JPH05271025A - Antifouling structure - Google Patents

Antifouling structure

Info

Publication number
JPH05271025A
JPH05271025A JP4066266A JP6626692A JPH05271025A JP H05271025 A JPH05271025 A JP H05271025A JP 4066266 A JP4066266 A JP 4066266A JP 6626692 A JP6626692 A JP 6626692A JP H05271025 A JPH05271025 A JP H05271025A
Authority
JP
Japan
Prior art keywords
beryllium
antifouling
copper
insulating material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4066266A
Other languages
Japanese (ja)
Other versions
JP2509414B2 (en
Inventor
Shunji Inoue
俊二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4066266A priority Critical patent/JP2509414B2/en
Priority to US08/027,779 priority patent/US5423631A/en
Priority to DE69302941T priority patent/DE69302941T2/en
Priority to EP93104371A priority patent/EP0562441B1/en
Priority to KR1019930004291A priority patent/KR970003994B1/en
Priority to CA002092269A priority patent/CA2092269C/en
Publication of JPH05271025A publication Critical patent/JPH05271025A/en
Application granted granted Critical
Publication of JP2509414B2 publication Critical patent/JP2509414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To obtain a maintenance-free antifouling structure excellent in antifouling performance and durability, free from problems on toxicity and having good handleability. CONSTITUTION:The objective thin-plate-like antifouling structure 3 consists of a beryllium-copper alloy layer 1 and an insulating material layer 2 and has flexibility. Beryllium content in the beryllium-copper alloy is 0.2-2.8wt.%. The insulating material layer 2 is obtained by e.g., dissolving one kind of methyl methacrylate modified natural rubber, nitrile rubber and chlorinated rubber or mixture of two or more kinds of them in a proper solvent so as to carry out primary treatment, etc., and applying the solution onto a prescribed surface of the beryllium alloy layer 1 and then drying the coated material so as to give a prescribed thickness. The antifouling structure 3 is bonded to the inner wall of an intake pipe to form a three layer structure consisting of iron, an insulating material and beryllium copper. Thereby, attachment of marine organisms is prevented and function for preventing attachment of marine organisms is continuously exhibited by lasting action of elution of a copper ion or beryllium ion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ふじつぼ、紫い貝、藻
類のような海生物の付着を防止する機能を持つ防汚構造
体および防汚方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antifouling structure and an antifouling method having a function of preventing adhesion of marine organisms such as barnacles, purple shellfish and algae.

【0002】[0002]

【従来の技術】海水に接触している海洋構造体は、常に
海生物の付着による汚損に曝されている。そのため、通
常の海洋構造体は、外観が損なわれるのみならず、機能
的な障害を生ずることとなる。例えば船舶の場合、船体
の底面等への海生物の付着により抵抗が増加して船体の
推進速度が低下する。また火力発電所の場合、海水の取
水ピットに海生物が付着すると、冷却媒体である海水の
流通障害が発生し、発電を停止せざるを得ない事態に至
ることがある。
2. Description of the Related Art Marine structures that are in contact with seawater are constantly exposed to fouling due to the adhesion of marine life. Therefore, not only the appearance of the ordinary marine structure is deteriorated, but also the functional structure is damaged. For example, in the case of a ship, resistance increases due to the adhesion of marine life to the bottom surface of the hull and the like, and the propulsion speed of the hull decreases. Further, in the case of a thermal power plant, if marine life adheres to the seawater intake pit, the flow of seawater, which is a cooling medium, may be impaired, and power generation may have to be stopped.

【0003】このため、従来から多くの海生物付着防止
技術が研究されているが、そのうち現在実用化されてい
る海生物付着防止技術の一つは、亜酸化銅あるいは有機
スズを含有する塗料を海洋構造体の海水との接触面に塗
布する方法である。
For this reason, many techniques for preventing adhesion of marine organisms have been studied, and one of the techniques for preventing adhesion of marine organisms that has been put into practical use is a coating containing cuprous oxide or organic tin. It is a method of applying it to the contact surface of the marine structure with seawater.

【0004】[0004]

【発明が解決しようとする課題】ところが、このような
従来の塗料を用いた防汚方法によると、塗料を厚塗りし
たとしても塗料が剥離しやすいため、顕著な防汚効果を
発揮する寿命は1年程度であり、毎年塗布し直す煩雑な
メンテナンス作業が必要となる。また特開昭60−20
9505号公報に示される生物付着防止体は、銅または
銅合金、この場合、銅−ニッケル(Cu−Ni)合金で
あり、耐食性および防汚性能が不十分である。
However, according to such a conventional antifouling method using a coating material, even if the coating material is applied thickly, the coating material is easily peeled off, so that the life expectancy of the outstanding antifouling effect is not long. It takes about one year, and complicated maintenance work is required to reapply it every year. In addition, JP-A-60-20
The biofouling preventive body disclosed in Japanese Patent No. 9505 is copper or a copper alloy, in this case, a copper-nickel (Cu-Ni) alloy, and has insufficient corrosion resistance and antifouling performance.

【0005】本発明者の長年の実験研究によると、ベリ
リウム銅合金を海洋構造体に使用すると、極めて優れた
防汚効果を得ることができることが判明した。この理由
は、ベリリウムイオンが銅イオンと相乗的に作用し、海
生物に対して大きな忌避効果を発揮し、また海生物の付
着や繁殖を長期間にわたり防止するためと推定される。
すなわち、ベリリウム銅合金は、防汚機能の発揮効果
と、銅イオンの溶出の持続作用を有する。
According to many years of experimental research conducted by the present inventor, it has been found that when a beryllium copper alloy is used in a marine structure, an extremely excellent antifouling effect can be obtained. The reason for this is presumed to be that beryllium ions act synergistically with copper ions to exert a great repellent effect on marine organisms, and to prevent the adhesion and reproduction of marine organisms for a long period of time.
That is, the beryllium copper alloy has an effect of exhibiting an antifouling function and a continuous action of elution of copper ions.

【0006】本発明の目的は、前記の問題点を解消し、
防汚性能および耐久性に優れ、メンテナンスの必要がな
く、また毒性についての問題もない取扱性の良好な防汚
構造体を提供することである。
The object of the present invention is to solve the above problems,
An object of the present invention is to provide an antifouling structure having excellent antifouling performance and durability, requiring no maintenance, and having no problem of toxicity and having good handleability.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
の本発明第1発明による防汚構造体は、ベリリウム銅合
金と絶縁材層とからなる可撓性を有する薄板であること
を特徴とする。本発明第2発明による防汚構造体は、ベ
リリウム銅合金層の表面に絶縁材層を設け、その上に粘
着材層を設けたことを特徴とする。
The antifouling structure according to the first aspect of the present invention for solving the above-mentioned problems is characterized by being a flexible thin plate composed of a beryllium copper alloy and an insulating material layer. To do. The antifouling structure according to the second aspect of the present invention is characterized in that an insulating material layer is provided on the surface of the beryllium copper alloy layer, and an adhesive material layer is provided thereon.

【0008】本発明第3発明による防汚構造体は、前記
第1発明の構成に加えて、前記絶縁材層を金属体に接着
したことを特徴とする。前記ベリリウム銅合金中のベリ
リウムの含有量は0.2〜2.8重量%とすることが好
ましい。前記ベリリウム銅合金の組成は、例えば B
e:0.2〜1.0重量%、Co:2.4〜2.7重量
%、残部Cuおよび不可避不純物、Be:0.2〜
1.0重量%、Ni:1.4〜2.2重量%、残部Cu
および不可避不純物、Be:1.0〜2.0重量%、
Co:0.2〜0.6重量%、残部Cuおよび不可避不
純物、Be:1.6〜2.8重量%、Co:0.4〜
1.0重量%、Si:0.2〜0.35重量%、残部C
uおよび不可避不純物等である。
An antifouling structure according to a third invention of the present invention is characterized in that, in addition to the structure of the first invention, the insulating material layer is adhered to a metal body. The content of beryllium in the beryllium copper alloy is preferably 0.2 to 2.8% by weight. The composition of the beryllium copper alloy is, for example, B
e: 0.2 to 1.0 wt%, Co: 2.4 to 2.7 wt%, balance Cu and unavoidable impurities, Be: 0.2 to
1.0% by weight, Ni: 1.4 to 2.2% by weight, balance Cu
And unavoidable impurities, Be: 1.0 to 2.0% by weight,
Co: 0.2-0.6% by weight, balance Cu and unavoidable impurities, Be: 1.6-2.8% by weight, Co: 0.4-
1.0 wt%, Si: 0.2 to 0.35 wt%, balance C
u and inevitable impurities.

【0009】[0009]

【作用】ベリリウム銅合金の防汚機能の発揮効果と、銅
イオンの溶出の持続作用を詳述すると、次のとおりであ
る。 防汚機能の発揮効果 ベリリウム、銅、ニッケルのイオン化傾向は、Be>N
i>Cuであることが文献より知られており、左側の元
素の方が溶出しやすいことを示している。ベリリウム銅
の場合、ベリリウムが先に溶出し局部電池を形成し電流
効果により生物付着防止効果を発揮するとともに、ベリ
リウムイオンは内部酸化という酸化形態を取る。この内
部酸化は、内部にBeO皮膜を形成するが、このBeO
皮膜が多孔質のため、表面にCu2 O+BeOを形成す
べく銅の溶出を許容する。この銅イオンの海水への溶出
により防汚機能が発揮されるものと考えられる。
The effect of the antifouling function of the beryllium copper alloy and the continuous action of elution of copper ions will be described in detail below. Effect of antifouling function The ionization tendency of beryllium, copper and nickel is Be> N
It is known from the literature that i> Cu, indicating that the element on the left side is more likely to elute. In the case of beryllium copper, beryllium elutes first to form a local battery and exerts a biofouling prevention effect by the current effect, and the beryllium ion takes an oxidized form called internal oxidation. This internal oxidation forms a BeO film inside, but this BeO film is formed.
The porosity of the coating allows the elution of copper to form Cu 2 O + BeO on the surface. It is considered that the antifouling function is exhibited by the elution of this copper ion into seawater.

【0010】 銅イオン溶出の持続作用 前記の防汚機能の発揮効果は、銅イオンを溶出する持
続作用がある。すなわち、ベリリウム銅は防汚機能を止
むこと無く持続する作用がある。海水に接触するベリリ
ウム銅は、その表面に緻密な表面酸化物(Cu2 O)が
形成されるが、その表面酸化物の下層には、多孔質のB
eOの内部酸化物の皮膜が形成される。そのため、海水
中への銅の溶出が維持されるとともに、酸化によりこの
皮膜が体積増加する。この皮膜の体積増加量がある程度
の量になると、表面の酸化皮膜が多孔質の内部酸化物層
との間で剥離する。このため、電気化学作用と銅の溶出
が長期間維持されると考えられる。
Sustaining action of copper ion elution The above-described effect of exhibiting the antifouling function has a continuing action of eluting copper ions. That is, beryllium copper has an action of continuing the antifouling function without stopping. Beryllium copper in contact with seawater has a dense surface oxide (Cu 2 O) formed on its surface.
A film of eO inner oxide is formed. Therefore, the elution of copper into seawater is maintained, and the volume of this film increases due to oxidation. When the volume increase of the film reaches a certain amount, the oxide film on the surface is separated from the porous internal oxide layer. Therefore, it is considered that the electrochemical action and the elution of copper are maintained for a long time.

【0011】さらにベリリウム銅が発生する銅イオン溶
出の持続作用については、ベリリウム銅とキュープロニ
ッケルとを対比すると、図4に示す模式図を用いて次の
ように説明される。図4に示すように、ベリリウム銅
(BeCu)は腐食生成物(酸化物)の厚さがある厚さ
になると、この腐食生成物が剥離する。すると、ベリリ
ウム銅合金の表面が現われ、再び腐食の進行とともに腐
食生成物の厚さが増大する。そして、再び腐食生成物が
ある厚さになると剥離する、ということが繰り返され
る。一方、イオンの溶出は腐食生成物の厚さが増すと阻
害されるため次第に低下する。しかし、前述のように腐
食生成物が剥離すると、合金表面が現われるためイオン
溶出量は増大する。したがって、銅イオン溶出の増大と
低下が繰り返される。
Further, the continuous action of copper ion elution generated by beryllium copper will be explained as follows by using beryllium copper and cupro nickel in comparison with the schematic diagram shown in FIG. As shown in FIG. 4, when beryllium copper (BeCu) has a certain thickness of the corrosion product (oxide), the corrosion product peels off. Then, the surface of the beryllium copper alloy appears, and the thickness of the corrosion product increases as the corrosion progresses again. Then, the corrosion product is peeled off again when it reaches a certain thickness, which is repeated. On the other hand, the elution of ions is gradually decreased because it is inhibited as the thickness of the corrosion product increases. However, when the corrosion product is peeled off as described above, the surface of the alloy appears and the amount of ion elution increases. Therefore, the increase and decrease of copper ion elution are repeated.

【0012】本発明の実施例のベリリウム銅では、酸化
皮膜の剥離によって銅イオンの溶出持続作用がある。こ
の結果、ベリリウム銅の表面に付着する海生物の量が少
量であるか、あるいはほとんど付着しない。これに対
し、比較例のキュープロニッケル(CuNi)の場合、
ある程度の経年によって表面層に緻密な酸化ニッケルN
iO2 または酸化銅Cu2 Oが形成されることで、図4
に示すように、銅イオンの溶出が抑制されるからであ
る。これは、イオン化傾向(Be>Ni>Cu)に従え
ば、キュープロニッケルの場合、ニッケル(Ni)が優
先的に溶出して局部電池を形成すると考えられ、表面に
緻密な酸化物を形成することによる。そのため、図4に
示すように、キュープロニッケルの場合、腐食生成物の
厚さは初期に時間とともに増大するが、次第に腐食生成
物の成長速度は遅くなる。それとともに銅イオンの溶出
量はしだいに低下する。しかもキュープロニッケルでは
腐食生成物の剥離がベリリウム銅ほど容易には起こらな
い。このため、イオンの溶出量は低レベルのままとな
り、防汚効果が減退する。
In the beryllium copper of the embodiment of the present invention, the stripping of the oxide film has the effect of sustaining the elution of copper ions. As a result, the amount of marine organisms adhering to the surface of copper beryllium is small or hardly adhered. On the other hand, in the case of Cupro nickel (CuNi) of the comparative example,
Dense nickel oxide N on the surface layer due to some aging
The formation of iO 2 or copper oxide Cu 2 O results in the formation of FIG.
This is because the elution of copper ions is suppressed as shown in. According to the ionization tendency (Be>Ni> Cu), it is considered that in the case of cupro nickel, nickel (Ni) is preferentially eluted to form a local battery, and a dense oxide is formed on the surface. It depends. Therefore, as shown in FIG. 4, in the case of cupro nickel, the thickness of the corrosion product initially increases with time, but the growth rate of the corrosion product gradually decreases. Along with that, the elution amount of copper ions gradually decreases. Moreover, with Cupro nickel, flaking of corrosion products does not occur as easily as with beryllium copper. Therefore, the elution amount of ions remains at a low level, and the antifouling effect decreases.

【0013】なお、ベリリウム銅合金にこのような顕著
な前記防汚機能の発揮効果と銅イオン溶出の持続作用が
あることが判明したのは、本発明者が初めて見出したも
のであり、この点に言及したり指摘したりした従来の文
献を本発明者は知らない。実用的なベリリウム銅合金と
しては、ベリリウムの含有率が0.2〜0.6重量%の
11合金やベリリウムの含有率が1.8〜2.0重量%
の25合金等々の各種のものがJISで規定されている
が、防汚効果の点ではベリリウムの含有率が1.6%以
上のものが好ましい。ベリリウムの含有率が2.8%を
越えると、銅にベリリウムがそれ以上固溶しなくなるた
め、防汚効果は優れるものの展伸加工性が次第に低下す
る。したがって、高ベリリウム銅については鋳造により
製造するのがよい。
The inventors of the present invention have for the first time discovered that the beryllium copper alloy has such remarkable antifouling effect and copper ion elution sustaining effect. The present inventor is unaware of any prior art document that refers to or points out. As a practical beryllium copper alloy, 11 alloys having a beryllium content of 0.2 to 0.6% by weight and a beryllium content of 1.8 to 2.0% by weight.
Although various alloys such as No. 25 alloy are specified by JIS, those having a beryllium content of 1.6% or more are preferable from the viewpoint of antifouling effect. If the content of beryllium exceeds 2.8%, beryllium will no longer form a solid solution with copper, so that the antifouling effect is excellent but the wrought workability is gradually reduced. Therefore, high beryllium copper is preferably manufactured by casting.

【0014】またベリリウム銅合金は毒性の問題が全く
ないうえに、海水中においてもアルミ青銅や白銅と同等
の優れた耐久性があることが確認された。
It was also confirmed that the beryllium copper alloy has no toxicity problem and has the same excellent durability in seawater as aluminum bronze and white copper.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明の第1実施例を図1に示す。第1実施例
は、薄板状のベリリウム銅合金層1の表面に絶縁材層2
を形成した例である。この板状の防汚構造体3は、薄板
状のもので、可撓性を有する。ベリリウム銅合金層1
は、例えば、Be−Co系銅合金、Be−Ni系銅合
金、Be−Co−Si系銅合金等を用いるのが望まし
い。
Embodiments of the present invention will be described below with reference to the drawings. A first embodiment of the present invention is shown in FIG. In the first embodiment, the insulating material layer 2 is formed on the surface of the thin beryllium copper alloy layer 1.
It is an example of forming. The plate-shaped antifouling structure 3 is a thin plate and has flexibility. Beryllium copper alloy layer 1
For example, it is desirable to use a Be-Co-based copper alloy, a Be-Ni-based copper alloy, a Be-Co-Si-based copper alloy, or the like.

【0016】絶縁材層2は、例えばメチルメタクリレー
ト変成天然ゴム、ニトリロゴム、塩素化ゴムの1種もし
くは2種以上を混合したものを用い、これを適当な溶剤
に溶解してプライマー処理等をしてベリリウム合金層1
の所要表面に塗布し、乾燥し、所定厚の絶縁材層にす
る。絶縁材層2の厚さは、例えば5〜20mm程度、望
ましくは10mm程度の厚さにする。
The insulating material layer 2 is made of, for example, one or a mixture of methylmethacrylate-modified natural rubber, nitrilo rubber, and chlorinated rubber, which is dissolved in an appropriate solvent for primer treatment. Beryllium alloy layer 1
Is applied to the required surface and dried to form an insulating material layer having a predetermined thickness. The insulating material layer 2 has a thickness of, for example, about 5 to 20 mm, preferably about 10 mm.

【0017】この防汚構造体3を例えば取水管(循環水
管)に内張接着する。その構造例を図2に示す。取水管
5は、その材質が鉄からなり、鉄の表面に絶縁材層2が
形成され、その表面にベリリウム銅合金層1が形成され
る。このベリリウム銅合金層1が海水または水に接触す
る。ここで絶縁材層2は、ベリリウム銅合金層1が鉄5
と接触しないことにより、電池作用による腐食が防止さ
れる。
The antifouling structure 3 is lined and adhered to, for example, a water intake pipe (circulation water pipe). An example of the structure is shown in FIG. The material of the water intake pipe 5 is made of iron, the insulating material layer 2 is formed on the surface of the iron, and the beryllium copper alloy layer 1 is formed on the surface thereof. This beryllium copper alloy layer 1 comes into contact with seawater or water. Here, the beryllium-copper alloy layer 1 is made of iron 5 as the insulating material layer 2.
By not contacting with, the corrosion due to the battery action is prevented.

【0018】本発明の第2実施例を図3に示す。第2実
施例は、取水管などの海水に接触する金属体に接着可能
な防汚構造体6の例である。防汚構造体6は、その表面
層からベリリウム銅合金層1、プライマー層7、絶縁材
層2、粘着材層8、剥離紙9とからなる。
A second embodiment of the present invention is shown in FIG. The second embodiment is an example of the antifouling structure 6 that can be adhered to a metal body that comes into contact with seawater, such as an intake pipe. The antifouling structure 6 is composed of a beryllium copper alloy layer 1, a primer layer 7, an insulating material layer 2, an adhesive material layer 8 and a release paper 9 from its surface layer.

【0019】プライマー層7は、ベリリウム銅合金層1
と絶縁材層2の間に設けられるもので、ベリリウム銅合
金1と絶縁材層とを接着するためのなじみ性の良好な材
料である。粘着材8は、接着材であり、厚さは例えば
0.05〜2mmである。粘着材8の表面に設けられる
剥離紙9は、この防汚構造体6を接着する時に取り剥
す。この剥離紙9は、取扱い時に接着できないように取
扱い性を高めるためのものである。
The primer layer 7 is a beryllium copper alloy layer 1.
The beryllium copper alloy 1 and the insulating material layer 2 are provided between the insulating material layer 2 and the insulating material layer 2. The adhesive material 8 is an adhesive material and has a thickness of, for example, 0.05 to 2 mm. The release paper 9 provided on the surface of the adhesive material 8 is removed when the antifouling structure 6 is bonded. The release paper 9 is for improving the handleability so that it cannot be adhered during handling.

【0020】[0020]

【発明の効果】以上説明したように、本発明の防汚構造
体によれば、ベリリウム銅合金層が表面に形成される防
汚構造体であるから、ベリリウム銅合金の防汚機能発揮
効果と銅イオン等の溶出の持続作用により、良好な生物
付着防止作用が発揮される。さらに、この防汚構造体に
よると、薄板状の可撓性を有することから取付け作業性
が良好である。また、絶縁材層が形成されることから、
ベリリウム銅合金層が直接被接合体金属に接触しないこ
とから電池作用による腐食が確実に防止されるという効
果がある。
As described above, according to the antifouling structure of the present invention, since the beryllium copper alloy layer is formed on the surface, the antifouling function of the beryllium copper alloy is exhibited. Due to the continuous action of elution of copper ions, a good biofouling prevention action is exhibited. Furthermore, according to this antifouling structure, since it has a thin plate-like flexibility, it is easy to install. Further, since the insulating material layer is formed,
Since the beryllium-copper alloy layer does not come into direct contact with the metal to be joined, there is an effect that corrosion due to the cell action is reliably prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による防汚構造体を示す模
式的斜視図である。
FIG. 1 is a schematic perspective view showing an antifouling structure according to a first embodiment of the present invention.

【図2】取水管の内壁面に図1に示す防汚構造体を接着
した状態を示す模式的断面図である。
FIG. 2 is a schematic cross-sectional view showing a state in which the antifouling structure shown in FIG. 1 is bonded to the inner wall surface of a water intake pipe.

【図3】本発明の第2実施例による防汚構造体を示す模
式的断面図である。
FIG. 3 is a schematic sectional view showing an antifouling structure according to a second embodiment of the present invention.

【図4】ベリリウム銅とキュープロニッケルについて銅
イオン溶出量および腐食生成物の厚さの経時的変化を対
比した模式的説明図である。
FIG. 4 is a schematic explanatory diagram comparing changes over time in the amount of copper ions eluted and the thickness of corrosion products for beryllium copper and cupro nickel.

【符号の説明】[Explanation of symbols]

1 ベリリウム銅合金層 2 絶縁材層 3 防汚構造体 5 金属体 1 Beryllium copper alloy layer 2 Insulating material layer 3 Antifouling structure 5 Metal body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ベリリウム銅合金と絶縁材層とからなる
可撓性を有する薄板であることを特徴とする防汚構造
体。
1. An antifouling structure, which is a flexible thin plate composed of a beryllium copper alloy and an insulating material layer.
【請求項2】 ベリリウム銅合金層の表面に絶縁材層を
設け、その上に粘着材層を設けたことを特徴とする防汚
構造体。
2. An antifouling structure characterized in that an insulating material layer is provided on the surface of a beryllium copper alloy layer, and an adhesive material layer is provided thereon.
【請求項3】 請求項1記載の前記絶縁材層を金属体に
接着したことを特徴とする防汚構造体。
3. An antifouling structure, wherein the insulating material layer according to claim 1 is adhered to a metal body.
JP4066266A 1992-03-24 1992-03-24 Antifouling structure and manufacturing method thereof Expired - Fee Related JP2509414B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4066266A JP2509414B2 (en) 1992-03-24 1992-03-24 Antifouling structure and manufacturing method thereof
US08/027,779 US5423631A (en) 1992-03-24 1993-03-08 Antifouling structures
DE69302941T DE69302941T2 (en) 1992-03-24 1993-03-17 Anti-rot materials
EP93104371A EP0562441B1 (en) 1992-03-24 1993-03-17 Antifouling structures
KR1019930004291A KR970003994B1 (en) 1992-03-24 1993-03-19 Antifouling structures
CA002092269A CA2092269C (en) 1992-03-24 1993-03-23 Antifouling structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4066266A JP2509414B2 (en) 1992-03-24 1992-03-24 Antifouling structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH05271025A true JPH05271025A (en) 1993-10-19
JP2509414B2 JP2509414B2 (en) 1996-06-19

Family

ID=13310875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4066266A Expired - Fee Related JP2509414B2 (en) 1992-03-24 1992-03-24 Antifouling structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2509414B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329512A (en) * 1993-05-20 1994-11-29 Chubu Electric Power Co Inc Antifouling composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102090A (en) * 1974-01-19 1975-08-13
JPS6241280A (en) * 1985-08-19 1987-02-23 Nichiban Co Ltd Adhesive sheet for prevention of deposition of underwater organism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102090A (en) * 1974-01-19 1975-08-13
JPS6241280A (en) * 1985-08-19 1987-02-23 Nichiban Co Ltd Adhesive sheet for prevention of deposition of underwater organism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329512A (en) * 1993-05-20 1994-11-29 Chubu Electric Power Co Inc Antifouling composition

Also Published As

Publication number Publication date
JP2509414B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
CA2092269C (en) Antifouling structures
JPS5941430A (en) Antifouling metallic material
JP2509414B2 (en) Antifouling structure and manufacturing method thereof
JPH0570869A (en) Stainproofing structure and method
CA2092268C (en) Method for making organism deposit-inhibiting pipe
JP2509415B2 (en) Method for manufacturing biofouling prevention structure
JPH05271020A (en) Anti-fouling structure
JPH05271026A (en) Method for attaching antifouling structure
JPH05279219A (en) Organism adhesion-preventing structure
JPH05279221A (en) Method for lining organism adhesion-preventing article
JP2584180B2 (en) Method for manufacturing biofouling prevention tube
JPH05279215A (en) Method for lining organism adhesion-preventing article
JPH05279220A (en) Method for lining organism adhesion-preventing article
JPH05271027A (en) Production of pipe free from attachment of organism
JPH05271028A (en) Pipe free from attachment of organism and its production
US5358589A (en) Lining of organism deposit-inhibiting structure
JPH05279216A (en) Method for lining organism adhesion-preventing article
JPH0764694B2 (en) Method of manufacturing biofouling prevention tube
KR0183041B1 (en) Antifouling structure and method thereof
JPH06329512A (en) Antifouling composition
JP2595180B2 (en) Sea life adhesion prevention device
JPS6331532B2 (en)
JPH06263614A (en) Antifouling composition
JPS6315977B2 (en)
JPS558426A (en) Pitting-resistant aluminum alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees