JPH0527020A - Multi-static radar device - Google Patents

Multi-static radar device

Info

Publication number
JPH0527020A
JPH0527020A JP3201345A JP20134591A JPH0527020A JP H0527020 A JPH0527020 A JP H0527020A JP 3201345 A JP3201345 A JP 3201345A JP 20134591 A JP20134591 A JP 20134591A JP H0527020 A JPH0527020 A JP H0527020A
Authority
JP
Japan
Prior art keywords
signal
receiving means
target
phase
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3201345A
Other languages
Japanese (ja)
Inventor
Takahiko Fujisaka
貴彦 藤坂
Tomomasa Kondo
倫正 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3201345A priority Critical patent/JPH0527020A/en
Publication of JPH0527020A publication Critical patent/JPH0527020A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a multi-static radar device which is capable of maintaining the improvement effect of the signal/noise power ratio by the coherent integration without being affected by the frequency fluctuation of a local oscillator and a coherent oscilla tor of a transmitting station and a receiving station. CONSTITUTION:A first receiving means 8-1 and a second receiving means 8-2 which make common use of a local oscillator 14 and a coherent oscillator 15 are provided. The first receiving means 8-1 outputs the signal by realizing frequency conversion and phase detection of the direct wave 21 from the transmitting station under the output of the respective oscillators, while the second receiving means 8-2 outputs the target signal by realizing frequency conversion and phase detection of the reflected wave from the target in a similar manner to the direct wave, then, a phase compensating means 9 compensates the phase fluctuation of the target signal outputted by the second receiving means 8-2 by using the signal of the first receiving means 8-1. Even if the oscillating frequencies of the transmitting station and the receiving station are fluctuated, the frequency of the target signal is not affected thereby, and the accuracy of the same degree is obtained with an inexpensive crystal oscillator as the case where a higher stable oscillator is used, leading to inexpensive manufacture of the device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、マルチスタティック
レーダ装置におけるコヒーレント積分による信号対雑音
電力比の改善効果向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement effect of a signal-to-noise power ratio by coherent integration in a multistatic radar device.

【0002】[0002]

【従来の技術】図3は例えば特開平1−217285号
に示された従来のマルチスタティックレーダ装置の構成
を示す図であり、図において、33は送受信間の同期を
取るための計時装置30、送信機31及び送信アンテナ
32とで構成された送信局、104は目標、36は送信
局33から放射され、目標104で反射された電波を受
信する受信アンテナ2、受信アンテナ2で受信された目
標からの反射波を増幅、検波する受信機34、目標の方
位角及び仰角を算出する方位角仰角計算機35とで構成
される受信局、39は目標の位置を算出する位置計算機
37、位置表示器38とで構成された目標位置表示器で
ある。
2. Description of the Related Art FIG. 3 is a diagram showing the structure of a conventional multi-static radar device disclosed in, for example, Japanese Patent Application Laid-Open No. 1-217285, in which 33 is a clock device 30 for synchronizing transmission and reception, A transmitting station composed of a transmitter 31 and a transmitting antenna 32, 104 is a target, 36 is a receiving antenna 2 that receives radio waves radiated from the transmitting station 33 and reflected by the target 104, and a target received by the receiving antenna 2. A receiving station composed of a receiver 34 that amplifies and detects the reflected wave from the azimuth and an azimuth / elevation angle calculator 35 that calculates the target azimuth angle and elevation angle, and 39 is a position calculator 37 that calculates the target position, and a position indicator. 38 is a target position indicator constituted by 38 and.

【0003】また、図4は「AIRBORNE PUL
SED DOPPLERRADAR」Guy V.Mo
rris著 Artech House発行の43頁及
び287頁に記載されたFig3.8及びFig13.
26を組合せて、コヒーレント積分による信号対雑音電
力比の改善効果向上を図った従来のモノスタティックレ
ーダ装置の構成を示す図である。
Further, FIG. 4 shows "AIRBORNE PUL".
SED DOPPLER RADAR "Guy V. Mo
Fig. 3.8 and Fig. 13. described on pages 43 and 287, published by Arris House, by Arris House.
26 is a diagram showing a configuration of a conventional monostatic radar device in which 26 are combined to improve the effect of improving the signal-to-noise power ratio by coherent integration.

【0004】図中1は送信波22及び送信波が目標10
4で反射され戻ってきた反射波を送受する送受信アンテ
ナ、3は高周波増幅器、5は中間周波増幅器、6は位相
検波器、7は映像増幅器、10はコヒーレント積分器、
11は振幅検波器、12はインコヒーレント積分器、1
3は表示器、14は局部発振器、15はコヒーレント発
振器、4は局部発振器14の出力とコヒーレント発振器
の出力を合成するミキサー、17は送信増幅器、18は
側距のために送信波を変調する変調器、19は送受切換
器である。
In the figure, reference numeral 1 indicates a transmitted wave 22 and a transmitted wave a target 10.
A transmitting / receiving antenna for transmitting and receiving a reflected wave reflected by 4 and 3 is a high frequency amplifier, 5 is an intermediate frequency amplifier, 6 is a phase detector, 7 is a video amplifier, 10 is a coherent integrator,
11 is an amplitude detector, 12 is an incoherent integrator, 1
3 is a display, 14 is a local oscillator, 15 is a coherent oscillator, 4 is a mixer for combining the output of the local oscillator 14 and the output of the coherent oscillator, 17 is a transmission amplifier, and 18 is a modulation for modulating the transmission wave for side distance. Reference numeral 19 is a transmission / reception switch.

【0005】次に、図4に従ってまずコヒーレント積分
による信号対雑音電力比の改善効果とこれを良好な状態
に保つために必要となる装置の構成法について述べる。
この種の装置では、コヒーレント発振器15で発生させ
た周波数fc の信号と、局部発振器14で発生させた周
波数fs の信号をミキサー4で合成し、周波数(fs
c )の信号に変換した後、変調器18及び送信増幅器
17で変調及び増幅し、送受切換器19を経て、送受信
アンテナ1から目標104へ向けて放射される。
Next, the effect of improving the signal-to-noise power ratio by coherent integration and the method of constructing the device necessary for keeping it in a good state will be described with reference to FIG.
In this type of device, the signal of frequency f c generated by the coherent oscillator 15 and the signal of frequency f s generated by the local oscillator 14 are combined by the mixer 4 to generate the frequency (f s +
After being converted into a signal of f c ), it is modulated and amplified by the modulator 18 and the transmission amplifier 17, and is radiated from the transmission / reception antenna 1 toward the target 104 via the transmission / reception switcher 19.

【0006】放射された送信波22は、目標104へ反
射され、反射波20となって戻って来る。このとき、反
射波20の周波数は送信した周波数に目標のラジアル速
度に応じて決まるドップラー周波数fd を加えた(fs
+fc +fd )となっている。この反射波20は、再び
送受信アンテナ1及び送受切換器19を経て、高周波増
幅器3で増幅された後、ミキサー4で局部発振器14の
出力信号と混合され、その周波数(fs +fc +fd
から−fs され、(fc +fd )に変換される。
The radiated transmitted wave 22 is reflected by the target 104 and returns as a reflected wave 20. At this time, the frequency of the reflected wave 20 is obtained by adding the Doppler frequency f d determined according to the target radial velocity to the transmitted frequency (f s
+ F c + f d ). The reflected wave 20 passes through the transmission / reception antenna 1 and the transmission / reception switch 19 again, is amplified by the high frequency amplifier 3, and is then mixed with the output signal of the local oscillator 14 by the mixer 4, and its frequency (f s + f c + f d ).
From the -f s, it is converted to (f c + f d).

【0007】更に、中間周波増幅器5で増幅された後、
位相検波器6で、コヒーレント発振器15の出力信号と
混合され、その周波数(fc +fd )から−fc され、
結局、目標のドップラー周波数fd のみが残される。位
相検波器6の出力信号は映像増幅器7により増幅された
後コヒーレント積分器10に用意されたドップラーフィ
ルタバンクに入力され、積分が行われる。コヒーレント
積分後の信号は振幅検波器11で検波され、インコヒー
レント積分器12で再度積分された後、表示器13上に
表示される。
Further, after being amplified by the intermediate frequency amplifier 5,
In the phase detector 6, it is mixed with the output signal of the coherent oscillator 15, and its frequency (f c + f d ) is changed to −f c ,
Eventually, only the target Doppler frequency f d remains. The output signal of the phase detector 6 is amplified by the video amplifier 7 and then input to the Doppler filter bank prepared in the coherent integrator 10 for integration. The signal after the coherent integration is detected by the amplitude detector 11, re-integrated by the incoherent integrator 12, and then displayed on the display 13.

【0008】上記の構成では、送信と受信とで、局部発
振器14及びコヒーレント積分器15を共用しているた
め、それぞれの出力信号の周波数fs 及びfc がたとえ
変動したとしても、その影響は送受信の際に打ち消し合
い、コヒーレント積分効果への影響はほとんどない。
In the above configuration, since the local oscillator 14 and the coherent integrator 15 are shared by the transmission and the reception, even if the frequencies f s and f c of the respective output signals fluctuate, their influence is not affected. They cancel each other during transmission and reception, and have almost no effect on the coherent integration effect.

【0009】しかし、図3に示すように、マルチスタテ
ィックレーダ装置では、送信局33と受信局36とは異
なる位置に配置されるため、図4に示すような局部発振
器14及びコヒーレント発振器15の共用は不可能とな
る。このため、2つの発振器の周波数変動は、即、コヒ
ーレント積分効果の劣化原因となる。
However, as shown in FIG. 3, since the transmitting station 33 and the receiving station 36 are arranged at different positions in the multistatic radar device, the local oscillator 14 and the coherent oscillator 15 as shown in FIG. 4 are commonly used. Becomes impossible. Therefore, frequency fluctuations of the two oscillators immediately cause deterioration of the coherent integration effect.

【0010】[0010]

【発明が解決しようとする課題】従来のマルチスタティ
ックレーダ装置は以上のように構成されているので、コ
ヒーレント積分による信号対雑音電力比の改善効果を維
持するために、局部発振器及びコヒーレント発振器の周
波数変動を小さくすることが必要で、セシウム又はルビ
ジウム等を用いた高安定発振器を必要とし、更に、装置
の振動及び温度変動を無くすための機構を必要とするた
め装置が高価かつ大型化するなどの問題点があった。
Since the conventional multistatic radar device is constructed as described above, in order to maintain the effect of improving the signal to noise power ratio by coherent integration, the frequencies of the local oscillator and the coherent oscillator are maintained. It is necessary to reduce fluctuations, a highly stable oscillator using cesium or rubidium, etc. is required, and a device for eliminating vibration and temperature fluctuations of the device is required. There was a problem.

【0011】この発明は上記のような問題点を解消する
ためになされたもので、水晶発振器程度の安定度の局部
発振器及びコヒーレント発振器で十分なコヒーレント積
分による信号対雑音電力比の改善効果を維持可能なマル
チスタティックレーダ装置を得ることを目的とする。
The present invention has been made to solve the above problems, and maintains the effect of improving the signal-to-noise power ratio by coherent integration with a local oscillator and a coherent oscillator having a degree of stability of a crystal oscillator. The purpose is to obtain a possible multi-static radar device.

【0012】[0012]

【課題を解決するための手段】上記送信局より放射され
た高周波電波を直接受信し、所定の局部発振周波数を混
合して中間周波数信号に変換した後同期発振信号と位相
検波して信号を出力する第1の受信手段と、上記送信局
から放射され目標で反射された反射波を受信し、上記中
間周波数信号に変換した後、上記同期発振信号と位相検
波して目標信号を出力する第2の受信手段と、上記第1
の受信手段の出力信号を用いて、上記第2の受信手段よ
り出力される目標信号の位相変動を補償する位相補償手
段を設けたものである。
High frequency radio waves radiated from the transmitting station are directly received, a predetermined local oscillation frequency is mixed and converted into an intermediate frequency signal, and then phase detection is performed with a synchronous oscillation signal to output a signal. And a second receiving means for receiving the reflected wave radiated from the transmitting station and reflected at the target, converting the reflected wave to the intermediate frequency signal, and phase-detecting the synchronous oscillation signal and outputting the target signal. Receiving means and the first
The phase compensation means for compensating for the phase fluctuation of the target signal output from the second reception means is provided by using the output signal of the reception means.

【0013】[0013]

【作用】この発明における位相補償手段は、第1の受信
手段の出力信号を用いて、第2の受信手段の出力信号す
なわち目標信号の位相変動を補償するので、たとえ送信
局及び受信局の局部発振器、同期発振器の発振周波数に
ずれを生じたとしても、これを補償することができる。
よって上記発振器として、セシウムやルビジウム等を利
用する必要がなく、モノスタティックレーダ装置と同様
に水晶発振器が利用可能となり、装置を安価に製造する
ことが可能となる。
Since the phase compensating means in the present invention compensates for the phase fluctuation of the output signal of the second receiving means, that is, the target signal, using the output signal of the first receiving means, even if it is a local part of the transmitting station and the receiving station. Even if there is a deviation in the oscillation frequency of the oscillator or the synchronous oscillator, this can be compensated.
Therefore, it is not necessary to use cesium, rubidium, or the like as the oscillator, and a crystal oscillator can be used similarly to the monostatic radar device, and the device can be manufactured at low cost.

【0014】[0014]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図4と同一部分
は同一符号を用いて図1に従って説明する。図1におい
て、8−1は受信アンテナ2、高周波増幅器3、ミキサ
ー4、中間周波増幅器5、位相検波器6及び映像増幅器
7から構成された第1の受信手段、8−2は同一構成に
よる第2の受信手段、9は第1の受信手段8−1の出力
信号を用いて、第2の受信手段8−2の出力信号の位相
変動を補償する位相補償手段、21は直接波である。
Example 1. An embodiment of the present invention will be described below with reference to FIG. 1 using the same reference numerals as those in FIG. In FIG. 1, 8-1 is a first receiving means composed of a receiving antenna 2, a high frequency amplifier 3, a mixer 4, an intermediate frequency amplifier 5, a phase detector 6 and a video amplifier 7, and 8-2 is a first receiving means having the same configuration. 2 is a receiving means, 9 is a phase compensating means for compensating the phase fluctuation of the output signal of the second receiving means 8-2 by using the output signal of the first receiving means 8-1, and 21 is a direct wave.

【0015】図2はマルチスタティックレーダ装置の送
信局及び目標の位置関係を示す図であり、100は受信
局、101、102及び103は送信局、104は目標
である。その他の符号は従来装置と同一あるいは同等の
構成要素を示す。
FIG. 2 is a diagram showing the positional relationship between the transmitting station and the target of the multi-static radar apparatus. 100 is a receiving station, 101, 102 and 103 are transmitting stations, and 104 is a target. Other reference numerals indicate the same or similar components as the conventional device.

【0016】以下、図面に従って、本発明のマルチスタ
ティックレーダ装置の動作を図に従って説明する。一般
にこの種の装置では図2に示すように互いに異なる位置
に配置された複数の送信局101〜103及び単一の受
信局100を用いて目標の検索・追尾を行う。この発明
は、この内の任意の送信局と受信局との組合せに対して
適用できるので、以下の説明では送信局及び受信局が各
々1つの組合せについて述べる。
The operation of the multi-static radar device of the present invention will be described below with reference to the drawings. Generally, in this type of apparatus, a target search / tracking is performed using a plurality of transmitting stations 101 to 103 and a single receiving station 100 arranged at different positions as shown in FIG. Since the present invention can be applied to any combination of the transmitting station and the receiving station, the following description will be made on a combination of one transmitting station and one receiving station.

【0017】送信局101から放射された送信波はその
一部が直接波21として受信局100の第1の受信手段
8−1で受信されるとともに、他の一部が目標104に
より反射され、反射波20として、第2の受信手段8−
2で受信される。
A part of the transmitted wave radiated from the transmitting station 101 is received as the direct wave 21 by the first receiving means 8-1 of the receiving station 100, and the other part is reflected by the target 104, As the reflected wave 20, the second receiving means 8-
Received at 2.

【0018】このとき、送信局101から反射された送
信波の任意の時刻tにおける周波数をfTX(t)とし、
受信局100の局部発振器14及びコヒーレント発振器
15の発振周波数をそれぞれfSTALO (t)、f
COHO(t)とする。直接波21の周波数は送信波の周波
数に一致するから、fTX(t)となり、反射波20の周
波数は目標104、送信局101及び受信局100の速
対速度で決まるドップラー周波数fd (t)だけ変移す
るから、fTX(t)+fd (t)となる。
At this time, the frequency of the transmission wave reflected from the transmission station 101 at an arbitrary time t is f TX (t),
The oscillation frequencies of the local oscillator 14 and the coherent oscillator 15 of the receiving station 100 are f STALO (t) and f STALO , respectively.
COHO (t). Since the frequency of the direct wave 21 matches the frequency of the transmitted wave, it becomes f TX (t), and the frequency of the reflected wave 20 is the Doppler frequency f d (t) determined by the speed 104 of the target 104, the transmitting station 101, and the receiving station 100. ), F TX (t) + f d (t).

【0019】よって、第1の受信手段8−1によって増
幅及び位相検波された直接波の周波数f1 (t)は、式
1で与えられる。 f1 (t)=fTX(t)−fLATLO (t)−fCOHO(t) (1)
Therefore, the frequency f 1 (t) of the direct wave amplified and phase-detected by the first receiving means 8-1 is given by the equation 1. f 1 (t) = f TX (t) -f LATLO (t) -f COHO (t) (1)

【0020】また、第2の受信手段8−2によって、増
幅及び位相検波された反射波の周波数f2 (t)は式2
で与えられる。 f2 (t)=fd (t)+fTX(t)−fSTALO (t)−fCOHO(t) (2)
The frequency f 2 (t) of the reflected wave amplified and phase-detected by the second receiving means 8-2 is given by
Given in. f 2 (t) = f d (t) + f TX (t) -f STALO (t) -f COHO (t) (2)

【0021】第2の受信手段8−2で増幅及び検波され
た反射波すなわち目標信号は、位相補償手段9へ入力さ
れ、第1の受信手段8−1の出力信号を用いてその位相
の時間変化すなわち周波数が補償される。位相補償後の
目標信号の周波数f3 (t)は、式3で与えられる。 f3 (t)=f2 (t)−f1 (t)=fd (t) (3)
The reflected wave amplified or detected by the second receiving means 8-2, that is, the target signal is input to the phase compensating means 9, and the phase of the reflected wave, that is, the target signal, is detected by using the output signal of the first receiving means 8-1. Changes or frequencies are compensated. The frequency f 3 (t) of the target signal after phase compensation is given by equation 3. f 3 (t) = f 2 (t) -f 1 (t) = f d (t) (3)

【0022】式3より明らかなように位相補償手段9に
おいて、第1の受信手段8−1の出力信号を用いて目標
信号の位相変動を補償することによって、位相補償後の
目標信号の周波数f3 (t)は送信周波数fTX(t)、
受信局の局部発振器の発振周波数fSTALO (t)及びコ
ヒーレント発振器の発振周波数fCOHO(t)と無関係と
なる。よってこれらの周波数が変動したとしてもその影
響を受けることはなく、モノスタティックレーダ装置と
同様に安価な水晶発振器の使用が可能となる。
As is clear from the equation (3), the phase compensating means 9 compensates the phase fluctuation of the target signal by using the output signal of the first receiving means 8-1 to obtain the frequency f of the target signal after the phase compensation. 3 (t) is the transmission frequency f TX (t),
It becomes independent of the oscillation frequency f STALO (t) of the local oscillator of the receiving station and the oscillation frequency f COHO (t) of the coherent oscillator. Therefore, even if these frequencies fluctuate, they are not affected and it is possible to use an inexpensive crystal oscillator like the monostatic radar device.

【0023】位相補償後の目標信号はコヒーレント積分
器10でコヒーレント積分された後、振幅検波器11で
振幅検出され、インコヒーレント積分器12により再び
積分された後、表示器13上に表示される。
The target signal after phase compensation is coherently integrated by the coherent integrator 10, the amplitude is detected by the amplitude detector 11, and again integrated by the incoherent integrator 12, and then displayed on the display 13. ..

【0024】[0024]

【発明の効果】以上のように、この発明によれば、第1
の受信手段の出力信号を用いて、第2の受信手段で増幅
及び検波した目標信号の位相変動を補償できるように構
成したので、水晶発振器のような安価な発振器を使用し
ても、コヒーレント積分による信号対雑音電力比の改善
効果を低下させることなく装置を製造できる。
As described above, according to the present invention, the first
Since the output signal of the receiving means is used to compensate the phase fluctuation of the target signal amplified and detected by the second receiving means, the coherent integration can be performed even if an inexpensive oscillator such as a crystal oscillator is used. The device can be manufactured without reducing the effect of improving the signal-to-noise power ratio due to.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例によるマルチスタティック
レーダ装置の構成を示す構成図である。
FIG. 1 is a configuration diagram showing a configuration of a multi-static radar device according to an embodiment of the present invention.

【図2】マルチスタティックレーダ装置における送信
局、受信局、目標の配置を示す配置図である。
FIG. 2 is a layout diagram showing a layout of transmitting stations, receiving stations, and targets in a multi-static radar device.

【図3】従来のマルチスタティックレーダ装置の構成を
示す構成図である。
FIG. 3 is a configuration diagram showing a configuration of a conventional multistatic radar device.

【図4】モノスタティックレーダ装置の構成を示す構成
図である。
FIG. 4 is a configuration diagram showing a configuration of a monostatic radar device.

【符号の説明】[Explanation of symbols]

8−1 第1の受信手段 8−2 第2の受信手段 9 位相補償手段 14 局部発振器 15 コヒーレント発振器 20 反射波 21 直接波 8-1 1st receiving means 8-2 2nd receiving means 9 Phase compensation means 14 Local oscillator 15 Coherent oscillator 20 Reflected wave 21 Direct wave

Claims (1)

【特許請求の範囲】 【請求項1】 互いに異なる位置に配置された複数の送
信局、及び受信局を用いて目標の検索及び追尾を行うマ
ルチスタティックレーダ装置において、上記送信局より
放射された高周波電波を直接受信し、所定の局部発振周
波数を混合して中間周波数信号に変換した後同期発振信
号と位相検波して信号を出力する第1の受信手段と、上
記送信局から放射され目標で反射された反射波を受信
し、上記中間周波数信号に変換した後、上記同期発振信
号と位相検波して目標信号を出力する第2の受信手段
と、上記第1の受信手段の出力信号を用いて、上記第2
の受信手段より出力される目標信号の位相変動を補償す
る位相補償手段とを備えたことを特徴とするマルチスタ
ティックレーダ装置。
Claim: What is claimed is: 1. In a multi-static radar device for searching and tracking a target using a plurality of transmitting stations and receiving stations arranged at different positions, a high frequency wave radiated from the transmitting station. First receiving means for receiving radio waves directly, mixing a predetermined local oscillation frequency and converting it to an intermediate frequency signal, and then phase-detecting the synchronous oscillation signal and outputting a signal; Using the output signals of the first receiving means and the second receiving means that receives the reflected wave and converts it to the intermediate frequency signal, and phase-detects the synchronous oscillation signal to output a target signal. , Above second
And a phase compensating means for compensating for phase fluctuations of the target signal output from the receiving means of FIG.
JP3201345A 1991-07-16 1991-07-16 Multi-static radar device Pending JPH0527020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201345A JPH0527020A (en) 1991-07-16 1991-07-16 Multi-static radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201345A JPH0527020A (en) 1991-07-16 1991-07-16 Multi-static radar device

Publications (1)

Publication Number Publication Date
JPH0527020A true JPH0527020A (en) 1993-02-05

Family

ID=16439496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201345A Pending JPH0527020A (en) 1991-07-16 1991-07-16 Multi-static radar device

Country Status (1)

Country Link
JP (1) JPH0527020A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517190A (en) * 2002-02-08 2005-06-09 ロッキード・マーティン・コーポレイション System and method for correlating Doppler tracking in debris tracking
US7012552B2 (en) 2000-10-20 2006-03-14 Lockheed Martin Corporation Civil aviation passive coherent location system and method
JP2007508545A (en) * 2003-10-10 2007-04-05 レイセオン・カンパニー Multiple radar combination for enhanced range, radar sensitivity and angular accuracy
JP2008534983A (en) * 2005-04-04 2008-08-28 レイセオン・カンパニー System and method for coherently combining multiple radars
JP2008224194A (en) * 2007-03-15 2008-09-25 Toshiba Corp Air defense system
JP2009270827A (en) * 2008-04-30 2009-11-19 Mitsubishi Electric Corp Multi-static radar system
JP2010078446A (en) * 2008-09-25 2010-04-08 Toshiba Corp Radar system
JP2016138787A (en) * 2015-01-27 2016-08-04 三菱電機株式会社 Passive radar device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269179A (en) * 1985-09-24 1987-03-30 Mitsubishi Electric Corp Semi-active radar guidance controlling system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269179A (en) * 1985-09-24 1987-03-30 Mitsubishi Electric Corp Semi-active radar guidance controlling system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7012552B2 (en) 2000-10-20 2006-03-14 Lockheed Martin Corporation Civil aviation passive coherent location system and method
JP2005517190A (en) * 2002-02-08 2005-06-09 ロッキード・マーティン・コーポレイション System and method for correlating Doppler tracking in debris tracking
JP2007508545A (en) * 2003-10-10 2007-04-05 レイセオン・カンパニー Multiple radar combination for enhanced range, radar sensitivity and angular accuracy
JP2008534983A (en) * 2005-04-04 2008-08-28 レイセオン・カンパニー System and method for coherently combining multiple radars
JP2008224194A (en) * 2007-03-15 2008-09-25 Toshiba Corp Air defense system
JP2009270827A (en) * 2008-04-30 2009-11-19 Mitsubishi Electric Corp Multi-static radar system
JP2010078446A (en) * 2008-09-25 2010-04-08 Toshiba Corp Radar system
JP2016138787A (en) * 2015-01-27 2016-08-04 三菱電機株式会社 Passive radar device

Similar Documents

Publication Publication Date Title
EP0395682B1 (en) Closed loop velocity/altitude sensor for fm-cw doppler radars
US3487462A (en) Bistatic radar configuration not requiring reference-data transmission
US5495248A (en) Stabilizing method of synthetic aperture radar and position determining method thereof
KR101239166B1 (en) Frequency modulated continuous wave proximity sensor
US4635060A (en) Coherent-on-receive radar with prephase correction circuit
KR100751065B1 (en) RF transceiver module and millimeterwave FMCW radar sensor using the same
JPH0527020A (en) Multi-static radar device
US3197773A (en) Frequency modulated continuous wave navigation radar
US2678440A (en) Airborne moving target indicating radar system
US2776425A (en) Coherent radar system
US4470049A (en) Transmitter receiver operating at 94 GHz
JPH06102349A (en) Method and apparatus for measuring speed of moving target by using doppler shift of electromagnetic radiation
US2658195A (en) Moving target indicating radar system
US3848253A (en) Side looking pulse radar system
US5036327A (en) Single oscillator FSK pulsed radar receiving transmitter
US2659076A (en) Moving object radio pulse-echo system
EP0106340A1 (en) Device for automatic cancelling of undesired radar echoes
US2617983A (en) Moving target detecting system
CN113406621B (en) Phase synchronization method, satellite-borne radar and ground receiving station
JPS61124881A (en) Synthetic aperture radar transmitter-receiver
US3299426A (en) Moving target radar system
JP3217566B2 (en) Continuous wave radar
JPS61165677A (en) Pulse radar apparatus
GB955281A (en) Improvements in or relating to radio navigation systems
JPH11183600A (en) Radar device