JPH05271221A - Crystals of quinolone-carboxylic acid derivative - Google Patents

Crystals of quinolone-carboxylic acid derivative

Info

Publication number
JPH05271221A
JPH05271221A JP1453893A JP1453893A JPH05271221A JP H05271221 A JPH05271221 A JP H05271221A JP 1453893 A JP1453893 A JP 1453893A JP 1453893 A JP1453893 A JP 1453893A JP H05271221 A JPH05271221 A JP H05271221A
Authority
JP
Japan
Prior art keywords
crystal
type
water
atmosphere
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1453893A
Other languages
Japanese (ja)
Other versions
JP3256311B2 (en
Inventor
Hiroyuki Nagano
洋幸 永野
Nobuyuki Suzuki
信之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Priority to JP01453893A priority Critical patent/JP3256311B2/en
Publication of JPH05271221A publication Critical patent/JPH05271221A/en
Application granted granted Critical
Publication of JP3256311B2 publication Critical patent/JP3256311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

PURPOSE:To provide quinolonecarboxylic acid derivative dihydrate crystals which is obtained using a specific solvent for purification, thus shows excellent stability under the pharmacentical manufacturing conditions such as in moisture absorption, kneading or the like and is very suitable for manufacturing medicines. CONSTITUTION:1-Cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-7-(3- methylaminopiperidin-1-yl)-4-oxoquinoline-3-carboxylic acid (Q-35) obtained from 1-cyclopropyl-6,7-difluoro-1,4-dihydro-4-oxo-3-quinoline-carboxylic acid and 3- methylaminopiperidine is suspended in ethanol-water (1:1), refluxed with heat to obtain the type I crystals of Q-35 dihydrate of formula II. When methanol is used as a solvent for purification to give the type II crystals of monohydrate, further when acetonitrile is used, type III crystal of variable water content is obtained. The crystals of type I converts into type II, when it is refluxed in methanol with heat, but no transition occurs moisturization and kneading.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抗菌剤として有用で安
定性に優れた1−シクロプロピル−6−フルオロ−1,
4−ジヒドロ−8−メトキシ−7−(3−メチルアミノ
ピペリジン−1−イル)−4−オキソキノリン−3−カ
ルボン酸2水和物に関する。
The present invention relates to 1-cyclopropyl-6-fluoro-1, which is useful as an antibacterial agent and has excellent stability.
It relates to 4-dihydro-8-methoxy-7- (3-methylaminopiperidin-1-yl) -4-oxoquinoline-3-carboxylic acid dihydrate.

【0002】[0002]

【従来の技術】特開平3−95177号公報には、次式
(I) で示される1−シクロプロピル−6−フルオロ−1,4
−ジヒドロ−8−メトキシ−7−(3−メチルアミノピ
ペリジン−1−イル)−4−オキソキノリン−3−カル
ボン酸(以下「Q−35」と称する)が開示されてい
る。更に、同公報にはQ−35がアセトニトリルから再
結晶されたものであり、優れた抗菌性を有することが記
載されている。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 3-95177 discloses the following formula (I): 1-cyclopropyl-6-fluoro-1,4 represented by
-Dihydro-8-methoxy-7- (3-methylaminopiperidin-1-yl) -4-oxoquinoline-3-carboxylic acid (hereinafter referred to as "Q-35") is disclosed. Further, the publication describes that Q-35 is recrystallized from acetonitrile and has excellent antibacterial properties.

【0003】[0003]

【発明が解決しようとする課題】しかし、医薬品として
の実用化研究を続けるうちに、アセトニトリルから再結
晶した上記のQ−35は、湿度の上昇に伴い重量が増加
するという欠点を有し、安定性が悪いことが判明した。
したがって、安定した投与量が得られないなど、上記Q
−35を医薬品として開発することは困難であることが
わかった。このため、高湿度条件下でも安定なQ−35
を得る手段を開発する必要があった。
However, while continuing research into practical use as a drug, the above Q-35 recrystallized from acetonitrile has a drawback that its weight increases with an increase in humidity and is stable. It turned out to be bad.
Therefore, the above-mentioned Q
It has proven difficult to develop -35 as a drug. Therefore, Q-35 is stable even under high humidity conditions.
Needed to develop a means to obtain

【0004】[0004]

【課題を解決するための手段】本発明者らは、アセトニ
トリルから再結晶した上記Q−35の有する欠点を解消
すべく鋭意検討を行った結果、Q−35には、含有水分
量が一定しない結晶(以下「結晶III」もしくは「I
II型結晶」と称する)、1水和物の結晶(以下「結晶
II」もしくは「II型結晶」と称する)、2水和物の
結晶(以下「結晶I」もしくは「I型結晶」と称する)
及び無水物結晶の4種類の結晶形態があり、各々の形態
は再結晶溶媒の種類に左右されることを見い出した。そ
して、各結晶形態の物性について更に詳細な研究を重ね
た結果、アセトニトリルから再結晶した上記Q−35は
III型結晶であること、I型結晶すなわちQ−35の
2水和物が高湿度条件で最も安定であり、乾燥もしくは
加熱条件で無水物に変化するものの、放置すれば2水和
物に戻ること、を見い出した。本発明は、このような知
見に基づいてなされたものである。すなわち、本発明
は、次式 を有する1−シクロプロピル−6−フルオロ−1,4−
ジヒドロ−8−メトキシ−7−(3−メチルアミノピペ
リジン−1−イル)−4−オキソキノリン−3−カルボ
ン酸2水和物である。
Means for Solving the Problems The inventors of the present invention have made earnest studies to eliminate the drawbacks of the above-mentioned Q-35 recrystallized from acetonitrile, and as a result, the water content in Q-35 is not constant. Crystal (hereinafter “Crystal III” or “I
II-form crystal), monohydrate crystal (hereinafter "crystal II" or "II crystal"), dihydrate crystal (hereinafter "crystal I" or "I-form crystal") )
It has been found that there are four types of crystal forms, namely, and anhydrous crystals, and each form depends on the type of recrystallization solvent. Then, as a result of further detailed studies on the physical properties of each crystal form, the above-mentioned Q-35 recrystallized from acetonitrile is a type III crystal, and the type I crystal, that is, the dihydrate of Q-35 is under high humidity conditions. It was found that although it was the most stable, it changed to an anhydrate under dry or heating conditions, but returned to a dihydrate when left to stand. The present invention has been made based on such findings. That is, the present invention is 1-cyclopropyl-6-fluoro-1,4- having
It is dihydro-8-methoxy-7- (3-methylaminopiperidin-1-yl) -4-oxoquinoline-3-carboxylic acid dihydrate.

【0005】Q−35の合成法には1−シクロプロピル
−6,7−ジフルオロ−1,4−ジヒドロ−4−オキソ
−3−キノリンカルボン酸(DFQ)に直接3−メチル
アミノピペリジン(3−MAP)を縮合する方法(I
法)と、DFQ−EtにHBF4 を反応させてDFQ−
BF2 キレート(DFQ−BF2 )とし、これに3−M
APを縮合させQ−35 BF2 キレート(Q−35−
BF2 )とした後、Et3 N又はNaOH水溶液等で加
水分解を行い、Q−35を得る方法(II法)とがあ
る。II法の方が収率が良いため大量合成には適してい
る。I法及びII法の反応径路は下記の通りである。
A method for synthesizing Q-35 is as follows. 1-Cyclopropyl-6,7-difluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid (DFQ) is directly added to 3-methylaminopiperidine (3- MAP) condensation method (I
Method), HBF 4 is reacted with DFQ-Et to produce DFQ-
BF 2 chelate (DFQ-BF 2 ) was prepared and 3-M
Q-35 BF 2 chelate (Q-35-
BF 2 ) and then hydrolyzing with Et 3 N or an aqueous solution of NaOH to obtain Q-35 (method II). Method II is suitable for large-scale synthesis because the yield is better. The reaction paths for Method I and Method II are as follows.

【0006】 精製法としては、I法あるいはII法で得られたQ−3
5を溶媒中で加熱還流・加熱乾燥を行い、精製用の溶媒
にて精製する。この場合、上記のいずれの結晶形が生成
するかは用いる精製溶媒によって左右される。例えば、
アセトニトリル−水ではIII型結晶もしくはII型結
晶、メタノールではII型結晶、エタノール−水(1:
1)ではI型結晶がそれぞれ得られる。これら3種の結
晶形がどの様な条件で得られるかを検討したところ、エ
タノールあるいはアセトニトリルに完全に溶解した後溶
媒を減圧留去するとIII型結晶が、メタノールに懸濁
後加熱還流するとII型結晶が、エタノール−水(1:
1)に懸濁後加熱還流するとI型結晶が生成することが
明らかになっている。
[0006] As a purification method, Q-3 obtained by Method I or Method II
5 is heated to reflux and dried by heating in a solvent, and purified with a solvent for purification. In this case, which of the above crystal forms is produced depends on the purified solvent used. For example,
Type III or type II crystals in acetonitrile-water, type II crystals in methanol, ethanol-water (1:
In 1), type I crystals are obtained respectively. When the conditions under which these three crystal forms were obtained were examined, type III crystals were obtained when completely dissolved in ethanol or acetonitrile and the solvent was distilled off under reduced pressure. The crystals are ethanol-water (1:
It has been clarified that Form I crystals are produced by heating and refluxing after suspending in 1).

【0007】また、結晶IIは加湿及び練合(50%エ
タノールあるいは水)により結晶Iへ転移する。一方、
結晶Iにメタノールを加えて加熱還流すると結晶IIに
なるが、加湿及び練合(50%エタノールあるいは水)
によって結晶転移はしない。更に、結晶II及び結晶I
は、乾燥によって結晶水が失われ無水物になるが、空気
中に放置するとそれぞれ再び水和物の形に戻ることが確
認されている。
Further, the crystal II is transformed into the crystal I by humidification and kneading (50% ethanol or water). on the other hand,
When methanol is added to crystal I and heated under reflux, crystal II is obtained, but humidification and kneading (50% ethanol or water)
Does not cause crystal transition. Further, crystal II and crystal I
It has been confirmed that, when dried, the water of crystallization is lost and becomes an anhydrous substance, but when left in the air, it returns to the hydrate form again.

【0008】以下に本発明化合物を製造するための実施
例を示すが、本発明はこれらの実施例に限定されるもの
ではない。
Examples for producing the compound of the present invention are shown below, but the present invention is not limited to these examples.

【0009】[0009]

【実施例1】DFQ−BF2 エステル3.4g、3−メ
チルアミノピペリジン・2HCl(3−MAP・2HC
l)2.3g、トリエチルアミン4.5gを塩化メチレ
ン18mlに加え、3時間加熱還流した。塩化メチレン
を減圧留去後、NaOH2.5g/水20mlの溶液を
加え、80℃で1.5時間反応させた。反応溶液を冷却
後、6N−HClにてpH=8〜9に調整し、晶析し
た。析出した結晶を遠心分離し、粗Q−35湿性末4.
2gを得た(dry換算3.2g、収率83.0%)。
Example 1 3.4 g of DFQ-BF 2 ester, 3-methylaminopiperidine.2HCl (3-MAP.2HC
l) 2.3 g and triethylamine 4.5 g were added to methylene chloride 18 ml, and the mixture was heated under reflux for 3 hours. After distilling off methylene chloride under reduced pressure, a solution of NaOH 2.5 g / water 20 ml was added, and the mixture was reacted at 80 ° C. for 1.5 hours. After cooling the reaction solution, pH was adjusted to 8 to 9 with 6N-HCl and crystallization was performed. The precipitated crystals were centrifuged to give crude Q-35 moist powder 4.
2 g was obtained (3.2 g in dry conversion, yield 83.0%).

【0010】フマル酸3.5gを90%メタノール水溶
液102mlに溶解し、そこへ粗Q−35を9.4g
(dry換算)加えた。溶液を冷却し、析出した結晶を
遠心分離し、Q−35・フマール湿性末12.1gを得
た(dry換算11.0g、収率90.1%)。
3.5 g of fumaric acid was dissolved in 102 ml of 90% aqueous methanol solution, and 9.4 g of crude Q-35 was dissolved therein.
(Converted to dry) was added. The solution was cooled, and the precipitated crystals were centrifuged to obtain 12.3 g of Q-35-fumar wet powder (dry conversion 11.0 g, yield 90.1%).

【0011】NaOH3.6gを水100mlに溶解
し、そこへQ−35・フマレート11.0gを加え溶解
した。不溶物を濾別後、6N−HClを加えpH=8〜
9に調整し晶析した。析出した結晶を遠心分離・乾燥
し、精製Q−35I型結晶7.7g(収率83.2%)
を得た。
3.6 g of NaOH was dissolved in 100 ml of water, and 11.0 g of Q-35 / fumarate was added and dissolved therein. After filtering off the insoluble matter, 6N-HCl was added to pH = 8-
It was adjusted to 9 and crystallized. The precipitated crystals are separated by centrifugation and dried, and 7.7 g of purified Q-35 type I crystals (yield 83.2%)
Got

【0012】[0012]

【実施例2】200mlの反応容器に9.1%w/w−
MAPメタノール溶液61.7g(49.3mmol)
を仕込み、減圧下60℃の温水で加熱して約55mlの
メタノールを留去した。得られた濃縮残渣に、塩化メチ
レン65ml、トリエチルアミン7.7g(75.8m
mol)、DFQ−BF2 エステル13.0g(37.
9mmol)を加えて1時間還流した。次第に溶解し、
黄色の澄明溶液となった。この反応溶液の溶媒を減圧下
で留去した。濃縮残渣に水30ml、25%水酸化ナト
リウム水溶液39g(244mmol)を加え、70℃
で1時間加水分解を行った(加熱時、約50℃から残存
していた溶媒が留去した)。加水分解混合液を水冷後、
5.5N塩酸(1/1)約30mlでpHを8.5に調
整し、晶析を促進するために60℃で30分間加熱し
た。この混合液を25℃に冷却し、1時間攪拌した。次
いで混合液を約45分間24インチ遠心分離機にかけて
結晶を分離した。得られた結晶を水20mlで洗浄し、
30分間振り切って、粗Q−35湿性末18.2g(n
et=13.8g、収率94%)を得た。
Example 2 9.1% w / w- in a 200 ml reaction vessel
61.7 g (49.3 mmol) of MAP methanol solution
Was charged and heated with warm water at 60 ° C. under reduced pressure to distill off about 55 ml of methanol. 65 ml of methylene chloride and 7.7 g of triethylamine (75.8 m) were added to the obtained concentrated residue.
mol), 13.0 g of DFQ-BF 2 ester (37.
(9 mmol) was added and the mixture was refluxed for 1 hour. Gradually dissolves,
It became a yellow clear solution. The solvent of this reaction solution was distilled off under reduced pressure. 30 ml of water and 39 g (244 mmol) of 25% aqueous sodium hydroxide solution were added to the concentrated residue, and the mixture was heated to 70 ° C.
And hydrolyzed for 1 hour (when heated, the remaining solvent was distilled off from about 50 ° C.). After cooling the hydrolysis mixture with water,
The pH was adjusted to 8.5 with about 30 ml of 5.5 N hydrochloric acid (1/1), and the mixture was heated at 60 ° C. for 30 minutes to promote crystallization. The mixture was cooled to 25 ° C and stirred for 1 hour. The mixture was then placed on a 24 inch centrifuge for about 45 minutes to separate crystals. The crystals obtained are washed with 20 ml of water,
Shake it off for 30 minutes to obtain 18.2 g (n) of coarse Q-35 wet powder.
Et = 13.8 g, yield 94%) was obtained.

【0013】200mlの反応容器にイオン交換水10
0ml、濃塩酸4.3ml(47.3mmol)、上で
得られた粗Q−35湿性末18.2g(net=13.
8g(35.5mmol))を加えた(pH=3〜
4)。酢酸エチル30mlで2回抽出した。減圧下、7
0℃の温水で加熱し、水層に溶解している酢酸エチルを
留去した(約1時間30分)。水層に塩酸2mlを加え
酸性とし、生じた若干の不溶物を濾別した。水酸化ナト
リウム水溶液(3g/10ml)約8mlで濾液のpH
を8.5に調整した後、晶析を促進するために60℃で
30分間加熱した。加熱終了後、この液を25℃に冷却
し、1時間攪拌した。次いで濾液を約30分間24イン
チ遠心分離機にかけて結晶を分離した。得られた結晶を
イオン交換水20mlで洗浄し、30分間振り切って、
結晶13.7gを得た。
Deionized water 10 was added to a 200 ml reaction vessel.
0 ml, concentrated hydrochloric acid 4.3 ml (47.3 mmol), 18.2 g of the crude Q-35 wet powder obtained above (net = 13.
8 g (35.5 mmol)) was added (pH = 3 ~).
4). It was extracted twice with 30 ml of ethyl acetate. Under reduced pressure, 7
The mixture was heated with warm water of 0 ° C., and ethyl acetate dissolved in the aqueous layer was distilled off (about 1 hour 30 minutes). 2 ml of hydrochloric acid was added to the aqueous layer to make it acidic, and some insoluble matter formed was filtered off. PH of filtrate with about 8 ml of sodium hydroxide aqueous solution (3 g / 10 ml)
Was adjusted to 8.5 and then heated at 60 ° C. for 30 minutes to promote crystallization. After heating, this liquid was cooled to 25 ° C. and stirred for 1 hour. The filtrate was then placed on a 24 inch centrifuge for about 30 minutes to separate crystals. The obtained crystals are washed with 20 ml of deionized water, shaken off for 30 minutes,
13.7 g of crystals were obtained.

【0014】200mlの反応容器にエタノール80m
l、水80ml、上記結晶13.7gを加え、70℃に
加熱し、懸濁状態で30分間攪拌した。この混合液を2
5℃に冷却し1時間攪拌した後、約30分間24インチ
遠心分離機にかけて結晶を分離した。得られた結晶をイ
オン交換水20mlで洗浄し、30分間振り切って、Q
−35湿性末を得た。得られたQ−35湿性末を、通気
乾燥機を用いて、60℃2時間乾燥し、更に室温で2時
間通気し、Q−35のI型結晶10.1g(収率73
%)を得た。
80 ml of ethanol in a 200 ml reaction vessel
1, 80 ml of water and 13.7 g of the above crystals were added, and the mixture was heated to 70 ° C. and stirred in a suspended state for 30 minutes. 2 this mixture
After cooling to 5 ° C. and stirring for 1 hour, the crystals were separated by a 24-inch centrifuge for about 30 minutes. The obtained crystals were washed with 20 ml of deionized water, shaken for 30 minutes, and
A -35 moist powder was obtained. The obtained Q-35 wet powder was dried at 60 ° C. for 2 hours using an aeration dryer and further aerated at room temperature for 2 hours to give 10.1 g of I-type Q-35 crystals (yield 73
%) Was obtained.

【0015】このようにして得たQ−35のI型結晶を
用いて、その構造及び2分子の結晶水の挙動を明らかに
するために下記の実験を行った。
Using the type I crystal of Q-35 thus obtained, the following experiment was conducted in order to clarify its structure and the behavior of water of crystallization of two molecules.

【0016】〔実験例〕 1)試料 赤外吸収スペクトル、粉末X線回折及び熱分析用として
は実施例の方法で製造したものを、単結晶X線解析用と
しては次のカッコ内に記載した方法によって得られた結
晶をそれぞれ使用した。
[Experimental Examples] 1) Samples For infrared absorption spectra, powder X-ray diffraction and thermal analysis, those produced by the method of Example are described in parentheses for single crystal X-ray analysis. Each of the crystals obtained by the method was used.

【0017】(単結晶X線解析用結晶:上記実施例の方
法で得たQ−35のC型結晶(8.10g)に無水エタ
ノール450mlを加え、75℃で30分間加熱し熱時
濾過した。その濾液を室温放置後吸引濾過し、結晶を得
た(約5.95g)。結晶に水を300ml加え、95
℃で5分間加熱し、室温放置後吸引濾過し、濾液を室温
放置して結晶を得た。) 2)使用機器 TG/DTA:セイコー電子・TG/DTA 200 DSC:セイコー電子 DSC・210 赤外分光光度計:Nicolet・20 DXB 粉末X線回折装置:Philips・PW1730/1
0 単結晶X線回折装置:Enraf−Nonius・CA
D4 3)実験方法 (1)熱分析 昇温→降温実験(TG) 試料約10mgを用い(試料は粉末であるため粉砕は行
わない)、室温から昇温速度5℃/minで80℃まで
加熱し、80℃で30分holdした後、室温まで降温
した。この時の加熱、降温による重量変化を観察した。
測定時はN2 ガスによる乾燥の影響を防ぐため、N2
スはflowさせなかった(室内の相対湿度:RH40
〜50%)。
(Crystal for single crystal X-ray analysis: 450 ml of anhydrous ethanol was added to the C-type crystal of Q-35 (8.10 g) obtained by the method of the above-mentioned example, heated at 75 ° C. for 30 minutes and filtered while hot. The filtrate was allowed to stand at room temperature and then suction-filtered to obtain crystals (about 5.95 g).
The mixture was heated at ℃ for 5 minutes, allowed to stand at room temperature and then suction filtered, and the filtrate was allowed to stand at room temperature to obtain crystals. ) 2) Equipment used TG / DTA: Seiko Denshi ・ TG / DTA 200 DSC: Seiko Denshi DSC ・ 210 Infrared spectrophotometer: Nicolet ・ 20 DXB Powder X-ray diffractometer: Philips ・ PW1730 / 1
0 single crystal X-ray diffractometer: Enraf-Nonius CA
D4 3) Experimental method (1) Thermal analysis Temperature rising → temperature falling experiment (TG) Using about 10 mg of a sample (the sample is a powder, therefore, it is not crushed), and heated from room temperature to 80 ° C. at a heating rate of 5 ° C./min. Then, after holding at 80 ° C. for 30 minutes, the temperature was lowered to room temperature. At this time, the weight change due to heating and cooling was observed.
Since the measurement is to prevent the influence of drying by N 2 gas, N 2 gas was allowed to flow (indoor relative humidity: RH40
~ 50%).

【0018】 室温−無水雰囲気下→室内雰囲気下に
おける実験(TG) 試料約10mgを用い(粉砕は行わない)、室温でN2
ガス200ml/minをflowさせ無水雰囲気下と
して重量変化を観察した。重量変化がなくなった後、N
2 ガスをstopし、室内雰囲気下とし(室内の相対湿
度:RH40〜50%)再度重量変化を観察した。
Room temperature-under anhydrous atmosphere → experimentation under indoor atmosphere (TG) Using about 10 mg of sample (without crushing), N 2 at room temperature
The gas was allowed to flow at 200 ml / min and the weight change was observed under an anhydrous atmosphere. After the weight change disappears, N
Two gases were stopped and placed in an indoor atmosphere (relative indoor humidity: RH 40 to 50%), and the weight change was observed again.

【0019】 低湿度(RH6%)下保存実験(T
G) 試料約10mg(粉砕は行わない)を加熱、N2 ガスf
lowによる無水雰囲気下で脱水した後、室温でRH6
%に調湿したAir*を200ml/minでflow
させて、その重量変化を観察した。
Storage experiments under low humidity (RH 6%) (T
G) Approximately 10 mg of sample (not crushed) is heated and N 2 gas f
After dehydration in an anhydrous atmosphere with low, RH6 at room temperature
Flow of Air * with humidity adjusted to 100% at 200 ml / min
Then, the weight change was observed.

【0020】*デシケーターに飽和NaOH溶液を保存
し、RH6%に調湿し、循環させた。 昇温実験及び活性化エネルギーの算出(TG/DT
A) 試料約10mg(粉砕は行わない)を用い、室温から昇
温速度2,3,5℃/minで170℃まで加熱した。
この時の加熱による重量変化、熱的変化を観察し、重量
変化より小沢法により活性エネルギーを求めた。測定時
はN2 ガスによる乾燥の影響を防ぐため、N2 ガスはf
lowさせなかった(室内の相対湿度:RH40〜50
%)。
Saturated NaOH solution was stored in a desiccator, adjusted to RH 6%, and circulated. Temperature rising experiment and calculation of activation energy (TG / DT
A) About 10 mg of a sample (not crushed) was used and heated from room temperature to 170 ° C. at a heating rate of 2, 3, 5 ° C./min.
At this time, changes in weight and heat due to heating were observed, and the activation energy was calculated from the change in weight by the Ozawa method. Since the measurement is to prevent the influence of drying by N 2 gas, N 2 gas is f
Not allowed to go low (indoor relative humidity: RH 40-50
%).

【0021】 昇温実験(DSC) 試料約10mg(粉砕は行わない)を用い、サンプルパ
ンは水蒸気による加圧をさけるためクリンプせずope
nの状態で測定を行った。N2 ガス20ml/minを
flowし、熱的に安定したところで(約3分間)、室
温から昇温速度3℃/minで170℃まで加熱し熱的
変化を観察した。
Temperature rising experiment (DSC) About 10 mg of a sample (without crushing) was used, and the sample pan was not crimped in order to avoid being pressurized by steam, and ope
The measurement was performed in the state of n. 20 ml / min of N 2 gas was allowed to flow, and when it was thermally stable (about 3 minutes), it was heated from room temperature to 170 ° C. at a temperature rising rate of 3 ° C./min and the thermal change was observed.

【0022】(2)赤外吸収スペクトル 加熱(80℃)→室内雰囲気下 試料をKBrで5%に混合希釈し、粉末X線回折用加熱
セルを用いて加熱し、拡散反射法(DRA)で測定した
(scan回数:2048,gain:16)。加熱実
験及び室内雰囲気下における実験では、乾燥Airによ
る影響を防ぐためSample室は開放状態で行い(室
内の相対湿度:RH20〜30%)、referenc
eも同様に測定した。無水雰囲気下における実験では、
Sample室を閉じて、乾燥Airにより無水雰囲気
下とし、referenceも同様に測定した。
(2) Infrared absorption spectrum Heating (80 ° C.) → in a room atmosphere The sample was mixed and diluted to 5% with KBr, heated using a heating cell for powder X-ray diffraction, and subjected to a diffuse reflection method (DRA). The measurement was performed (scan number: 2048, gain: 16). In the heating experiment and the experiment in the indoor atmosphere, the sample chamber was opened in order to prevent the influence of the dry air (internal relative humidity: RH 20 to 30%), and the reference was performed.
Similarly, e was measured. In an experiment under anhydrous atmosphere,
The Sample chamber was closed and dried Air was placed in an anhydrous atmosphere, and the reference was measured in the same manner.

【0023】 室温−無水雰囲気下→室内雰囲気下 試料をKBrで5%に混合希釈し、拡散反射法(DR
A)で測定した(scan回数:1024,gain:
8)。セルは簡便なDRA用セルを用いて測定した。無
水雰囲気下での実験はSample室を閉じて、乾燥A
irをflowし実験を行い、referenceも同
様に測定した。室内雰囲気下における実験では、Sam
ple室は開放状態で行い(室内の相対湿度:RH20
〜30%)、referenceも同様に測定した。
Room temperature-under anhydrous atmosphere → under room atmosphere The sample was mixed and diluted to 5% with KBr, and the diffuse reflection method (DR
A) (scan number: 1024, gain:
8). The cell was measured using a simple DRA cell. For experiments under anhydrous atmosphere, close the Sample chamber and dry.
The experiment was performed with ir flowing, and the reference was measured in the same manner. In an experiment in an indoor atmosphere, Sam
The ple room is open (relative humidity in the room: RH20
.About.30%), and the reference was similarly measured.

【0024】(3)粉末X線回折スペクトル 加熱(80℃)→室内雰囲気下 試料を粉砕し加熱用セルを用いて、昇温速度5℃/mi
nで80℃まで加熱し、その後N2 ガスをflowして
無水雰囲気下とした後室温まで降温した。その後N2
スをstopして室内雰囲気下として測定した(室内の
相対湿度:60〜70%)。
(3) Powder X-ray diffraction spectrum Heating (80 ° C.) → in a room atmosphere A sample was crushed and a heating cell was used to raise the temperature at 5 ° C./mi.
The mixture was heated to 80 ° C. with n, and then N 2 gas was allowed to flow to form an anhydrous atmosphere, and then the temperature was lowered to room temperature. After that, N 2 gas was stopped and the measurement was performed under an indoor atmosphere (relative humidity in the room: 60 to 70%).

【0025】 室温−無水雰囲気下→室内雰囲気下 試料を粉砕し加熱用セルを用いて、N2 ガスをflow
して無水雰囲気下とし、経時的に測定した。その後N2
ガスをstopして室内雰囲気下として測定した(室内
の相対湿度:60〜70%)。
Room temperature-under anhydrous atmosphere → under room atmosphere A sample is crushed and N 2 gas is allowed to flow using a heating cell.
Then, it was placed in an anhydrous atmosphere and measured over time. Then N 2
The gas was stopped and the measurement was carried out in a room atmosphere (relative humidity in the room: 60 to 70%).

【0026】(4)単結晶X線解析 室内雰囲気下(室温の相対湿度:60〜70%)で測定
後、N2 ガスをflowして無水雰囲気下として測定し
た。その後再度室内雰囲気下に保存して測定した。
(4) Single crystal X-ray analysis After measurement in a room atmosphere (relative humidity at room temperature: 60 to 70%), N 2 gas was allowed to flow and measurement was performed in an anhydrous atmosphere. Then, it was stored again in an indoor atmosphere and measured.

【0027】4)実験結果及び考察 (1)熱分析による結晶水の挙動解析 TG法でQ−35のI形結晶(2水和物)を室温から8
0℃まで加熱(N2 ガスによる影響を防ぐためN2 ガス
はflowさせない)したところ、温度上昇に伴い重量
の減少が起こり、最終的に約8.1%が減量した。Q−
35I型結晶の含水量の理論値は8.47%であるの
で、減量分は結晶水に相当すると推定される。すなわ
ち、加熱減量時の試料は脱水無水物と考えられる。その
後降温すると、降温と同時に重量が増加しはじめ、約1
50分でInitialの重量に戻った(図1)。これ
らのことから、Q−35I型結晶の2分子の結晶水は加
熱により脱離するが、室温で空気中の水分を取込み、再
び2分子の結晶水の状態で安定化することが推定され
た。重量変化が結晶水によるものであることの確認は、
「(2)構造変化」で行った。
4) Experimental Results and Consideration (1) Analysis of Behavior of Crystal Water by Thermal Analysis The I-form crystal of Q-35 (dihydrate) was analyzed from room temperature to 8 by TG method.
When heated to 0 ° C. (N 2 gas is not allowed to flow in order to prevent the influence of N 2 gas), the weight decreased as the temperature increased, and finally the amount decreased by about 8.1%. Q-
Since the theoretical water content of the 35I type crystal is 8.47%, it is estimated that the weight loss corresponds to water of crystallization. That is, the sample at the time of heating loss is considered to be dehydrated anhydride. After that, when the temperature is lowered, the weight starts to increase at the same time as the temperature is lowered.
It returned to the Initial weight in 50 minutes (Fig. 1). From these facts, it was estimated that although two molecules of crystal water of the Q-35I type crystal are desorbed by heating, they absorb water in the air at room temperature and stabilize again in the state of two molecules of crystal water. .. Confirmation that the weight change is due to crystal water is
It was performed in “(2) Structural change”.

【0028】一方、試料を室温で無水雰囲気下に保存し
たところ、約700分で約8.0%の減量が起きた。そ
の後、室内雰囲気下に保存すると急速に重量が増加し、
約150分でInitialと同じ重量に戻った(図
2)。これは、Q−35I型結晶の結晶水が加熱によっ
て脱離するだけでなく、室温においても、無水雰囲気下
で結晶水の脱離が十分起こりえることを示している。
On the other hand, when the sample was stored at room temperature in an anhydrous atmosphere, a weight loss of about 8.0% occurred in about 700 minutes. After that, when stored in an indoor atmosphere, the weight increases rapidly,
It returned to the same weight as Initial in about 150 minutes (Fig. 2). This indicates that not only the water of crystallization of the Q-35I type crystal is desorbed by heating, but also desorption of the water of crystallization can sufficiently occur in an anhydrous atmosphere even at room temperature.

【0029】室温−無水雰囲気下保存でも2分子に相当
する脱水が生じ、脱水物はRH40〜50%の室内雰囲
気下に保存することで完全に水分が再吸収されることが
確認されたが、わずかに水が存在する低湿度下ではQ−
35I型結晶はどのような状態で存在するのであろう
か。すなわち、1)低湿度下でも2分子の結晶水は結晶
内に取り込まれ、2水和物として存在する 2)一定湿
度以下では無水物またはと1水和物のような中間状態で
存在する こと等が考えられる。そこで一旦脱水した結
晶に、室温下RH6%に調湿したAirをflowし重
量変化を測定したところ、低湿度にもかかわらず急速に
吸水し、約60分で2水和物の重量に戻ることが確認さ
れ、その吸水過程で1水和物のような中間状態は観測さ
れなかった(図3)。室内雰囲気下よりRH6%の方が
吸水速度が速いのは、測定中のAirの流量の差による
ものと思われる。
It was confirmed that dehydration corresponding to two molecules occurs even when stored at room temperature-anhydrous atmosphere, and that the dehydrated product is completely reabsorbed of water when stored in an indoor atmosphere of 40 to 50% RH. Under low humidity with a little water, Q-
What is the state of the 35I type crystal? That is, 1) two molecules of water of crystallization are taken into the crystal even under low humidity, and exist as dihydrate. 2) At a certain humidity or lower, they exist in an intermediate state such as anhydrate or monohydrate. Etc. are possible. Therefore, the dehydrated crystal was allowed to flow with Air whose humidity was adjusted to 6% at room temperature and the weight change was measured. It rapidly absorbed water despite the low humidity and returned to the weight of the dihydrate in about 60 minutes. Was confirmed, and an intermediate state such as monohydrate was not observed in the water absorption process (FIG. 3). The reason why the water absorption rate is higher in RH 6% than in the indoor atmosphere is considered to be due to the difference in the air flow rate during the measurement.

【0030】加熱による脱水の場合、TG曲線(図4)
は、昇温と同時になだらかな減量が起こり、その後急激
な減量が認められプラトーに達する。この時DTA曲線
は、脱水過程において2ピークが認められ、TGにおけ
るなだらかな減量時にDTAのなだらかな1ピーク、T
Gでの急激な減量時にDTAの大きな1ピークの合わせ
て2ピークが認められる。これは、脱離しやすい水とし
にくい水の2種類が存在するため、脱離しやすい水が先
に飛び、脱離しにくい水がその後に飛ぶ2段階の反応が
合わさったためとも考えられる。DSC曲線でもDTA
曲線と同様、脱水過程において2ピークが認められた
(図5)。一方、室温でN2 ガスをflow(室温−無
水雰囲気下)した場合のTG曲線(図2)では、N2
スflow直後にやや大きな減量があり、その後なだら
かな減量が起こった後、急激な減量が認められプラトー
に達したが、この場合は最初に表面の試料中の水が飛
び、その後、加熱の場合と同様に脱離しやすい水が先に
飛び、脱離しにくい水がその後に飛ぶ2段階の反応が合
わさっていると考えられる。
In case of dehydration by heating, TG curve (FIG. 4)
At the same time, a gradual weight loss occurs at the same time as the temperature rises, and then a rapid weight loss is observed and a plateau is reached. At this time, two peaks were observed in the DTA curve during the dehydration process, and one gentle peak of DTA, T
When the amount of G is rapidly reduced, one peak of DTA and two peaks are observed. It is considered that this is because there are two types of water that are easy to desorb and water that is difficult to desorb, so that the water that is easily desorbed first flies, and the water that is hard to desorb flies afterwards in a two-step reaction. DTA even with DSC curve
Similar to the curve, two peaks were observed during the dehydration process (Fig. 5). On the other hand, in the TG curve (FIG. 2) when N 2 gas was allowed to flow (room temperature-anhydrous atmosphere) at room temperature, there was a slightly large amount of decrease immediately after the flow of N 2 gas, followed by a gradual decrease, followed by a rapid decrease. Although a weight loss was observed and a plateau was reached, in this case, the water in the sample on the surface first flew, then, like the case of heating, the water that was easily desorbed first, and the water that was hard to desorb then flew 2 It is considered that the reactions of the steps are combined.

【0031】(2)構造変化 赤外吸収スペクトル法 i)加熱(80℃)→室内雰囲気下 TG法において、Q−35I型結晶は加熱(80℃)に
より結晶水の理論値相当量の減量が認められ、その後室
温に降温することによりInititialの重量に戻
ることが確認された。重量変化量が結晶水の理論値と一
致することから、重量変化は2分子の結晶水の脱着によ
るものと推定し、赤外吸収スペトル法により確認した。
(2) Structural change Infrared absorption spectrum method i) Heating (80 ° C.) → under room atmosphere In the TG method, the Q-35I type crystal was heated (80 ° C.) to reduce the amount of crystal water equivalent to the theoretical value. It was confirmed that the initial weight was returned to the initial weight by lowering the temperature to room temperature. Since the amount of weight change agrees with the theoretical value of water of crystallization, it was estimated that the weight change was due to the desorption of two molecules of water of crystallization, and was confirmed by the infrared absorption spectroscopy method.

【0032】Initialのスペクトルでは結晶水由
来のνO-H (H2 O)ピークが強く認められる(図
6)。加熱(80℃)すると、νO-H (H2 O)の吸収
は完全に消失しており、80℃で脱水し無水物となって
いることが確認された(図6)。また、νC=0 (カルボ
キシレート、ケトン:1622cm-1)より低波数側の
スペクトルも変化しており、脱水により何らかの変化が
生じていると思われる。結晶水はカルボキシレート(Q
−35はベタイン構造をとっている)の酸素に結合して
いるが、カルボキシレートのνC=0 吸収(1622,1
459cm-1)はわずかにピーク形状に変化が認められ
る。その後、無水雰囲気下で降温し室温保存して、ν
O-H (H2 O)の吸収は認められず加熱時のスペクトル
と一致し、脱水状態を保っている(図7)。しかし、室
内雰囲気下に保存すると、約24時間でInitial
と同等のνO-H (H2 O)の吸収が認められ、その他の
ピークも完全にInitialのスペクトルと一致し、
Initialと同じ2水和物の分子構造をとっており
(図8)、室温下で水が存在すると脱水物は水を取り込
むことが確認された。この結果より、Q−35I型結晶
は加熱により結晶水が脱離して無水物となるが、室内雰
囲気下に保存すると、吸水しInitialと同じ2水
和物の分子構造に戻るといえる。
In the Initial spectrum, a ν OH (H 2 O) peak derived from water of crystallization is strongly recognized (FIG. 6). Upon heating (80 ° C.), absorption of ν OH (H 2 O) completely disappeared, and it was confirmed that dehydration at 80 ° C. resulted in an anhydride (FIG. 6). In addition, the spectrum on the lower wave number side than ν C = 0 (carboxylate, ketone: 1622 cm -1 ) also changed, and it is considered that some change occurred due to dehydration. Crystal water is carboxylate (Q
-35 has a betaine structure) bound to oxygen, but the carboxylate has ν C = 0 absorption (1622,1).
At 459 cm −1, a slight change in peak shape is observed. Then, lower the temperature in an anhydrous atmosphere and store at room temperature.
No absorption of OH (H 2 O) was observed, which is consistent with the spectrum upon heating, and the dehydrated state is maintained (Fig. 7). However, if stored in an indoor atmosphere, Initial
Absorption of ν OH (H 2 O) equivalent to that of the above was observed, and the other peaks also completely matched the Initial spectrum,
It has the same molecular structure of dihydrate as Initial (FIG. 8), and it was confirmed that the dehydrated product takes up water in the presence of water at room temperature. From these results, it can be said that the Q-35 type I crystal loses its water of crystallization by heating to become an anhydride, but when it is stored in an indoor atmosphere, it absorbs water and returns to the same dihydrate molecular structure as Initial.

【0033】ii)室温−無水雰囲気下→室内雰囲気下 TG法では加熱と同様、室温−無水雰囲気下でも結晶水
の理論値相当量の減量が認められ、その後室内雰囲気下
でInitialの重量に戻ることが確認された。加熱
による減量は脱水によることが赤外吸収スペクトルで確
認されたが、室温−無水雰囲気下の重量変化が水による
ものであること、また加熱と室温−無水雰囲気下の脱水
物の分子構造が異なるかどうかを、赤外吸収スペクトル
により観察した。
Ii) Room Temperature-Underwater Atmosphere → Indoor Atmosphere In the TG method, as in the case of heating, a reduction in the amount equivalent to the theoretical value of crystal water was recognized even under room temperature-anhydrous atmosphere, and then returned to the Initial weight in the room atmosphere. It was confirmed. It was confirmed in the infrared absorption spectrum that the weight loss due to heating was due to dehydration, but the weight change under room temperature-anhydrous atmosphere was due to water, and the molecular structure of the dehydrated product under heating and room temperature-anhydrous atmosphere was different. Whether or not it was observed by an infrared absorption spectrum.

【0034】無水雰囲気下に保存すると、加熱時と同様
νO-H (H2 O)の吸収が消失して完全に加熱時のスペ
クトルと一致し(図9)、室温−無水雰囲気下に保存す
るだけで脱水して無水物になり、加熱時と同じ分子構造
をとることがわかった。その後室内雰囲気下に保存する
と、加熱した時と同様、Initialと同等のνO- H
(H2 O)の吸収が認められ、Initialのスペク
トルと一致し、Initialと同じ2水和物の分子構
造をとっていることが確認された(図10)。よって、
室温−無水雰囲気下に保存すると脱水して無水物が生
じ、その脱水無水物の分子構造は加熱による脱水無水物
の分子構造と同じであり、その後室内雰囲気下に保存す
るとInitialと同じ2水和物の分子構造に戻るこ
とが確認された。
When stored in an anhydrous atmosphere, absorption of ν OH (H 2 O) disappears as in the case of heating and completely agrees with the spectrum of heating (FIG. 9). It was found that it was dehydrated to give an anhydride and had the same molecular structure as when heated. After that, when it is stored in an indoor atmosphere, ν O- H equivalent to Initial will be obtained, just as when heated.
Absorption of (H 2 O) was observed, which was in agreement with the spectrum of Initial and was confirmed to have the same molecular structure of dihydrate as Initial (FIG. 10). Therefore,
When stored in a room temperature-anhydrous atmosphere, dehydration produces an anhydride, and the molecular structure of the dehydrated anhydride is the same as the molecular structure of dehydrated anhydride by heating. It was confirmed to return to the molecular structure of the product.

【0035】赤外吸収スペクトルの測定により、Q−3
5I型結晶は加熱(80℃)及び室温−無水雰囲気下で
脱水して無水物が生じ、脱水物の分子構造は乾燥条件に
よらず同じであり、室温雰囲気下に保存することで再び
吸湿しInitialと同じ2水和物の分子構造に戻
り、水の脱着は可逆的であることが確認された。
As a result of measurement of infrared absorption spectrum, Q-3
The 5I type crystal is dehydrated under heating (80 ° C.) and room temperature-anhydrous atmosphere to produce an anhydride, and the molecular structure of the dehydrated product is the same regardless of the drying conditions. It was confirmed that the desorption of water was reversible, returning to the same molecular structure of dihydrate as Initial.

【0036】 粉末X線回折 i)加熱(80℃)→室内雰囲気下 赤外吸収スペクトルで加熱及び室温−無水雰囲気下で脱
水し、室内雰囲気下に保存することで再び水が戻ること
が確認された。そこで、脱水することによる結晶構造の
変化について、粉末X線回折により観察した。
Powder X-ray diffraction i) Heating (80 ° C.) → in a room atmosphere It was confirmed that water was returned again by heating in an infrared absorption spectrum, dehydration under room temperature-anhydrous atmosphere, and storage in a room atmosphere. It was Therefore, changes in the crystal structure due to dehydration were observed by powder X-ray diffraction.

【0037】Initialのスペクトルを図11に示
す。加熱(80℃)すると、Initial時には2
4.2℃に存在した大きなピークが消失し、その他のス
ペクトルも変化して全く異なるスペクトルを示した(図
12)。この結果は、加熱により脱水することが赤外吸
収スペクトルで確認されているため、加熱による脱水時
は単に水分子が脱離しているだけでなく結晶構造自体が
異なる構造をとっていることを意味している。この後、
無水雰囲気下で室温まで降温すると、赤外吸収スペクト
ルでは無水雰囲気下で降温し室温保存しても脱水状態を
保持していたが、粉末X線回折においても加熱時(脱水
時)のスペクトルと一致し、脱水物の結晶構造を保持し
ており(図13)、結晶構造は加熱時の脱水物と同じ構
造をとっている。しかし、室内雰囲気下に保存すると、
14時間でInitial時に存在した24.2℃の大
きなピークが再び現れ、Initialのスペクトルと
完全に一致した(図14)。赤外吸収スペトルでは、室
内雰囲気下に保存することで水が戻ってInitial
の分子構造に戻ることが確認されており、粉末X線回折
においても室内雰囲気下に保存することで脱水物の結晶
構造がInitialの結晶構造、すなわち2分子の結
晶水をもつ構造に戻ることが確認された。赤外吸収スペ
クトル及び粉末X線回折の結果をあわせてみると、加熱
で脱水し、脱水することで結晶構造も変化するが、室内
雰囲気下に保存すると、水は戻り、結晶構造も同時にI
nitialの結晶構造に戻る。水の脱着は可逆であ
り、かつ水和物、脱水物は異なる結晶構造を持ち、水の
脱着と同時に結晶構造が変化し、結晶構造の変化も可逆
である。
The Initial spectrum is shown in FIG. When heated (80 ° C), 2 at Initial
The large peak existing at 4.2 ° C disappeared, and other spectra were changed to show completely different spectra (Fig. 12). This result means that dehydration by heating is confirmed by infrared absorption spectrum, so that not only water molecules are desorbed but also the crystal structure itself has a different structure during dehydration by heating. is doing. After this,
When the temperature was lowered to room temperature in an anhydrous atmosphere, the infrared absorption spectrum kept the dehydrated state even when the temperature was lowered in an anhydrous atmosphere and stored at room temperature. However, the crystal structure of the dehydrated product is retained (FIG. 13), and the crystal structure is the same as that of the dehydrated product during heating. However, when stored in an indoor atmosphere,
The large peak at 24.2 ° C., which was present at Initial for 14 hours, reappeared and was completely in agreement with the spectrum of Initial (FIG. 14). In the infrared absorption spectrum, water returns by being stored in an indoor atmosphere
It has been confirmed that the crystal structure of the dehydrated product is restored to the initial structure, that is, the crystal structure of the dehydrated product is restored to the Initial crystal structure, that is, the structure having two molecules of crystal water, by storing in a room atmosphere even in powder X-ray diffraction. confirmed. When the results of infrared absorption spectrum and powder X-ray diffraction are combined, dehydration by heating changes the crystal structure by dehydration, but when stored in an indoor atmosphere, water returns and the crystal structure also changes at the same time.
Return to the initial crystal structure. Desorption of water is reversible, and hydrates and dehydrated products have different crystal structures, the crystal structure changes at the same time as the desorption of water, and the change of the crystal structure is also reversible.

【0038】ii)室温−無水雰囲気下→室内雰囲気下 赤外吸収スペクトルでは、室温−無水雰囲気下でも脱水
し、その変化は加熱と同様の挙動を示していた。そこ
で、粉末X線回折でも同様の挙動を示すかを観察した。
Ii) Room temperature-under anhydrous atmosphere → under room atmosphere In the infrared absorption spectrum, dehydration occurred even under room temperature-anhydrous atmosphere, and the change showed the same behavior as heating. Therefore, it was observed whether the powder X-ray diffraction exhibits the same behavior.

【0039】無水雰囲気下に保存すると、スペクトルが
経時的に変化し、加熱時(脱水時)のスペクトル図15
と一致した(図16)。赤外吸収スペクトルにおいて、
室温−無水雰囲気下で脱水することが確認されているの
で、粉末X線回折での無水雰囲気下保存後の試料は脱水
物である。無水雰囲気下保存後の脱水物は、赤外吸収ス
ペクトルで、加熱、室温−乾燥条件下いずれも同じ分子
構造を示していたのと同様、加熱による脱水物と同じ結
晶構造をもつことが確認された。室内雰囲気下に保存す
ると、2時間でInitialの粉末X線回折スペクト
ル図18と完全に一致し(図17)、赤外吸収スペクト
ルで室内雰囲気下に保存すると水が戻っていたが、粉末
X線回折においても、加熱における変化と同様、Ini
tialの2水和物の結晶構造に戻ることが確認され
た。
When stored in an anhydrous atmosphere, the spectrum changes with time and the spectrum during heating (during dehydration) is shown in FIG.
(Fig. 16). In the infrared absorption spectrum,
Since it was confirmed that the sample was dehydrated at room temperature in an anhydrous atmosphere, the sample after storage in an anhydrous atmosphere by powder X-ray diffraction is a dehydrated product. It was confirmed that the dehydrated product after storage in an anhydrous atmosphere had the same crystal structure as the dehydrated product by heating, in the infrared absorption spectrum, similar to the same molecular structure under heating and room temperature-drying conditions. It was When stored in an indoor atmosphere, the powder X-ray diffraction spectrum of Initial completely coincided with that of FIG. 18 in 2 hours (FIG. 17), and when stored in an indoor atmosphere by an infrared absorption spectrum, water was returned. In diffraction as well as in heating, Ini
It was confirmed to return to the crystal structure of tial dihydrate.

【0040】これらの結果より、Q−35I型結晶は加
熱あるいは室温−無水雰囲気下保存で脱水して無水物と
なり、それらの脱水物は同じ分子構造、結晶構造をとる
ことから同一物質であり、また、脱水物を室内雰囲気下
に保存することでInitialと同じ2水和物の分子
構造、結晶構造をとる同一物質に戻ることが判明した。
From these results, the Q-35I type crystal is dehydrated by heating or storage under room temperature-anhydrous atmosphere to be an anhydride, and since these dehydrated products have the same molecular structure and crystal structure, they are the same substance, In addition, it was found that by storing the dehydrated product in a room atmosphere, the same substance having the same dihydrate molecular structure and crystal structure as Initial was recovered.

【0041】(3)単結晶X線解析 赤外吸収スペクトル、粉末X線回折から、加熱、室温−
無水雰囲気下で脱水し、脱水物は同じ分子構造、結晶構
造をとり、また、室内雰囲気下の保存でInitial
と同じ2水和物の分子構造、結晶構造に戻ることがわか
った。この事実をさらに裏付けるために、単結晶X線解
析を行った。
(3) Single crystal X-ray analysis From infrared absorption spectrum and powder X-ray diffraction, heating, room temperature-
It is dehydrated in an anhydrous atmosphere, and the dehydrated product has the same molecular structure and crystal structure.
It was found that the same molecular structure and crystal structure of the same dihydrate as the above were restored. To further support this fact, single crystal X-ray analysis was performed.

【0042】単結晶X線解析用に調製したQ−35I型
結晶を測定し、その結果より得た粉末X線回折の合成ス
ペクトルは、室内雰囲気下における粉末X線回折スペク
トル(図19)と合致した(図20)。その後、室温−
無水雰囲気下で乾燥した単結晶X線解析用に調製したQ
−35I型結晶を測定し、その結果より得た粉末X線回
折の合成スペクトルは、加熱下及び室温−無水雰囲気下
における粉末X線回折スペクトル図21と合致した(図
22)。よって、乾燥した単結晶は脱水していることが
確認された。脱水した単結晶は、格子定数が変化してお
り(Initial:b=12.966(2)Å、脱水
結晶:b=38.34(2)Å、a,c,βは変化な
し)三量体に構造が変化していた。
The Q-35I type crystal prepared for single crystal X-ray analysis was measured, and the powder X-ray diffraction synthetic spectrum obtained from the result was in agreement with the powder X-ray diffraction spectrum (FIG. 19) in an indoor atmosphere. (Fig. 20). Then room temperature-
Q prepared for single crystal X-ray analysis dried under anhydrous atmosphere
The -35I type crystal was measured, and the powder X-ray diffraction synthetic spectrum obtained from the result was in agreement with the powder X-ray diffraction spectrum FIG. 21 under heating and under room temperature-anhydrous atmosphere (FIG. 22). Therefore, it was confirmed that the dried single crystal was dehydrated. The dehydrated single crystal has a changed lattice constant (Initial: b = 12.966 (2) Å, dehydrated crystal: b = 38.34 (2) Å, a, c, β remain unchanged) The structure had changed in the body.

【0043】Initialの結晶構造図を図23,2
4に、脱水物の結晶構造図を図25,26に示す。室温
−無水雰囲気下で乾燥した結晶を室内雰囲気下に保存
し、再び測定するとInitialと同じ結晶構造を持
つことが確認された(図27,28)。
The crystal structure of Initial is shown in FIGS.
The crystal structure diagram of the dehydrated product is shown in FIGS. Crystals dried under a room temperature-anhydrous atmosphere were stored in a room atmosphere and measured again to confirm that they had the same crystal structure as Initial (FIGS. 27 and 28).

【0044】粉末X線回折で水和物と脱水物の結晶構造
が異なることが示され、その構造変化は可逆であること
が確認されていたが、その結果を単結晶X線解析におい
ても支持する結果であった。
It was shown by powder X-ray diffraction that the hydrate and the dehydrate had different crystal structures, and it was confirmed that the structural change was reversible. The results were also supported in single crystal X-ray analysis. It was the result.

【0045】5)結論 以上の実験結果から、Q−35I型結晶の結晶水の挙動
について次の点が明らかとなった。
5) Conclusion From the above experimental results, the following points were clarified regarding the behavior of crystal water of the Q-35 type I crystal.

【0046】・加熱あるいは室温−無水雰囲気下に保存
することにより、結晶構造の変化を伴った脱水がおき無
水物が生じる。
By heating or storing in a room temperature-anhydrous atmosphere, dehydration occurs with a change in crystal structure to produce an anhydride.

【0047】・加熱あるいは室温−無水雰囲気下保存の
乾燥条件によらず、脱水物の分子構造及び結晶構造は同
じである。
The molecular structure and crystal structure of the dehydrated product are the same regardless of the drying conditions of heating or storage under room temperature-anhydrous atmosphere.

【0048】・脱水量は、定量的に2水和物の含水理論
値と一致する。
The amount of dehydration quantitatively agrees with the theoretical water content of dihydrate.

【0049】・脱水物は室内雰囲気下に保存すること
で、空気中の水分が吸収しQ−35I型結晶に戻る。
By storing the dehydrated product in a room atmosphere, moisture in the air is absorbed and it returns to the Q-35I type crystal.

【0050】・水の脱着は可逆的なものである。Desorption of water is reversible.

【0051】・脱水物の吸水量は、定量的に水2分子の
理論値と一致する。
The water absorption of the dehydrated product quantitatively agrees with the theoretical value of two water molecules.

【0052】・脱水物は雰囲気にわずかに水が存在する
だけで、Q−35I型結晶に変化するため、通常の扱い
においては、Q−35I型結晶の結晶水は安定である。
Since the dehydrated product changes into Q-35I type crystal even if a slight amount of water is present in the atmosphere, the water of crystallization of the Q-35I type crystal is stable in normal handling.

【0053】先に述べたように、Q−35III型結晶
は非常に安定性が悪い。これに対して、Q−35I型結
晶(二水和物)及びQ−35II型結晶(一水和物)は
いずれも乾燥条件下で脱水して無水物になるものの、室
内雰囲気下に保存することよって再び空気中の水分を吸
収し、それぞれQ−35I型結晶及びQ−35II型結
晶に戻ることが確認されている。そこで、以下に両者の
安定性について行なった比較試験の方法並びに結果を記
す。
As mentioned above, the Q-35 type III crystal has very poor stability. On the other hand, although the Q-35 type I crystal (dihydrate) and the Q-35 type II crystal (monohydrate) are dehydrated to dryness under dry conditions, they are stored in an indoor atmosphere. Therefore, it has been confirmed that it absorbs moisture in the air again and returns to the Q-35I type crystal and the Q-35II type crystal, respectively. Therefore, the method and results of the comparative test conducted on the stability of both are described below.

【0054】〔試験例1〕吸湿試験 Q−35I型結晶及びQ−35II型結晶をそれぞれ4
0℃において、0%RH、52.4%RH、75%R
H、100%RHの湿度条件下に放置し、4〜7日後の
重量変化を調べた。結果を表1に示す。
Test Example 1 Moisture Absorption Test 4 Q-35I type crystals and 4 Q-35II type crystals were used.
0% RH, 52.4% RH, 75% R at 0 ° C
The sample was left to stand under the humidity conditions of H and 100% RH, and the weight change after 4 to 7 days was examined. The results are shown in Table 1.

【0055】 表1 40℃、調湿条件下における重量変化 サンプル(mg) 4日後 5日後 6日後 7日後(%) (II型結晶) 0%RH 113.0 −2.57 −2.48 −2.12 −2.48 52.4%RH 129.1 0.31 −0.15 −0.08 −0.15 75%RH 113.0 0.53 0.53 0.62 0.62 100%RH 118.9 3.78 4.46 4.46 4.71 (I型結晶) 0%RH 127.9 −4.53 −8.29 −8.21 −8.05 52.4%RH 132.5 0.38 0.23 0.30 0.53 75%RH 192.5 0.42 0.47 0.26 0.42 100%RH 129.1 0.70 0.39 0.39 0.34 II型結晶は、0%RHで2%強の重量減少を認めた
が、52.4及び75%RHでは1%以下の重量変化に
留まった。しかし、100%RHにおいては約5%重量
が増加した。一方、I型結晶は、0%RHで約8%の重
量減少を認めたが、他の相対湿度下ではいずれも1%以
内の変化であった。低湿度下ではI型結晶の結晶水が失
われるものと考えられる。
Table 1 Weight change sample at 40 ° C. and humidity control (mg) 4 days 5 days 6 days 7 days (%) (type II crystal) 0% RH 113.0 −2.57 −2.48 −2.12 −2.48 52.4% RH 129.1 0.31 −0.15 −0.08 −0.15 75% RH 113.0 0.53 0.53 0.62 0.62 100% RH 118.9 3.78 4.46 4.46 4.71 (I type crystal) 0% RH 127.9 −4.53 −8.29 −8.21 −8.05 52.4% RH 132.5 0.38 0.23 0.30 0.53 75 % RH 192.5 0.42 0.47 0.26 0.42 100% RH 129.1 0.70 0.39 0.39 0.34 Type II crystals showed a slight weight loss of more than 2% at 0% RH, but at 52.4 and 75% RH the weight change was less than 1%. Stayed. However, at 100% RH, the weight increased by about 5%. On the other hand, the type I crystal showed a weight loss of about 8% at 0% RH, but under all other relative humidity, the change was within 1%. It is considered that the crystal water of the type I crystal is lost under low humidity.

【0056】II型結晶を40℃0%RH及び75%R
Hで1週間保存後の粉末X線回折スペクトル(図29、
図30)は、II型結晶の初期のスペクトルといずれも
一致したが、40℃100%RHで1週間保存後のスペ
クトル(図31)は、II型結晶の初期スペクトルと一
致せず、I型結晶とIII型結晶の回折ピークの混合ス
ペクトルと考えられた。
Type II crystal was subjected to 40 ° C. 0% RH and 75% R
Powder X-ray diffraction spectrum after storage in H for 1 week (Fig. 29,
Fig. 30) was in agreement with the initial spectrum of the type II crystal, but the spectrum after storage for 1 week at 40 ° C and 100% RH (Fig. 31) did not agree with the initial spectrum of the type II crystal, and the type I crystal was observed. It was considered to be a mixed spectrum of the diffraction peaks of the crystal and the type III crystal.

【0057】一方、I型結晶を40℃100%RHで1
週間保存後の粉末X線回折スペクトル(図32)は、I
型結晶の初期のスペクトルと一致した。
On the other hand, the type I crystal was subjected to 1 at 40 ° C. and 100% RH.
The powder X-ray diffraction spectrum (FIG. 32) after storage for a week shows I
It was in agreement with the initial spectrum of the type crystals.

【0058】以上の結果から、I型結晶は0%RH(乾
燥条件下)では結晶水を失うことによる重量変化がある
ものの、高湿度下では著しい吸湿を示さず、しかも結晶
転移が見られないことから、薬品製造に際してはII型
結晶よりも優れていると言える。
From the above results, although the type I crystal has a weight change due to the loss of water of crystallization under 0% RH (dry condition), it does not show remarkable moisture absorption under high humidity and no crystal transition is observed. Therefore, it can be said that it is superior to the type II crystal in the production of chemicals.

【0059】〔試験例2〕練合の影響 Q−35は医薬品として使用する場合に、100〜20
0mgの経口製剤が適当であると考えられている。従っ
て、主薬含有率の高い製剤になるものと思われ、湿式造
粒を行う必要性が高い。そこで、湿式造粒を想定して、
水及びエタノールを用いて練合することにより結晶形が
変化するか否かを確認するため、II型結晶及びI型結
晶をそれぞれエタノール、50%エタノール水溶液、水
にて練合した後、粉末X線回折スペクトルを測定した。
[Test Example 2] Effect of kneading Q-35 is 100 to 20 when used as a medicine.
An oral formulation of 0 mg is considered suitable. Therefore, it is considered that the preparation will have a high content of the main drug, and it is highly necessary to carry out wet granulation. Therefore, assuming wet granulation,
In order to confirm whether the crystal form is changed by kneading with water and ethanol, the type II crystal and the type I crystal were kneaded with ethanol, 50% ethanol aqueous solution and water, respectively, and then powder X The line diffraction spectrum was measured.

【0060】II型結晶の練合末は、エタノールによる
練合で当初のII型結晶と一致する粉末X線回折スペク
トル(図33)となり、結晶形は変化していないことが
わかった。しかし、50%エタノール水溶液あるいは水
にて練合した場合は、II型結晶とI型結晶の回折ピー
クの混合となった(図34、図35)。すなわち、II
型結晶はエタノール含有量50%以下の溶媒を用いて練
合することにより結晶Iへ一部転移することが確認され
た。
The kneading end of the type II crystal became a powder X-ray diffraction spectrum (FIG. 33) which coincided with the original type II crystal by kneading with ethanol, and it was found that the crystal form did not change. However, when the mixture was kneaded with a 50% ethanol aqueous solution or water, the diffraction peaks of the type II crystal and the type I crystal were mixed (FIGS. 34 and 35). Ie II
It was confirmed that the type crystals were partially transformed into crystals I by kneading with a solvent having an ethanol content of 50% or less.

【0061】一方、I型結晶の練合末の粉末X線回折ス
ペクトルは、いずれも初期のI型結晶のスペクトルと一
致した(図36、図37、図38)。すなわちI型結晶
を練合してもI型結晶から転移しないことが確認され
た。
On the other hand, the powder X-ray diffraction spectra of the kneading powder of the type I crystal were in agreement with those of the initial type I crystal (FIGS. 36, 37 and 38). That is, it was confirmed that even if the I-type crystal was kneaded, the I-type crystal was not transformed.

【0062】したがって、湿式造粒による製剤化を行う
場合は、I型結晶の方がII型結晶よりも望ましいこと
がわかった。
Therefore, it was found that the type I crystal is more preferable than the type II crystal when the formulation is carried out by wet granulation.

【0063】[0063]

【発明の効果】以上説明したように、本発明のQ−35
I型結晶は、吸湿、練合などの条件下で優れた安定性を
示すので、製剤上極めて好適な結晶形である。
As described above, the Q-35 of the present invention is used.
Form I crystals are excellent in stability under conditions such as moisture absorption and kneading, and thus are crystal forms that are extremely suitable for formulation.

【図面の簡単な説明】[Brief description of drawings]

【図1】加熱後室内雰囲気下に保存した時のQ−35I
型結晶の重量変化を表すグラフである。
FIG. 1 Q-35I when stored in a room atmosphere after heating
It is a graph showing the weight change of a type crystal.

【図2】室温−無水雰囲気下保存後、室内雰囲気下に保
存した時のQ−35I型結晶の重量変化を表すグラフで
ある。
FIG. 2 is a graph showing the weight change of the Q-35I type crystal when stored in a room atmosphere after being stored in a room temperature-anhydrous atmosphere.

【図3】Q−35I型結晶の脱水物を室温−RH6%雰
囲気下に保存した時の重量変化を表すグラフである。
FIG. 3 is a graph showing a weight change when a dehydrated product of Q-35 type I crystal is stored in a room temperature-RH6% atmosphere.

【図4】Q−35I型結晶を室温から昇温速度3℃/分
で170℃まで加熱した時のTG/DTAスペクトルで
ある。
FIG. 4 is a TG / DTA spectrum obtained when a Q-35 type I crystal was heated from room temperature to 170 ° C. at a temperature rising rate of 3 ° C./min.

【図5】Q−35I型結晶を室温から昇温速度3℃/分
で170℃まで加熱した時のDSCスペクトルである。
FIG. 5 is a DSC spectrum of a Q-35 type I crystal heated from room temperature to 170 ° C. at a temperature rising rate of 3 ° C./min.

【図6】Q−35I型結晶のInitial及び加熱時
の赤外吸収スペクトルである。
FIG. 6 is an infrared absorption spectrum of Q-35 type I crystal during Initial and heating.

【図7】Q−35I型結晶の加熱時及び無水雰囲気下で
降温−室温保存した時の赤外吸収スペクトルである。
FIG. 7 is an infrared absorption spectrum of the Q-35 type I crystal when it was heated and when the temperature was lowered and stored at room temperature in an anhydrous atmosphere.

【図8】Q−35I型結晶のInitial及び加熱後
室内雰囲気下に保存した時の赤外吸収スペクトルであ
る。
FIG. 8 is an infrared absorption spectrum of Q-35 type I crystal when initially stored and stored in a room atmosphere after heating.

【図9】Q−35I型結晶の加熱時及び室温−無水雰囲
気下に保存した時の赤外吸収スペクトルである。
FIG. 9 is an infrared absorption spectrum of a Q-35 type I crystal when heated and stored at room temperature in an anhydrous atmosphere.

【図10】Q−35I型結晶のInitial及び室温
−無水雰囲気下に保存後室内雰囲気下に保存した時の赤
外吸収スペクトルである。
FIG. 10 is an infrared absorption spectrum of the Q-35 type I crystal when stored in Initial and room temperature-anhydrous atmosphere and then stored in an indoor atmosphere.

【図11】Q−35I型結晶のInitialの粉末X
線回折スペクトルである。
FIG. 11: Initial powder X of Q-35 type I crystal
It is a line diffraction spectrum.

【図12】Q−35I型結晶の加熱時の粉末X線回折ス
ペクトルである。
FIG. 12 is a powder X-ray diffraction spectrum of a Q-35 type I crystal upon heating.

【図13】Q−35I型結晶を加熱後無水雰囲気下で降
温し室温保存した時の粉末X線回折スペクトルである。
FIG. 13 is a powder X-ray diffraction spectrum of the Q-35I type crystal when heated and then cooled in an anhydrous atmosphere and stored at room temperature.

【図14】Q−35I型結晶を加熱後無水雰囲気で降温
し、更に室内雰囲気下に保存した時の粉末X線回折スペ
クトルである。
FIG. 14 is a powder X-ray diffraction spectrum when the Q-35I type crystal is heated and then cooled in an anhydrous atmosphere, and further stored in a room atmosphere.

【図15】Q−35I型結晶の加熱時の粉末X線回折ス
ペクトルである。
FIG. 15 is a powder X-ray diffraction spectrum of a Q-35 type I crystal upon heating.

【図16】Q−35I型結晶を室温−無水雰囲気下保存
後の粉末X線回折スペクトルである。
FIG. 16 is a powder X-ray diffraction spectrum of the Q-35I type crystal after storage at room temperature in an anhydrous atmosphere.

【図17】Q−35I型結晶を室温−無水雰囲気下保存
後、引き続いて室内雰囲気下に保存した後の粉末X線回
折スペクトルである。
FIG. 17 is a powder X-ray diffraction spectrum of the Q-35I type crystal after being stored in a room temperature-anhydrous atmosphere and subsequently stored in a room atmosphere.

【図18】Q−35I型結晶のInitialの粉末X
線回折スペクトルである。
FIG. 18: Initial powder X of Q-35 type I crystal
It is a line diffraction spectrum.

【図19】室内雰囲気下におけるQ−35I型結晶のI
nitialの粉末X線回折スペクトルである。
FIG. 19: I of Q-35 type I crystal in a room atmosphere
It is a powder X-ray diffraction spectrum of the initial.

【図20】Q−35I型結晶の単結晶X線解析結果より
得たInitialの粉末X線回折の合成スペクトルで
ある。
FIG. 20 is a synthetic spectrum of an initial powder X-ray diffraction obtained from a single crystal X-ray analysis result of a Q-35 type I crystal.

【図21】加熱時におけるQ−35I型結晶の粉末X線
回折スペクトルである。
FIG. 21 is a powder X-ray diffraction spectrum of the Q-35I type crystal at the time of heating.

【図22】Q−35I型結晶の単結晶X線解析結果より
得た室温−無水雰囲気下における粉末X線回折の合成ス
ペクトルである。
FIG. 22 is a composite spectrum of powder X-ray diffraction in a room temperature-anhydrous atmosphere obtained from the single crystal X-ray analysis result of the Q-35 type I crystal.

【図23】Q−35I型結晶のInitialの結晶構
造図である。
FIG. 23 is a crystal structure diagram of Initial of Q-35I type crystal.

【図24】Q−35I型結晶のInitialのステレ
オ結晶構造図である。
FIG. 24 is an initial stereo crystal structure diagram of a Q-35 type I crystal.

【図25】Q−35I型結晶の室温−無水雰囲気下(脱
水物)の結晶構造図である。
FIG. 25 is a crystal structure diagram of a Q-35 type I crystal at room temperature in an anhydrous atmosphere (dehydrated product).

【図26】Q−35I型結晶の室温−無水雰囲気下(脱
水物)のステレオ結晶構造図である。
FIG. 26 is a stereo crystal structure diagram of a Q-35 type I crystal at room temperature in an anhydrous atmosphere (dehydrated product).

【図27】Q−35I型結晶を室温−無水雰囲気下保存
後、更に室内雰囲気下に保存した場合の結晶構造図であ
る。
FIG. 27 is a crystal structure diagram of a Q-35I type crystal stored in a room temperature-anhydrous atmosphere and further stored in a room atmosphere.

【図28】Q−35I型結晶を室温−無水雰囲気下保存
後、更に室内雰囲気下に保存した場合のステレオ結晶構
造図である。
FIG. 28 is a stereo crystal structure diagram in the case where the Q-35I type crystal is stored in a room temperature-anhydrous atmosphere and further stored in an indoor atmosphere.

【図29】Q−35II型結晶をa)40℃0%RHの
条件下で1週間調湿保存後の粉末X線回折スペクトルで
ある。
FIG. 29 is a powder X-ray diffraction spectrum of the Q-35II type crystal after a) humidity storage for 1 week under the condition of 40 ° C. and 0% RH.

【図30】Q−35II型結晶をb)40℃75%RH
の条件下で1週間調湿保存後の粉末X線回折スペクトル
である。
FIG. 30: Q-35 type II crystal b) 40 ° C. 75% RH
2 is a powder X-ray diffraction spectrum after storage under humidity control for 1 week.

【図31】Q−35II型結晶をc)40℃100%R
Hの条件下で1週間調湿保存後の粉末X線回折スペクト
ルである。
FIG. 31 c) Q-35 type II crystal c) 40 ° C. 100% R
It is a powder X-ray-diffraction spectrum after humidity control storage for 1 week on H conditions.

【図32】Q−35I型結晶を40℃100%RHの条
件下で1週間保存した後の粉末X線回折スペクトルであ
る。
FIG. 32 is a powder X-ray diffraction spectrum of the Q-35I type crystal after being stored under the conditions of 40 ° C. and 100% RH for 1 week.

【図33】Q−35II型結晶をエタノールで練合後の
a)エタノール練合末の粉末X線回折スペクトルであ
る。
FIG. 33 is a powder X-ray diffraction spectrum of a) an ethanol kneaded powder after kneading the Q-35II type crystal with ethanol.

【図34】Q−35II型結晶を50%エタノール水溶
液で練合後のb)50%エタノール水溶液練合末の粉末
X線回折スペクトルである。
FIG. 34 is a powder X-ray diffraction spectrum of b) the kneaded powder of a 50% ethanol aqueous solution after kneading the Q-35II type crystals with a 50% ethanol aqueous solution.

【図35】Q−35II型結晶を水で練合後のc)水練
合末の粉末X線回折スペクトルである。
FIG. 35 is a powder X-ray diffraction spectrum of c) a water-kneaded powder after kneading a Q-35II type crystal with water.

【図36】Q−35I型結晶をエタノールで練合後の
a)エタノール練合末の粉末X線回折スペクトルであ
る。
FIG. 36 is a powder X-ray diffraction spectrum of a) the kneaded powder of ethanol after kneading the Q-35 type I crystal with ethanol.

【図37】Q−35I型結晶を50%エタノール水溶液
で練合後のb)50%エタノール水溶液練合末の粉末X
線回折スペクトルである。
FIG. 37 b) Powder X after kneading of Q-35 type I crystal with 50% ethanol aqueous solution, b) 50% ethanol aqueous solution kneading powder
It is a line diffraction spectrum.

【図38】Q−35I型結晶を水で練合後のc)水練合
末の粉末X線回折スペクトルである。
FIG. 38 is a powder X-ray diffraction spectrum of c) a water-kneaded powder after kneading a Q-35I type crystal with water.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記の式 を有する1−シクロプロピル−6−フルオロ−1,4−
ジヒドロ−8−メトキシ−7−(3−メチルアミノピペ
リジン−1−イル)−4−オキソキノリン−3−カルボ
ン酸2水和物。
1. The following formula 1-cyclopropyl-6-fluoro-1,4- having
Dihydro-8-methoxy-7- (3-methylaminopiperidin-1-yl) -4-oxoquinoline-3-carboxylic acid dihydrate.
JP01453893A 1992-01-31 1993-02-01 Quinolonecarboxylic acid derivative hydrate crystals Expired - Fee Related JP3256311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01453893A JP3256311B2 (en) 1992-01-31 1993-02-01 Quinolonecarboxylic acid derivative hydrate crystals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-16545 1992-01-31
JP1654592 1992-01-31
JP01453893A JP3256311B2 (en) 1992-01-31 1993-02-01 Quinolonecarboxylic acid derivative hydrate crystals

Publications (2)

Publication Number Publication Date
JPH05271221A true JPH05271221A (en) 1993-10-19
JP3256311B2 JP3256311B2 (en) 2002-02-12

Family

ID=26350492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01453893A Expired - Fee Related JP3256311B2 (en) 1992-01-31 1993-02-01 Quinolonecarboxylic acid derivative hydrate crystals

Country Status (1)

Country Link
JP (1) JP3256311B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005668A1 (en) * 1996-08-06 1998-02-12 Taisho Pharmaceutical Co., Ltd. p-TOLUENESULFONATE HYDRATE OF THIAZOLINE COMPOUND
JP2008003079A (en) * 2006-05-22 2008-01-10 Minebea Co Ltd Evaluation method for lifetime of grease composition
JP2011162553A (en) * 2003-09-04 2011-08-25 Wockhardt Ltd Benzoquinolizine-2-carboxylic acid-arginine salt tetrahydrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005668A1 (en) * 1996-08-06 1998-02-12 Taisho Pharmaceutical Co., Ltd. p-TOLUENESULFONATE HYDRATE OF THIAZOLINE COMPOUND
JP2011162553A (en) * 2003-09-04 2011-08-25 Wockhardt Ltd Benzoquinolizine-2-carboxylic acid-arginine salt tetrahydrate
JP2008003079A (en) * 2006-05-22 2008-01-10 Minebea Co Ltd Evaluation method for lifetime of grease composition

Also Published As

Publication number Publication date
JP3256311B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
JP2002105072A (en) Magnesium omeprazole
KR100228572B1 (en) Crystal of quinolone carboxylic acid derivative hydrate
JP6799178B2 (en) Method for producing intermediate of 4-methoxypyrrole derivative
US20050272775A1 (en) Polymorph of (1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-y1] methyl piperidine hydrochloride (Donepezil hydrochloride) and a process for producing thereof
JPH05271221A (en) Crystals of quinolone-carboxylic acid derivative
JPH08506332A (en) Process for producing tetrazole-5-carboxylic acid derivative
WO2000078729A1 (en) Crystalline forms of lansoprazole
CN88101907A (en) Process for preparing quinoline carboxylic acids
WO2003031391A1 (en) New anhydrous crystalline forms of gabapentin
CN113105327A (en) Synthetic method of 4-bromomethyl-2-methyl formate biphenyl
US20070123565A1 (en) Donepezil Hydrochloride Form VI
JPH02247151A (en) Cyclopentenone derivative and preparation thereof
JPH04503218A (en) Improved process for producing intermediates for the production of bambuterol
WO2001004094A1 (en) Processes for the preparation of ipidacrine or ipidacrine hydrochloride hydrate
JP2663105B2 (en) 14α-hydroxy-4-androstene-3,6,17-trione hydrate crystal and method for producing the same
US6861525B2 (en) Process for the preparation imidazo[1,2-A]pyridine-3-acetamides
JPS5993078A (en) Hydroxyamino-eburnane derivative and manufacture
WO2014096018A1 (en) Methods for the preparation of substituted acetophenones
CN111100121A (en) Purification method of berberine or hydrochloride thereof
US4162255A (en) Process for extracting aristolochic acids
JPS5945668B2 (en) Novel method for producing (3-carbomethoxypropyl)-trimethylammonium chloride hydrate
CN1915978B (en) Crystal form of lonidamine, preparation method, and composition of containing the crystal form
CN1072208C (en) Preparation and quality detection of snopril crystals
JP4587529B2 (en) Method for producing ipidacrine and ipidacrine hydrochloride hydrate
CN107857756B (en) Ilaprazole magnesium crystal form and preparation method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees