JPH05270927A - Method for burning ceramic compact - Google Patents

Method for burning ceramic compact

Info

Publication number
JPH05270927A
JPH05270927A JP4100513A JP10051392A JPH05270927A JP H05270927 A JPH05270927 A JP H05270927A JP 4100513 A JP4100513 A JP 4100513A JP 10051392 A JP10051392 A JP 10051392A JP H05270927 A JPH05270927 A JP H05270927A
Authority
JP
Japan
Prior art keywords
setter
fired
firing
molded body
burned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4100513A
Other languages
Japanese (ja)
Inventor
Hiroya Ishikawa
浩也 石川
Kozo Soga
幸三 曽我
Takashi Hisamatsu
孝史 久松
Shigeru Iijima
繁 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP4100513A priority Critical patent/JPH05270927A/en
Publication of JPH05270927A publication Critical patent/JPH05270927A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To simplify the separation of a setter after burning a ceramic compact formed into a bottomed cylindrical shape, prevent a material to be burned from being damaged and improve the yield. CONSTITUTION:A ceramic compact 1 formed into a bottomed cylindrical shape with an opened lateral end (1a) downward is placed on a setter 2 and burned. The setter 2 is provided with a through hole 3 for allowing a gas to flow into an inner space (1b) of the material 1 to be burned. Since the pressure of the inner space (1b) of the material 1 to be burned is not lowered from that of the outside with the through hole 3 even if the burnt material 1 is taken out in a state of the setter 2 sticking thereto after the burning, the separation of the setter is simplified so much.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック成形体の焼
成方法に関し、詳しくは、ナトリウム−硫黄電池や熱電
変換等に利用されるベータアルミナ系固体電解質(ベー
タ・アルミナ管)のセラミック成形体など、一端部が開
口され有底筒状に形成されたセラミック成形体を焼成す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for firing a ceramic molded body, more specifically, a ceramic molded body of a beta-alumina solid electrolyte (beta-alumina tube) used for sodium-sulfur batteries, thermoelectric conversion and the like. The present invention relates to a method of firing a ceramic molded body having a bottomed tubular shape with one end opened.

【0002】[0002]

【従来の技術】ベータアルミナ系固体電解質の製造工程
中、セラミック成形体の、とりわけ焼成は難しく歩留ま
りの悪いことで知られている。この工程においては、1
500℃以上の高温となるため、ベータアルミナ管成形
体(以下、単に成形体ともいう)が変形や損傷を受けや
すく、したがって被焼成物に寸法不良やカケ等の不良が
生じやすい。焼成過程においては、アルカリ成分の揮発
を抑制して密度の向上を図ることもさることながら、大
きな収縮を妨げなく、かつ均一にさせ、寸法精度の向上
を図ることが重要である。
2. Description of the Related Art It is known that, during the manufacturing process of a beta-alumina-based solid electrolyte, it is difficult and particularly difficult to fire a ceramic molded body, which is known to have a low yield. In this process, 1
Since the temperature is 500 ° C. or higher, the shaped body of beta-alumina pipe (hereinafter, also simply referred to as a shaped body) is easily deformed or damaged, and thus the product to be fired is likely to have dimensional defects or chipping. In the firing process, it is important to suppress the volatilization of the alkali component to improve the density, and at the same time, to make the large shrinkage unobstructed and uniform to improve the dimensional accuracy.

【0003】こうした中、従来は、図5に示すように、
焼成炉に耐火物からなる平坦な基台Kを置き、その上に
後で被せる容器55の蓋体54を載せ、成形体51を開
口側端部を下にして垂直に立て、そして、それを覆う形
で容器55を被せて行っているが、焼成時の変形防止や
精度の維持のために、成形体51の開口端部と蓋体54
との間に、通常、成形体51と同じ素地からなる中実、
円板状のセッター52を介在させている。こうすること
で、管(成形体)の半径方向に関する収縮や歪みの異同
に起因する被焼成物(成形体51)の変形(真円度不
良)などの精度不良の防止に有効だからである。一方
で、焼成過程では、被焼成物51の開口側端面とセッタ
ー52の上面とが焼付きなどに起因して密(固)着して
しまうので、焼成後には、取出した被焼成物51からセ
ッター52の外周を軽く叩く等して、それを分離(取
外)する作業が必要となる。
Under these circumstances, conventionally, as shown in FIG.
A flat base K made of refractory is placed in a firing furnace, a lid 54 of a container 55 to be covered later is placed on the base K, and the molded body 51 is erected vertically with its end on the opening side facing downward, and Although the container 55 is covered with the cover 55, the open end of the molded body 51 and the lid 54 are covered in order to prevent deformation and maintain accuracy during firing.
Between the solid body and the molded body 51,
A disk-shaped setter 52 is interposed. By doing so, it is effective in preventing accuracy defects such as deformation (poor circularity) of the object to be fired (molded body 51) due to difference in contraction and distortion in the radial direction of the pipe (molded body). On the other hand, in the firing process, the end face on the opening side of the object to be fired 51 and the upper surface of the setter 52 are tightly (solid) adhered to each other due to seizure or the like. It is necessary to lightly tap the outer periphery of the setter 52 to separate (remove) it.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の技
術においては、焼成により、被焼成物51の開口側端面
とセッター52の上面とが焼付きなどにより単にくっつ
いているだけではなく、セッター52が中実の板状のも
ので、被焼成物51の内側空間51bを閉塞することに
なるために、冷却後においては、その内側空間51bの
ガスの容積が減るためにその空間が外部より低圧となっ
てしまう。このために、被焼成物51にセッター52が
強く吸着ないし固着する形となり、したがって、被焼成
物51からセッター52を分離することが困難となった
り、無理に取外すと、セッター52にくっついている部
分、つまり被焼成物(固体電解質)51の開口端部が欠
けたり割れたりすることがあり、これが歩留まり低下の
要因となっていた。
However, in the above-mentioned conventional technique, not only the opening-side end surface of the object to be fired 51 and the upper surface of the setter 52 are stuck to each other due to burning, but also the setter 52. Is a solid plate-like material, and because it closes the inner space 51b of the object to be fired 51, after cooling, the volume of gas in the inner space 51b decreases, so that space is at a lower pressure than the outside. Will be. For this reason, the setter 52 is strongly adsorbed or fixed to the object to be fired 51. Therefore, it becomes difficult to separate the setter 52 from the object to be fired 51, or if the setter 52 is forcibly removed, the setter 52 sticks to the setter 52. A part, that is, the opening end of the article to be fired (solid electrolyte) 51 may be chipped or cracked, which has been a factor of lowering the yield.

【0005】本発明は、有底筒状に形成されてなるセラ
ミック成形体の焼成後において、セッターの分離を簡易
とし、しかも、その分離時における被焼成物の損傷を防
止し、歩留まりの向上を図ることのできる成形体の焼成
方法を提供することを目的とする。
The present invention simplifies the separation of the setter after firing the ceramic molded body formed in the shape of a cylinder with a bottom, and prevents damage to the fired product during the separation, thus improving the yield. An object of the present invention is to provide a method for firing a molded body that can be achieved.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、有底筒状に形成されたセラミック成形
体を、セッターに対して開口側端部を当接させて載置
し、その状態の下で焼成する方法において、そのセッタ
ーを、少なくとも焼成後において、被焼成物の外側から
その内側空間にガスを流通させるガス流通手段を備えて
なる構成のものとしたことにある。
In order to achieve the above-mentioned object, the present invention places a ceramic molded body formed in a cylindrical shape having a bottom so that the end portion on the opening side is in contact with the setter. Then, in the method of firing under that state, the setter, at least after firing, is configured to include a gas flow means for flowing gas from the outer side of the object to be fired to the inner space thereof. ..

【0007】[0007]

【作用】上記の構成により、焼成され、冷却後にセッタ
ーがくっついた状態で取出された成形体(被焼成物)
は、外側からセッターのガス流通手段を通してその内側
空間にガスが流通する。したがって、焼成過程におい
て、被焼成物の開口側端面とセッターの上面とが密着し
ていても、その内外の圧力差は生じない。この結果、焼
成後におけるセッターの分離が簡易なる上、その分、分
離時における被焼成物の損傷の発生が低減されるので、
歩留まりが向上する。
With the above structure, a molded product (baked product) which is baked and taken out with the setter stuck after cooling.
The gas flows from the outside to the inside space through the gas flow means of the setter. Therefore, in the firing process, even if the opening-side end surface of the object to be fired and the upper surface of the setter are in close contact with each other, a pressure difference between the inside and the outside does not occur. As a result, separation of the setter after firing is simplified, and the occurrence of damage to the fired object during separation is reduced accordingly,
Yield improves.

【0008】[0008]

【実施例】【Example】

−実施例1− 次に本発明を具体化した実施例1について図1を参照し
て詳細に説明する。図中、1は、焼成炉内で焼成される
成形体(被焼成物)であって、本例では、ベータ・アル
ミナ製の有底管としている。ただし、外径は約43m
m、長さは36mmである。一方、本例で使用するセッ
ター2は、均一厚さの円板状で、中央にガス流通手段と
しての貫通孔3を備えて環状に形成されてなり、被焼成
物1と共通素地の成形体から構成されている。ちなみ
に、その直径は成形体の外径より若干大きめの約48m
m(40mm)とされ、厚さは約6mm(5mm)で、
貫通孔3は直径約15mmに設定されている。なお括弧
内は焼結後寸法である。
-Example 1- Next, Example 1 which materialized this invention is demonstrated in detail with reference to FIG. In the figure, reference numeral 1 denotes a molded body (material to be fired) fired in a firing furnace, and in this example, a beta-alumina bottomed tube. However, the outer diameter is about 43 m
m, and the length is 36 mm. On the other hand, the setter 2 used in this example is a disk-shaped member having a uniform thickness, is formed in an annular shape with a through hole 3 as a gas flow means in the center, and is a molded body of the material 1 to be fired and a common substrate. It consists of By the way, the diameter is about 48m, which is slightly larger than the outer diameter of the molded body.
m (40 mm), the thickness is about 6 mm (5 mm),
The through hole 3 has a diameter of about 15 mm. The values in parentheses are the dimensions after sintering.

【0009】さて次に、このセッター2を、図中、2点
鎖線で示す基台K上に配置され、円板状に形成されてな
る蓋体4の上に同芯状にして載置する。そして、その上
に、成形体1を、その開口側端(面)部1aを当接さ
せ、鉛直に立てる。ただし、成形体1はセッター2と同
芯にし、その開口内周に貫通孔3の周縁が位置するよう
にする。そして、所定の容器(クルーシブル)5を被せ
る。なお、こうしてセットされた状態においては、セッ
ター2の備える貫通孔3は蓋体4の上面で遮断されてお
り、したがって成形体1の内側空間1bは、ほぼ密封状
態に保持されている。
Next, the setter 2 is placed on a base K indicated by a chain double-dashed line in the drawing, and is placed concentrically on a disk-shaped lid 4. .. Then, the molded body 1 is erected vertically with the opening side end (face) portion 1a abutting thereon. However, the molded body 1 is made concentric with the setter 2, and the peripheral edge of the through hole 3 is positioned at the inner circumference of the opening. Then, a predetermined container (crucible) 5 is covered. In this set state, the through hole 3 provided in the setter 2 is blocked by the upper surface of the lid body 4, and thus the inner space 1b of the molded body 1 is maintained in a substantially sealed state.

【0011】以後は定法に従い、所定の温度下で焼成す
る(1600℃で30分保持)。そして、所定の時間が
経過しその冷却後において、容器5を取り外し、成形体
(被焼成物)1を取り出すのである。しかして、被焼成
物1の開口側端面部1aに焼付きなどによりセッター2
が密着していても、貫通孔3があるために、その内側空
間1bの圧力が低減することがないから、その分、セッ
ター2の分離が容易となる。
After that, firing is carried out at a predetermined temperature (holding at 1600 ° C. for 30 minutes) according to a conventional method. Then, after a predetermined time has elapsed and after cooling, the container 5 is removed and the molded body (work object) 1 is taken out. Then, the setter 2 is seized on the opening-side end surface portion 1a of the object to be fired 1 by seizing.
Even if they are in close contact with each other, the pressure in the inner space 1b does not decrease because of the through hole 3, so that the setter 2 can be easily separated.

【0012】本例の効果を具体的に確認するために、セ
ッターを貫通孔のないものとした点のみ条件を変更した
場合(従来技術)とで、次のようにして比較試験をし
た。ただし試料は、本例方法と従来技術による被焼成
物、各50個づつとした。なお、被焼成物(固体電解
質)1は、外径36mm、厚さ3mm、長さ300mm
で、密度3.23、そして圧環強度は230MPaであ
った。試験は、図2に示す装置Dにより、セッター2が
くっついた状態の被焼成物1を同図に示すように、セッ
ター2を上にしてh(3cm)の高さから自然落下さ
せ、外周に突出しているセッター2の下面をストッパー
Sに当てることで、それを分離(除去)することとし、
その時、被焼成物1に破損が生じたものを不良品と判定
する試験をした。なお、Fは、緩衝材である。
In order to concretely confirm the effect of this example, a comparative test was conducted as follows in the case where the conditions were changed only in that the setter had no through holes (prior art). However, the number of samples was 50 for each of the objects to be fired by the method of this example and the prior art. The material to be fired (solid electrolyte) 1 has an outer diameter of 36 mm, a thickness of 3 mm, and a length of 300 mm.
The density was 3.23 and the radial crushing strength was 230 MPa. The test was performed by the device D shown in FIG. 2 so that the to-be-baked material 1 with the setter 2 attached thereto was allowed to fall naturally from a height of h (3 cm) with the setter 2 facing upward, as shown in FIG. By contacting the lower surface of the protruding setter 2 with the stopper S, it is separated (removed),
At that time, a test was carried out to determine that the product to be burned 1 that was damaged was a defective product. In addition, F is a buffer material.

【0013】その結果、従来技術によるものが、同試料
中、7個の不良が発生したのに対し(不良率14%)、
本例の焼成方法のものにおいては、不良ゼロであった。
ただし、良否の判定は、被焼成物1の開口端から軸方向
に1cm以上に及ぶカケやクラック等の損傷が生じたも
のを不良とした。この試験結果からも分るように、本例
による場合には、焼成過程において、被焼成物1の開口
側端面1aとセッター2の上面とが焼付きにより密着し
ていても、内外の圧力差がないために、焼成後における
セッターの分離が簡易となり、分離時における被焼成物
1の損傷の発生が確実に低減され、歩留まりが向上する
ことが実証される。因みに、全試料の開口側端部の外径
の真円度(最大値に対する最小値)を測定し、それが
1.01を超えるものを精度不良として測定したとこ
ろ、不良はゼロであり、セッター本来の寸法精度維持と
いう基本的作用も損なわれていなかった。
As a result, the conventional sample produced 7 defects in the same sample (14% defective rate).
In the firing method of this example, there were no defects.
However, the quality was judged to be defective when damage such as cracks or cracks extending 1 cm or more in the axial direction from the open end of the material to be fired 1 was judged as defective. As can be seen from this test result, in the case of this example, even if the opening-side end surface 1a of the object to be fired 1 and the upper surface of the setter 2 are in close contact with each other due to seizure during the firing process, the pressure difference between the inside and outside It is proved that since the setter can be easily separated after firing, the occurrence of damage to the article to be fired 1 at the time of separation is reliably reduced, and the yield is improved. By the way, when the roundness (minimum value with respect to the maximum value) of the outer diameters of the end portions on the opening side of all the samples was measured, and when it exceeded 1.01, it was determined that the accuracy was poor. The basic function of maintaining the original dimensional accuracy was not impaired.

【0014】なお、本例では、セッター2の中央に貫通
孔を一ヶ所あけた構成としたが、複数あけてもよい。た
だし、焼成時におけるセッターの収縮ないし変形に起因
する被焼成物の真円度不良などの寸法不良の発生防止の
ためには、なるべく1つとし、複数あけるときには、同
芯でかつ等角度間隔で配設するのが好ましい。孔の径は
成形体に応じて適宜の大きさにされる。
In this embodiment, the through hole is provided at the center of the setter 2, but a plurality of through holes may be provided. However, in order to prevent the occurrence of dimensional defects such as poor circularity of the object to be fired due to contraction or deformation of the setter during firing, one should be provided as much as possible, and when multiple holes are opened, they should be concentric and equiangularly spaced. It is preferable to provide it. The diameter of the holes is set to an appropriate size depending on the molded product.

【0015】−実施例2− さて次に、実施例2について説明するが、本例において
は、セッターにおけるガス流通手段を、図3に示す構成
に変えた点のみが相違するので、その相違点を説明す
る。すなわち、本例に使用したセッター12は、基体は
前例のものと同様、均一厚さの円板体であるが、片
(上)面にガス流通手段として平面視において+形に溝
13を設けたものである。なおその溝13は、本例のも
のでは、幅5mm、深さ2mmである。しかして、前例
の場合とまったく同様にして、図示はしないが、成形体
を載置する等してセットし、焼成するのであるが、本例
では、成形体を載置したときにおいてもその内側空間
は、溝13,13が通気路となって外側からガスが流通
する状態にあるから、焼成後のみならず、焼成前及び焼
成過程においても、その成形体の内側空間と外側が連通
する。被焼成物の開口側端面とセッター上面との焼付き
は、所定の焼成温度に達する前に生ずるために、従来の
セッターを使用した焼成による場合には、所定温度では
被焼成物の内側空間のガスが膨脹して高圧となる。した
がって、被焼成物が薄肉であると、その圧力に抗しきれ
ずに割れてしまうことがあるが、本例技術ではこうした
ことが生じないので、薄肉のものを焼成する場合にはと
りわけ好適である。なお、本例についても前例と同じ比
較試験を行ったが、結果は、前例の場合とまったく同じ
で、不良ゼロであった。
Second Embodiment Next, a second embodiment will be described. However, in this embodiment, only the point that the gas flow means in the setter is changed to the configuration shown in FIG. Will be explained. That is, in the setter 12 used in this example, the substrate is a disk body having a uniform thickness as in the previous example, but the groove 13 is provided on one (upper) surface as a gas flow means in a + shape in a plan view. It is a thing. In this example, the groove 13 has a width of 5 mm and a depth of 2 mm. Although not shown in the figure, the molded body is placed and set and fired in exactly the same manner as in the case of the previous example. In the space, since the grooves 13 and 13 serve as ventilation paths to allow gas to flow from the outside, the inside space and the outside of the molded body communicate with each other not only after firing but also before and during firing. Since the seizure between the end surface on the opening side of the object to be fired and the upper surface of the setter occurs before reaching the predetermined baking temperature, in the case of baking using a conventional setter, the internal space of the object to be baked at the predetermined temperature The gas expands to high pressure. Therefore, if the object to be fired is thin, it may not be able to withstand the pressure and may crack, but this does not occur in the technique of this example, so it is particularly suitable when firing a thin object. .. The same comparative test as in the previous example was carried out for this example as well, but the result was exactly the same as in the case of the previous example and there were no defects.

【0016】−実施例3− さて次に、実施例3について説明するが、本例では、セ
ッターにおけるガス流通手段を、セッターを多孔質体で
形成することで構成した点のみが相違するのみである。
すなわち、本例においては図4に示すとおり、セッター
22は円板体をなすが、焼成後において、少なくとも被
焼成物が載置された状態のもとで、被焼成物の内側と外
側にガスの流通可能の無数の小孔が形成される、多孔質
体となる成形体としたものである。ここで、その小孔
は、成形体の材料である粉体に焼成過程で焼失するバイ
ンダー等による気孔形成材を混ぜておくことなどにより
形成されるが、適度のガス透過(通過)性に設定されて
いる。焼成後になるべくガスの通りのよい孔断面とする
が、具体的には平均径で約5ミクロン以上あるのが好ま
しい。
Example 3 Next, Example 3 will be described. In this example, the gas flow means in the setter is different only in that the setter is formed of a porous body. is there.
That is, in this example, as shown in FIG. 4, the setter 22 has a disk shape, but after firing, at least the object to be fired is placed on the inside and the outside of the object to be fired under the condition that the object is placed. Is formed into a porous body in which innumerable small pores are formed. Here, the small pores are formed by mixing powder, which is the material of the molded body, with a pore-forming material such as a binder that is burned out in the firing process, but set to a suitable gas permeability (passability). Has been done. After firing, the cross section of the hole is such that the gas can pass through as much as possible, but specifically, the average diameter is preferably about 5 microns or more.

【0017】しかして、上記各実施例の場合とまったく
同様にして、本例セツター22に成形体を載置する等し
てセットして焼成するのであるが、本例においては、焼
成過程においてセッターの成形体に混ぜられたの気孔形
成材が焼失して無数の小孔が形成されることによってガ
ス流通手段が構成され、焼成後において、被焼成物の内
外にガスが流通するものである。したがって、本例にお
いても、焼成後には、その内外に圧力差が生じない。な
お、本例でも上記各実施例の場合とまったく同様にして
比較試験をしたところ、不良が2個発生したが、従来技
術による場合の不良発生個数は7個であり、依然として
その歩留まりの良さが実証されている。
In the same way as in each of the above-mentioned embodiments, the molded body is set on the setter 22 of this embodiment and set and fired. In this embodiment, the setter is used in the firing process. The gas flow means is configured by burning out the pore-forming material mixed with the molded body of (1) to form innumerable small holes, and the gas flows into and out of the object to be burned after firing. Therefore, also in this example, a pressure difference does not occur between the inside and the outside after firing. In this example, a comparative test was performed in exactly the same manner as in each of the above-mentioned examples. As a result, two defects were generated, but the number of defects generated by the conventional technique was 7, and the yield was still good. Has been proven.

【0018】本発明に使用した上記実施例におけるセッ
ターの材質はいずれも、ベータアルミナの共素地のもの
としたが、アルミナ、マグネシア、スピネル等の適宜の
材質からなるセラミック成形体を用いることができる。
ただし、セッターは、被焼成物と同じ収縮率のものを用
いるのが、焼成過程でのその変形防止や精度の向上のた
めに好ましい。また上記実施例では、セッターは、いず
れも成形体として焼成過程で同時に焼成されるものとし
たが、精度の低減はあるものの、焼結体を用いることも
可能である。
Although the setters used in the present invention are all made of beta-alumina co-base material, ceramic moldings made of appropriate materials such as alumina, magnesia and spinel can be used. ..
However, it is preferable to use the setter having the same shrinkage ratio as that of the material to be fired, in order to prevent the deformation during the firing process and improve the accuracy. Further, in the above-mentioned embodiments, all the setters are simultaneously fired as a molded body in the firing process, but a sintered body can be used although the accuracy is reduced.

【0019】なお、本発明方法におけるセッターのガス
流通手段としては、上記のものに限定されるものではな
い。少なくとも焼成後、つまり冷却後において、被焼成
物の内側空間のガスの容積が減ってその空間が外部より
低圧とならないように被焼成物の外側から、その内側空
間にガスを流通(貫通ないし通過)させ得るものであれ
ばよく、ガスの通気孔(貫通孔)ないし通気路の具体的
形態は適宜の構成とし得る。
The gas flow means of the setter in the method of the present invention is not limited to the above. At least after firing, that is, after cooling, the gas is circulated (penetrated or passed) from the outside of the object to be burned so that the volume of the gas in the inner space of the object is not reduced and the space is at a lower pressure than the outside. ), And the specific configuration of the gas vent hole (through hole) or the vent passage may be an appropriate configuration.

【0020】[0020]

【発明の効果】本発明によれば、上記したように、成形
体が焼成され、冷却後にセッターがくっついた状態で取
出されても、被焼成物の外側からそのセッターを通過し
てその内側空間にガスが流通することができるから、焼
成過程において、被焼成物の開口側端面とセッターの上
面とが密着していても、その内外の圧力は同一に保持さ
れる。したがって、焼成後におけるセッターの分離が簡
易なる上、その分、分離時における被焼成物の損傷の発
生が低減されるので、歩留まりが向上し、生産性の向上
が期待される。
According to the present invention, as described above, even if the molded body is fired and taken out in a state in which the setter is stuck after cooling, it passes through the setter from the outside of the object to be fired and the inner space thereof. Since the gas can flow through, even if the end surface on the opening side of the object to be fired and the upper surface of the setter are in close contact with each other in the firing process, the pressure inside and outside the same is maintained. Therefore, the setter can be easily separated after firing, and the amount of damage to the article to be fired at the time of separation can be reduced accordingly, so that the yield is improved and the productivity is expected to be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る焼成方法の一例を説明するための
焼成状態の要部を示す概略破断面図である。
FIG. 1 is a schematic cross-sectional view showing a main part in a fired state for explaining an example of a firing method according to the present invention.

【図2】本発明に係る焼成方法の効果を従来技術による
場合と比較するための試験方法を示す説明図である。
FIG. 2 is an explanatory diagram showing a test method for comparing the effect of the firing method according to the present invention with the case of the conventional technique.

【図3】(A)は、本発明に係る焼成方法の実施例2に
使用したセッターの正面図、(B)は同平面図である。
3A is a front view of a setter used in Example 2 of the firing method according to the present invention, and FIG. 3B is a plan view of the setter.

【図4】本発明に係る焼成方法の実施例3に使用したセ
ッターの正面図である。
FIG. 4 is a front view of a setter used in Example 3 of the firing method according to the present invention.

【図5】従来の焼成方法を説明するための焼成状態を示
す概略破断面図である。
FIG. 5 is a schematic sectional view showing a firing state for explaining a conventional firing method.

【符号の説明】[Explanation of symbols]

1 有底筒状セラミック成形体(被焼成物) 1a 開口側端部 1b 内側空間 2,12,22 セッター 3 貫通孔(ガス流通手段) 13 通気路(ガス流通手段) DESCRIPTION OF SYMBOLS 1 Bottomed cylindrical ceramic molded body (baking object) 1a Opening side end part 1b Inner space 2,12,22 Setter 3 Through hole (gas distribution means) 13 Ventilation path (gas distribution means)

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年5月16日[Submission date] May 16, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【実施例】 −実施例1− 次に本発明を具体化した実施例1について図1を参照し
て詳細に説明する。図中、1は、焼成炉内で焼成される
成形体(被焼成物)であって、本例では、ベータ・アル
ミナ製の有底管としている。ただし、外径は約43m
m、長さは360mmである。一方、本例で使用するセ
ッター2は、均一厚さの円板状で、中央にガス流通手段
としての貫通孔3を備えて環状に形成されてなり、被焼
成物1と共通素地の成形体から構成されている。ちなみ
に、その直径は成形体の外径より若干大きめの約48m
m(40mm)とされ、厚さは約6mm(5mm)で、
貫通孔3は直径約15mmに設定されている。なお括弧
内は焼結後寸法である。
EXAMPLES Example 1 Next, Example 1 embodying the present invention will be described in detail with reference to FIG. In the figure, reference numeral 1 denotes a molded body (material to be fired) fired in a firing furnace, and in this example, a beta-alumina bottomed tube. However, the outer diameter is about 43 m
m and the length is 360 mm. On the other hand, the setter 2 used in this example is a disk-shaped member having a uniform thickness, is formed in an annular shape with a through hole 3 as a gas flow means in the center, and is a molded body of the material 1 to be fired and a common substrate. It consists of By the way, the diameter is about 48m, which is slightly larger than the outer diameter of the molded body.
m (40 mm), the thickness is about 6 mm (5 mm),
The through hole 3 has a diameter of about 15 mm. The values in parentheses are the dimensions after sintering.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯島 繁 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Iijima 14-18 Takatsuji-cho, Mizuho-ku, Nagoya City Nippon Special Ceramics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有底筒状に形成されたセラミック成形体
を、セッターに対して開口側端部を当接させて載置し、
その状態の下で焼成する方法において、そのセッター
を、少なくとも焼成後において、被焼成物の外側からそ
の内側空間にガスを流通させるガス流通手段を備えてな
る構成のものとしたことを特徴とする、セラミック成形
体の焼成方法。
1. A ceramic molded body having a bottomed tubular shape is placed with its end on the opening side abutting against a setter,
In the method of firing under that condition, the setter is configured to have a gas flow means for flowing gas from the outer side to the inner space of the object to be fired at least after firing. , A method for firing a ceramic molded body.
JP4100513A 1992-03-26 1992-03-26 Method for burning ceramic compact Pending JPH05270927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100513A JPH05270927A (en) 1992-03-26 1992-03-26 Method for burning ceramic compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100513A JPH05270927A (en) 1992-03-26 1992-03-26 Method for burning ceramic compact

Publications (1)

Publication Number Publication Date
JPH05270927A true JPH05270927A (en) 1993-10-19

Family

ID=14276036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100513A Pending JPH05270927A (en) 1992-03-26 1992-03-26 Method for burning ceramic compact

Country Status (1)

Country Link
JP (1) JPH05270927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126587A (en) * 2010-12-13 2012-07-05 Sumitomo Metal Mining Co Ltd Oxide sintered body for cylindrical sputtering target and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126587A (en) * 2010-12-13 2012-07-05 Sumitomo Metal Mining Co Ltd Oxide sintered body for cylindrical sputtering target and method for producing the same

Similar Documents

Publication Publication Date Title
US4786542A (en) Setters and firing of ceramic honeycomb structural bodies by using the same
EP1647790B1 (en) Method of manufacturing porous ceramic body
US7651569B2 (en) Pedestal for furnace
US10035283B2 (en) Manufacturing method of honeycomb structure and honeycomb formed body
JPH05270927A (en) Method for burning ceramic compact
US6015517A (en) Controlled porosity for ceramic contact sheets and setter tiles
JP2002231713A (en) Jig for semiconductor manufacturing apparatus
JP2005219977A (en) Firing setter for firing ceramic honeycomb and method of firing ceramic honeycomb
JP2003082403A (en) Bottom board for firing
EP1195214B1 (en) Metal-made seamless pipe and process for production thereof
JPH059076A (en) Production of aluminum nitride substrate
JP4031578B2 (en) Manufacturing method of bottomed cylindrical ceramic sintered body
US10022891B2 (en) Manufacturing method of honeycomb structure, and honeycomb formed body
JP4335345B2 (en) Manufacturing method of long cylindrical ceramic sintered body
JP3782530B2 (en) Method for producing bottomed tubular ceramic sintered body
RU2038922C1 (en) Method of making sintered filtering material
JPH0629444B2 (en) Sintering method
US20230057187A1 (en) AlN JOINED BODY
JP2007238414A (en) Burning method for ceramic long formed body
JP2521465Y2 (en) β-alumina tube firing setter
JP4036538B2 (en) Bottomed cylindrical ceramic sintered body and method for producing the same
JPH0274566A (en) Production of piezoelectric ceramics
JPH04302991A (en) Vessel for baking ceramics
JPH0714605A (en) Baking method of beta-alumina
JPH06279092A (en) Method for sintering ceramic cylindrical part