直鎖状、分岐状又は環状で炭素数1〜2
0のアルキル基又はアリール基である)で表されるアル
コキシシラン及びR2 OH(式中、R2 は、R1 と異な
る置換又は未置換の、直鎖状、分岐状又は環状で炭素数
1〜20のアルキル基である)で表されるカルビノール
を、アルカリ金属水酸化物の触媒の存在下でエステル交
換反応させた後、該アルカリ金属水酸化物を無機の酸性
ガスで中和して得られた無機塩の存在下で加熱蒸留する
ことを特徴とする、Rn Si(OR2 4-n (式中、n
は1〜3の整数、Rは置換又は未置換の、直鎖状、分岐
状又は環状で炭素数1〜20のアルキル基又はアリール
基、R2 は置換又は未置換の、直鎖状、分岐状又は環状
で炭素数1〜20のアルキル基である)で表されるアル
コキシシランの製造方法。
1. R n Si (OR 1 ) 4-n (where n is 1 to
The integers of 3, R and R 1, which may be the same or different, are substituted or unsubstituted, linear, branched or cyclic and have 1 to 2 carbon atoms.
Alkoxysilane represented by 0 is an alkyl group or an aryl group of 0 and R 2 OH (wherein R 2 is a substituted or unsubstituted linear, branched or cyclic different from R 1 and having 1 carbon atom). A carbinol represented by the formula (I) to an alkyl group of 20) is subjected to a transesterification reaction in the presence of a catalyst of an alkali metal hydroxide, and then the alkali metal hydroxide is neutralized with an inorganic acid gas. R n Si (OR 2 ) 4-n (wherein n is represented by the formula, wherein the compound is heated and distilled in the presence of the obtained inorganic salt.
Is an integer of 1 to 3, R is a substituted or unsubstituted, straight-chain, branched or cyclic alkyl or aryl group having 1 to 20 carbon atoms, and R 2 is a substituted or unsubstituted, straight-chain, branched A cyclic or cyclic alkylsilane having 1 to 20 carbon atoms).
【請求項2】無機の酸性ガスが炭酸ガスである請求項1
に記載のアルコキシシランの製造方法。
2. The inorganic acid gas is carbon dioxide gas.
The method for producing an alkoxysilane according to 1.
JP4105456A 1992-03-30 1992-03-30 Method for producing alkoxysilane Expired - Fee Related JP2704344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4105456A JP2704344B2 (en) 1992-03-30 1992-03-30 Method for producing alkoxysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4105456A JP2704344B2 (en) 1992-03-30 1992-03-30 Method for producing alkoxysilane

Publications (2)

Publication Number Publication Date
JPH05271250A true JPH05271250A (en) 1993-10-19
JP2704344B2 JP2704344B2 (en) 1998-01-26

Family

ID=14408092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4105456A Expired - Fee Related JP2704344B2 (en) 1992-03-30 1992-03-30 Method for producing alkoxysilane

Country Status (1)

Country Link
JP (1) JP2704344B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323582B2 (en) 2001-08-06 2008-01-29 Degussa Ag Organosilicon compounds
JP2012522738A (en) * 2009-04-01 2012-09-27 ワッカー ケミー アクチエンゲゼルシャフト Method for producing hydrocarbon oxysilicon compound
CN106866723A (en) * 2017-01-25 2017-06-20 湖北新蓝天新材料股份有限公司 A kind of synthetic method of the double triethoxy silicon substrate ethane of alcohol silane crosslinker

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079775B2 (en) 2001-02-05 2006-07-18 Finisar Corporation Integrated memory mapped controller circuit for fiber optics transceiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323582B2 (en) 2001-08-06 2008-01-29 Degussa Ag Organosilicon compounds
JP2012522738A (en) * 2009-04-01 2012-09-27 ワッカー ケミー アクチエンゲゼルシャフト Method for producing hydrocarbon oxysilicon compound
CN106866723A (en) * 2017-01-25 2017-06-20 湖北新蓝天新材料股份有限公司 A kind of synthetic method of the double triethoxy silicon substrate ethane of alcohol silane crosslinker

Also Published As

Publication number Publication date
JP2704344B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
JP3543352B2 (en) Method for producing sulfur-containing organosilicon compound
SU613726A3 (en) Method of obtaining alkoxysilanes
WO1992016458A1 (en) Use of metal salts in the synthesis of oligomeric hydrogensilsesquioxanes via hydrolysis/condensation reactions
JPH05271250A (en) Production of alkoxysilane
EP0348948A2 (en) Process for production of polyfluorocarbon iodide
JPS63156795A (en) Production of ketoximosilane
US5166453A (en) Method for purification of ethylene compounds having fluorine-containing organic group
US6160151A (en) Process for production of diphenyl-dialkoxysilane, phenylalkyl-dialkoxysilane, octaphenylcyclotetrasilozane and sym-tetraalkyltetraphenyl-cyclotetrasiloxane
JPH0791307B2 (en) Method for producing cyclopentyl trichlorosilane
JP4467890B2 (en) Chloromethylation of thiophene
TW449578B (en) Removal of water and ammonia from benzophenone imine reactor effluents
JPH05271146A (en) Method for purification of waste acetic acid
JPH0692905A (en) Purification of dialkyl carbonate
JP2777001B2 (en) Method for inhibiting discoloration of vinylacetoxysilane and stabilized vinyltriacetoxysilane
CA1301184C (en) 1,2-dichloro-1,2,2-trimethyl-1-phenyldisilane and method for producing the same
JP2575562B2 (en) Method for purifying tantalum alkoxide
JPH0142956B2 (en)
JP2002105064A (en) Method of producing high-purity oxazolidinone
JPS63227593A (en) Production of metal alkoxide solution
JPS5572197A (en) Stabilization of trimethoxysilane
JP3449432B2 (en) Method for producing cyclopentyltrichlorosilane
JP2899504B2 (en) Purification method of dicyclopentyldimethoxysilane
JPH1045769A (en) Production of trimethylsilylazide
JPS6357592A (en) Production of tert-butyldimethylchlorosilane
JPH0357110B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees