JPH05269905A - Production of heat insulating material - Google Patents

Production of heat insulating material

Info

Publication number
JPH05269905A
JPH05269905A JP4066771A JP6677192A JPH05269905A JP H05269905 A JPH05269905 A JP H05269905A JP 4066771 A JP4066771 A JP 4066771A JP 6677192 A JP6677192 A JP 6677192A JP H05269905 A JPH05269905 A JP H05269905A
Authority
JP
Japan
Prior art keywords
aluminum foil
foamed resin
heat insulating
heat
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4066771A
Other languages
Japanese (ja)
Other versions
JP3111108B2 (en
Inventor
Akito Minaki
昭人 皆木
Arihiro Okamoto
有広 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Industrial Co Ltd
Original Assignee
Meisei Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Industrial Co Ltd filed Critical Meisei Industrial Co Ltd
Priority to JP04066771A priority Critical patent/JP3111108B2/en
Publication of JPH05269905A publication Critical patent/JPH05269905A/en
Application granted granted Critical
Publication of JP3111108B2 publication Critical patent/JP3111108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Thermal Insulation (AREA)

Abstract

PURPOSE:To produce a heat insulating material excellent in durability with high productivity. CONSTITUTION:A non-foamed resin film 4 composed of the same material quality as a thermoplastic foamed resin material 5 is preliminarily bonded to an aluminum foil 3. The non-foamed resin film 4 and the foamed resin material 5 are brought into contact with each other and heated to be fused to integrate the aluminum foil 3 with the surface of the foamed resin material 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発泡樹脂材の表面にア
ルミニウム箔を一体化させる断熱材の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heat insulating material in which an aluminum foil is integrated with the surface of a foamed resin material.

【従来の技術】従来、上記の断熱材の製造方法として
は、発泡樹脂材の表面に接着剤を塗布した後、その塗布
面部にアルミ箔を重ね合わせ、接着剤が硬化して発泡樹
脂材にアルミ箔が完全に接着するまで、積層状態のまま
発泡樹脂材とアルミ箔とを加圧しておくという方法が一
般的であった。この場合、発泡樹脂材の表面が、発泡に
起因して凹凸状になっているために、通常の接着剤で接
着したのでは、発泡樹脂材とアルミ箔とが点接触するこ
とになって接着性が悪いことから、発泡材を含有した二
液反応性の接着剤を用いて、発泡樹脂材の表面の凹部内
でその発泡材を発泡させ、両者を面接触にした状態で接
着するようにしていた。
2. Description of the Related Art Conventionally, as a method of manufacturing the above-mentioned heat insulating material, after applying an adhesive to the surface of a foamed resin material, an aluminum foil is laid on the applied surface portion, and the adhesive is cured to form a foamed resin material. A general method is to press the foamed resin material and the aluminum foil in a laminated state until the aluminum foil is completely bonded. In this case, since the surface of the foamed resin material is uneven due to foaming, if it is bonded with a normal adhesive, the foamed resin material and the aluminum foil will come into point contact and bond. Since the adhesiveness is poor, a two-component reactive adhesive containing a foam material is used to foam the foam material in the recesses on the surface of the foam resin material, and bond them in a state of surface contact. Was there.

【0002】[0002]

【発明が解決しようとする課題】しかしながら、上記断
熱材の製造方法において、発泡樹脂材とアルミニウム箔
とを面接触状態にさせるには、発泡材を十分発泡させな
ければならないために、その発泡が完了するまでに時間
がかかり、しかも、発泡材の発泡率を高めるには、接着
剤の粘性を高く維持しておかなけばならないために、接
着剤を溶剤で薄めてその硬化までの時間を短くするとい
ったことができず、結局、従来の方法では、発泡樹脂材
の表面にアルミニウム箔を一体化するまでに長時間を要
し、生産性が低いという欠点があった。本発明は、上記
従来の欠点を解消し、発泡樹脂材の表面にアルミニウム
箔を短時間で一体化できて生産性を向上することができ
る断熱材の製造方法を提供することを目的とする。
However, in the above method for producing a heat insulating material, in order to bring the foamed resin material and the aluminum foil into surface contact with each other, the foaming material must be sufficiently foamed. It takes time to complete, and in order to increase the foaming rate of the foam material, the viscosity of the adhesive must be kept high. It cannot be shortened, and in the end, the conventional method has a drawback that it takes a long time to integrate the aluminum foil on the surface of the foamed resin material and the productivity is low. It is an object of the present invention to solve the above-mentioned conventional drawbacks and to provide a method of manufacturing a heat insulating material, which can integrate an aluminum foil on the surface of a foamed resin material in a short time and improve productivity.

【0003】[0003]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明にかかる断熱材の製造方法は、予め、熱可
塑性の発泡樹脂材と同一材質からなる未発泡の樹脂フィ
ルムをアルミニウム箔に接着しておき、前記未発泡の樹
脂フィルムと前記発泡樹脂材とを接触させるとともに加
熱し熱融着させて、前記発泡樹脂材の表面にアルミニウ
ム箔を一体化させることを特徴とし、その作用効果は次
の通りである。
In order to achieve the above-mentioned object, a method for producing a heat insulating material according to the present invention is such that an unfoamed resin film made of the same material as a thermoplastic foamed resin material is previously formed into an aluminum foil. Is adhered to, and the unfoamed resin film and the foamed resin material are brought into contact with each other and heated and heat-fused to integrate an aluminum foil on the surface of the foamed resin material, and its action The effects are as follows.

【0004】[0004]

【作用】つまり、熱可塑性の発泡樹脂材と同一材質から
なる未発泡の樹脂フィルムの表面は、発泡樹脂材の表面
とは異なり、平滑面になっているから、未発泡の樹脂フ
ィルムとアルミニウム箔とを面接触状態で重ね合わせこ
とができ、そのために、両者を前記面接触状態にするた
めの発泡材を接着剤に含有させる必要がなくなって、通
常の接着剤を用いてそれらを接着することができる。そ
の結果、従来に比べて、発泡材の発泡までに要する時間
をなくすることができ、しかも、前記通常の接着剤を用
いる場合、発泡材の発泡率を考慮してなくてもよいか
ら、接着剤を溶剤で薄めて粘性を低くすることができ、
接着剤の硬化までの時間を短縮化できる。そして、未発
泡の樹脂フィルムとアルミニウム箔とを、このようにし
て接着しておいてから、前記未発泡の樹脂フィルムと熱
可塑性の発泡樹脂材とを接触させるとともに加熱し熱融
着させるから、両者が互いに同一材質からなることもあ
って、それらを短時間で確実に一体化させることができ
る。さらに、熱融着によって、樹脂フィルムに対する発
泡樹脂材の接触部が硬化して補強層を形成し、その結
果、全体として断熱材の強度を向上させることができ
る。
That is, the surface of the unfoamed resin film made of the same material as the thermoplastic foamed resin material is a smooth surface, unlike the surface of the foamed resin material, so that the unfoamed resin film and the aluminum foil are And can be superposed in a surface contact state, and therefore, it is not necessary to include a foaming material in the adhesive for bringing the two into the surface contact state, and the ordinary adhesive is used to bond them. You can As a result, it is possible to eliminate the time required until the foaming of the foamed material, as compared with the conventional case, and when the ordinary adhesive is used, it is not necessary to consider the foaming rate of the foamed material. You can dilute the agent with a solvent to reduce the viscosity,
The time to cure the adhesive can be shortened. Then, since the unfoamed resin film and the aluminum foil are adhered in this way, the unfoamed resin film and the thermoplastic foaming resin material are heated and heat-sealed together, so that Since both may be made of the same material, it is possible to surely integrate them in a short time. Further, the heat fusion cures the contact portion of the foamed resin material with the resin film to form the reinforcing layer, and as a result, the strength of the heat insulating material can be improved as a whole.

【0005】[0005]

【発明の効果】従って、未発泡の樹脂フィルムとアルミ
ニウム箔とを接着するに際し、従来に比べて、発泡材の
発泡までに要する時間をなくすることができるととも
に、接着剤の硬化までの時間を短縮化でき、しかも、未
発泡の樹脂フィルムと発泡樹脂材とを短時間で確実に一
体化させることができ、断熱材の強度を向上させること
ができるから、耐久性に優れた断熱材を生産性良く製造
できる断熱材の製造方法を提供することができた。
As described above, when the unfoamed resin film and the aluminum foil are adhered to each other, the time required for foaming the foam material can be eliminated as compared with the conventional case, and the time until the adhesive is cured can be reduced. It can be shortened, and moreover, the unfoamed resin film and the foamed resin material can be surely integrated in a short time, and the strength of the heat insulating material can be improved, so that the heat insulating material with excellent durability is produced. It was possible to provide a method of manufacturing a heat insulating material that can be manufactured with good properties.

【0006】[0006]

【実施例】次に本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0007】図1(ハ)に、本発明にかかる製造方法に
より製造した断熱材1を示してある。この断熱材1は、
例えば、船殻内や地上または地下の構造物等の外部構造
物内に構築されたタンク殻体、詳しくは、−46℃の液
体プロパンガス、−0.6℃の液化ブタンガス、−3
3.5℃の液化アンモニアガス等、液化石油ガスまたは
それに近い温度域の低温液化ガスを収容するために前記
外部構造物内に設けられたタンク殻体を断熱する場合に
用いるもので、本実施例においては、ポリエステル材
2、アルミニウム箔3、未発泡のポリスチレンフィルム
4(樹脂フィルムの一例)及び発泡ポリスチレン材5
(熱可塑性の発泡樹脂材の一例)を、この順に積層して
構成してある。前記ポリエステル材2は表面保護層とし
て設けてあり、水蒸気の侵入を防止したり、工事中の物
体の落下衝撃を吸収したりする役割を有する。そして、
周知のように、主としてアルミニウム箔3と発泡ポリス
チレン材5とで断熱する。なお、アルミニウム箔3はガ
スバリヤー性も兼ね備えている。
FIG. 1C shows a heat insulating material 1 manufactured by the manufacturing method according to the present invention. This insulation 1
For example, a tank shell constructed inside a hull or an external structure such as a structure above ground or underground, specifically, liquid propane gas at -46 ° C, liquefied butane gas at -0.6 ° C, -3
This is used to insulate the tank shell provided in the external structure to contain liquefied petroleum gas or low-temperature liquefied gas in a temperature range close to it, such as liquefied ammonia gas at 3.5 ° C. In the example, polyester material 2, aluminum foil 3, unfoamed polystyrene film 4 (an example of a resin film) and foamed polystyrene material 5
(Example of thermoplastic foamed resin material) are laminated in this order. The polyester material 2 is provided as a surface protective layer, and has a role of preventing invasion of water vapor and absorbing a drop impact of an object under construction. And
As is well known, the aluminum foil 3 and the expanded polystyrene material 5 mainly perform heat insulation. The aluminum foil 3 also has a gas barrier property.

【0008】前記断熱材1の製造方法は次の通りであ
る。
The method of manufacturing the heat insulating material 1 is as follows.

【0009】図1(イ)に示すように、アルミニウム箔
3の一方の面にポリエステル材2を、他方の面に未発泡
のポリスチレンフィルム4を接着する。接着剤は、二液
反応タイプのウレタン系接着剤を使用して、溶剤で薄め
て粘性を低くし、硬化までの時間の短縮化を図る。接着
剤が硬化してそれらが完全に接着したら、図1(ロ)に
示すように、前記ポリスチレンフィルム4を発泡ポリス
チレン材5に重ね合わせて加圧加熱し、ポリスチレンフ
ィルム4と発泡ポリスチレン材5とを熱融着させて一体
化させる。熱融着は、融点以上〜融点+50℃の温度範
囲で行う。この場合、同一材質同士の熱融着であり、し
かも、熱融着する前に、ポリエステル材2、アルミニウ
ム箔3及びポリスチレンフィルム4を接着により一体に
してあるから、これらと発泡ポリスチレン材5とを、そ
れぞれ未接着で別体のまま熱融着させて、一度に一体化
させる場合に比べて、融着させやすく、融着後において
も、ポリエステル材2とアルミニウム箔3とポリスチレ
ンフィルム4とが既に一体化しているために、互いに拘
束し合って、各部材の熱膨張率の差に起因する皺の発生
を防止することができる。
As shown in FIG. 1A, the polyester material 2 is bonded to one surface of the aluminum foil 3 and the unfoamed polystyrene film 4 is bonded to the other surface. For the adhesive, a two-component reaction type urethane adhesive is used, and it is diluted with a solvent to reduce the viscosity, and the time to cure is shortened. When the adhesive is cured and they are completely adhered, the polystyrene film 4 is superposed on the expanded polystyrene material 5 and heated under pressure, as shown in FIG. Are heat-sealed and integrated. The heat fusion is performed in the temperature range of the melting point or higher to the melting point + 50 ° C. In this case, the same materials are heat-sealed together, and since the polyester material 2, the aluminum foil 3 and the polystyrene film 4 are integrated by adhesion before heat-sealing, these and the expanded polystyrene material 5 are combined. As compared with the case where they are heat-bonded as separate bodies without being adhered to each other and integrated at one time, they are easier to fuse, and even after the fusion, the polyester material 2, the aluminum foil 3 and the polystyrene film 4 are already formed. Since they are integrated, they can be restrained from each other, and wrinkles due to the difference in the coefficient of thermal expansion of each member can be prevented from occurring.

【0010】次に、上記の方法による断熱材1の製造試
験例について説明する。 〔製造試験例1〕300mm×300mm×25mmの
押出式発泡ポリスチレン材5(ダウ化工(株)製 商品
名 スタイロフォームEK)の表面にドライラミネート
したポリエステル材(PET#16)2/アルミニウム箔
(AL#40)3/ポリスチレンフィルム(PS#30)4を
置き、熱ローラーにて150℃〜250℃まで温度変化
させて熱融着によって一体化した後、ピール試験と落球
衝撃試験及び熱伝導率の測定を行った。その結果を表1
に示す。
Next, an example of a production test of the heat insulating material 1 by the above method will be described. [Manufacturing Test Example 1] A polyester material (PET # 16 ) 2 / aluminum foil (AL # 40 ) 3 / Polystyrene film (PS # 30 ) 4 is placed, the temperature is changed by a heat roller from 150 ° C to 250 ° C and integrated by heat fusion, and then peel test, falling ball impact test and thermal conductivity measurement I went. The results are shown in Table 1.
Shown in.

【0011】[0011]

【表1】 [Table 1]

【0012】以上の結果より、融点より40℃高く温度
条件を設定することにより、ピール強度もよく、耐衝撃
性も良好で、熱伝導率も変化がないことが確認できた。
From the above results, it was confirmed that by setting the temperature condition 40 ° C. higher than the melting point, the peel strength was good, the impact resistance was good, and the thermal conductivity did not change.

【0013】〔製造試験例2〕製造試験例1と同様に、
押出式発泡ポリスチレン材5(ダウ化工(株)製 商品
名 スタイロフォームEK)の表面にドライラミネート
したポリエステル材(PET#16)2/アルミニウム箔
(AL#40)3/EVA−PS共重合体を置き、熱ロー
ラーにて100℃〜160℃まで温度を変化させて一体
化した後、ピール試験と落球衝撃試験及び熱伝導率の測
定を行なった。その結果を表2に示す。
[Manufacturing Test Example 2] As in Manufacturing Test Example 1,
A polyester material (PET # 16 ) 2 / aluminum foil (AL # 40 ) 3 / EVA-PS copolymer dry-laminated on the surface of extruded polystyrene foam material 5 (trade name: Styrofoam EK manufactured by Dow Kako Co., Ltd.) is placed. The temperature was changed from 100 ° C. to 160 ° C. with a heat roller to integrate them, and then a peel test, a falling ball impact test and a thermal conductivity measurement were performed. The results are shown in Table 2.

【0014】[0014]

【表2】 [Table 2]

【0015】EVA−PS共重合体の融点は110℃で
あり、一般的には融点より10℃〜20℃高い温度で熱
融着する。この場合は、表面材だけがうまく接着する
が、ただ接着のみで、表面材下には樹脂層が形成されな
いため、衝撃強度は表面材のみの強度しかない。しか
し、融点より40℃〜50℃高い温度で熱融着すれば、
表面材下には0.5〜約1mm程度の補強樹脂層が形成
され、その結果、衝撃強度がアップし、ガスバリヤー性
だけでなく、表面の保護層の役目を果たすことになる。
The EVA-PS copolymer has a melting point of 110 ° C., and generally heat-bonds at a temperature 10 ° C. to 20 ° C. higher than the melting point. In this case, only the surface material adheres well, but only the adhesion does not form the resin layer under the surface material, and therefore the impact strength is only the strength of the surface material. However, if heat fusion is performed at a temperature 40 ° C to 50 ° C higher than the melting point,
A reinforcing resin layer having a thickness of about 0.5 to about 1 mm is formed under the surface material. As a result, the impact strength is improved, and not only the gas barrier property but also the surface protective layer is fulfilled.

【0016】次に、上記〔製造試験例1〕、〔製造試験
例2〕に対する比較例を示す。 〔比較例1〕ビーズ発泡の発泡ポリスチレン材5を用意
し、ポリエステル材(PET#16)5/アルミニウム箔
(AL#40)3/EVA−PS共重合体からなる金属箔
ラミネートフィルムを置き、110℃〜150℃の範囲
で熱融着した。この場合、表面材は接着したが、表面材
近傍のスチロールビーズが三次発泡をおこし、その結
果、膨れを生じ耐衝撃性の樹脂層が形成されなかった。
Next, a comparative example to the above [Production Test Example 1] and [Production Test Example 2] will be shown. [Comparative Example 1] A foamed polystyrene material 5 with bead foaming was prepared, and a metal foil laminated film composed of polyester material (PET # 16 ) 5 / aluminum foil (AL # 40 ) 3 / EVA-PS copolymer was placed thereon, and 110 Thermal fusion was performed in the range of ℃ to 150 ℃. In this case, the surface material was adhered, but the styrene beads near the surface material caused tertiary foaming, resulting in swelling and no impact-resistant resin layer was formed.

【0017】本発明の断熱材1においては、熱可塑性の
発泡樹脂材として、ポリエチレン、塩化ビニル、ポリス
チレン等があるが、コスト的に押し出し成形の発泡ポリ
スチレンが良好で、また熱伝導率的にも一番良好であ
る。これより、本発明の表面材は、未発泡の樹脂フィル
ム4としてのシーラント層/アルミニウム箔3から成る
金属箔/ポリエステル材5等から成る保護層からなるプ
ラスチックラミネートフィルムが安価で生産性が良い。
また表面材として、シーラント層はプラスチックフォー
ムの素材と同一の樹脂を使用したものが好ましい。更
に、表面材の要求性能としては、ベーパーバリヤー性、
および防熱施工時の外部衝撃性が必要なことから、金属
箔または金属板、材質としては、アルミニウム、鉄、亜
鉛引鉄板、ニッケル、ステンレス等で、好ましくは厚み
が10μm〜100μmのものが良好である。また、こ
の金属箔等を保護すべく更に12μm以上のポリエステ
ルフィルム等の保護フィルムをラミネートしたものが好
ましい。更に、表面層を強固にするためには、ポリスチ
レン、或いはポリスチレン−EVA等の不織布をシーラ
ント層の代わりに張り合わせておき、同様に熱融着すれ
ば、繊維強化樹脂層が形成され、本発明以上の耐衝撃性
のある保護層を形成することも可能である。また、反り
を極力皆無にするには、同じ表面材をフォームの上下面
に熱融着すればよい。本発明の防熱材の製造方法として
は、前記したシーラント層/金属箔/保護フィルムをド
ライラミネーションした表面材をローラーに巻きつけて
おき、プラスチックフォーム表面にそのフォーム長さの
表面材をのせ、熱ローラーにより圧着すれば簡単に製造
可能である。また、この方法は平板状だけでなく、カバ
ー形の防熱材でも同様の方法で熱ローラーを円弧状に移
動させることで可能となる。
In the heat insulating material 1 of the present invention, there are polyethylene, vinyl chloride, polystyrene and the like as the thermoplastic foaming resin material, but extruded polystyrene foam is preferable in terms of cost and also in terms of thermal conductivity. The best. As a result, as the surface material of the present invention, a plastic laminate film comprising a sealant layer as the unfoamed resin film / a metal foil composed of the aluminum foil 3 / a protective layer composed of a polyester material 5 is inexpensive and has good productivity.
As the surface material, it is preferable that the sealant layer uses the same resin as the material of the plastic foam. Furthermore, the required performance of the surface material is vapor barrier property,
And since external impact resistance at the time of heat-proof construction is required, the material of the metal foil or metal plate is aluminum, iron, zinc-plated iron plate, nickel, stainless steel, etc., preferably 10 μm to 100 μm thick. is there. Further, it is preferable that a protective film such as a polyester film having a thickness of 12 μm or more is further laminated to protect the metal foil or the like. Further, in order to strengthen the surface layer, a nonwoven fabric such as polystyrene or polystyrene-EVA is pasted instead of the sealant layer, and heat fusion is performed in the same manner to form a fiber reinforced resin layer. It is also possible to form a protective layer having impact resistance. Further, in order to prevent warpage as much as possible, the same surface material may be heat-sealed to the upper and lower surfaces of the foam. As the method for producing the heat insulating material of the present invention, a surface material obtained by dry laminating the above sealant layer / metal foil / protective film is wound around a roller, and a surface material having the foam length is placed on the surface of the plastic foam, followed by heat treatment. It can be easily manufactured by pressing with a roller. This method can be applied not only to a flat plate shape but also to a cover type heat insulating material by moving the heat roller in an arc shape in the same manner.

【0018】次に、前記断熱材1を用いた施工例を示
す。 〔施工例1〕片面に熱融着により表面材をつけた1m×
1m×100mmのパネルを2枚用意し、タンク殻体を
想定して10mmの鉄板の表面にボルトで固定した。そ
して、パネルの間の目地間隔を20mmにし、500m
mの長さはグラスウール(製品密度24kg/m3,厚
み15mm)を充填し、また500mmの長さはグラス
ウール(製品密度24kg/m3,厚み25mm)を各
々充填した。その後、目地表面に粘着テープを張り、テ
ープと逆面よりドライアイスを用いて全面より冷却し
た。冷却後8時間してテープ表面の状態を観察したとこ
ろ、15mmの厚みのグラスウールを充填した目地部
(充填密度18kg/m3)は結露を生じ、また厚み2
5mmのグラスウールを充填した目地部(充填密度30
kg/m3)は結露を生じなかった。また、冷却時2枚
のパネルは温度差のために外気側が反ったが、この場合
表面材には剥離等もなく、表面材の接着は完全であるこ
とが確認できた。これより、本発明の充填密度30kg
/m3以上繊維状断面材を充填する施工方法は、何ら断
熱性能に影響を与えるものではなかった。また、製品密
度16kg/m3のグラスウール(厚み50mm)を充
填(充填密度40kg/m3)してもうまく目地に充填
し、48kg/mm3(厚み25mm)を充填(充填密
度60kg/m3)した場合、施工時に目地部はうまく
充填しなかった。以上より、目地部に充填するグラスウ
ールの製品密度は16〜24kg/m3のもので、且つ
充填密度は、30kg/m3以上充填することにより、
目地部の断熱性能は完全であることが確認できた。
Next, an example of construction using the heat insulating material 1 will be shown. [Execution example 1] 1 mx with surface material attached to one side by heat fusion
Two 1 m × 100 mm panels were prepared and fixed to the surface of a 10 mm iron plate with bolts assuming a tank shell. Then, the joint spacing between the panels is set to 20 mm and 500 m
The length of m was filled with glass wool (product density: 24 kg / m 3 , thickness: 15 mm), and the length of 500 mm was filled with glass wool (product density: 24 kg / m 3 , thickness: 25 mm). Then, an adhesive tape was attached to the joint surface, and the whole surface was cooled with dry ice from the surface opposite to the tape. When the state of the tape surface was observed 8 hours after cooling, the joint portion (filling density 18 kg / m 3 ) filled with glass wool having a thickness of 15 mm produced dew condensation, and the thickness 2
Joints filled with 5 mm glass wool (filling density 30
(kg / m 3 ) did not cause dew condensation. Further, during cooling, the two panels were warped on the outside air side due to the temperature difference, but in this case, it was confirmed that the surface material did not peel off and the surface material was completely bonded. From this, the packing density of the present invention is 30 kg.
The construction method in which the fibrous cross-section material is filled with a material of not less than / m 3 has no influence on the heat insulation performance. Also, even if glass wool having a product density of 16 kg / m 3 (thickness 50 mm) is filled (filling density 40 kg / m 3 ), the joint is filled well, and 48 kg / mm 3 (thickness 25 mm) is filled (filling density 60 kg / m 3). ), The joints were not filled well during construction. Thus, the product density of the glass wool filling the joints by way of 16~24kg / m 3, and packing density, by filling 30kg / m 3 or more,
It was confirmed that the thermal insulation performance of the joints was perfect.

【0019】〔施工例2〕施工例1で使用したパネルを
今度は垂直にし、冷凍機を使用してタンク面を−5℃に
コントロールし、その装置自体を20℃に空調した部屋
に放置し、目地部に充填し、目地部に充填するグラスウ
ールの充填密度を変化させ、その目地部の性能を確認す
るため、粘着テープの表面に熱流量計を貼り付け、目地
より侵入する侵入熱量を測定し、そのデータよりグラス
ウール部のみかけの熱伝導率を逆算し、その結果を図2
と共に下記に示した。この場合、グラスウールの製品密
度は16kg/m3,24kg/m3を使用した。何れも
施工はうまく充填した。しかし、48kg/m3はうま
く充填できなかった。この結果より判断して、製品密度
16〜24kg/m3のグラスウールを使用し、且つ充
填密度は30kg/m3以上あれば対流が発生せず、工
法は良好であることが確認できた。また、押し出しポリ
スチレンを使用したが、他の熱可塑性プラスチックフォ
ーム、つまり、ポリエチレンフォームの場合は、熱伝導
率が0.035kcal/mh℃と悪く、且つ−55℃
ではフォームが脆化を起こし、また、塩化ビニルフォー
ムの場合はセルが大きいために表面材との接着力が悪
く、結果として押し出しポリスチレンフォームが一番良
好であった。
[Working Example 2] The panel used in Working Example 1 is made vertical this time, the tank surface is controlled to -5 ° C using a refrigerator, and the apparatus itself is left in an air-conditioned room at 20 ° C. To fill the joints, change the filling density of the glass wool to fill the joints, and to check the performance of the joints, attach a heat flow meter to the surface of the adhesive tape and measure the amount of heat entering the joints. Then, the apparent thermal conductivity of the glass wool part was calculated back from the data, and the result is shown in FIG.
And shown below. In this case, the product densities of glass wool used were 16 kg / m 3 and 24 kg / m 3 . In both cases, the construction was well filled. However, 48 kg / m 3 could not be filled successfully. As a result it is determined from, by using the glass wool products density 16~24kg / m 3, and a packing density of not convection occurs if 30kg / m 3 or more, construction method was confirmed to be good. In addition, although extruded polystyrene was used, in the case of another thermoplastic foam, that is, polyethylene foam, the thermal conductivity was as bad as 0.035 kcal / mh ° C, and -55 ° C.
In this case, the foam became brittle, and in the case of vinyl chloride foam, the adhesion to the surface material was poor due to the large cells, and as a result, extruded polystyrene foam was the best.

【0020】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】(イ) 断熱材の製造過程を示す図 (ロ) 断熱材の製造過程を示す図 (ハ) 断熱材の断面図[FIG. 1] (a) A diagram showing the manufacturing process of the heat insulating material (b) A diagram showing the manufacturing process of the heat insulating material (c) A sectional view of the heat insulating material

【図2】みかけの熱伝導率の変化を示すグラフFIG. 2 is a graph showing changes in apparent thermal conductivity.

【符号の説明】[Explanation of symbols]

3 アルミニウム箔 4 未発泡の樹脂フィルム 5 熱可塑性の発泡樹脂材 3 Aluminum foil 4 Unfoamed resin film 5 Thermoplastic foamed resin material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // F16L 59/02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area // F16L 59/02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 予め、熱可塑性の発泡樹脂材(5)と同
一材質からなる未発泡の樹脂フィルム(4)をアルミニ
ウム箔(3)に接着しておき、前記未発泡の樹脂フィル
ム(4)と前記発泡樹脂材(5)とを接触させるととも
に加熱し熱融着させて、前記発泡樹脂材(5)の表面に
アルミニウム箔(3)を一体化させる断熱材の製造方
法。
1. An unfoamed resin film (4) made of the same material as a thermoplastic foamed resin material (5) is adhered to an aluminum foil (3) in advance, and said unfoamed resin film (4) And a foamed resin material (5) are brought into contact with each other, and heated and heat-sealed to each other, and the aluminum foil (3) is integrated with the surface of the foamed resin material (5).
JP04066771A 1992-03-25 1992-03-25 Insulation mounting structure Expired - Lifetime JP3111108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04066771A JP3111108B2 (en) 1992-03-25 1992-03-25 Insulation mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04066771A JP3111108B2 (en) 1992-03-25 1992-03-25 Insulation mounting structure

Publications (2)

Publication Number Publication Date
JPH05269905A true JPH05269905A (en) 1993-10-19
JP3111108B2 JP3111108B2 (en) 2000-11-20

Family

ID=13325472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04066771A Expired - Lifetime JP3111108B2 (en) 1992-03-25 1992-03-25 Insulation mounting structure

Country Status (1)

Country Link
JP (1) JP3111108B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757269B1 (en) * 2003-10-23 2007-09-10 김완수 Sandwich paner
KR100973668B1 (en) * 2010-01-26 2010-08-04 김흥철 Heat insulator, apparatus for manufacturing heat insulator and method for manufacturing heat insulator
JP2012025145A (en) * 2010-06-22 2012-02-09 Furukawa-Sky Aluminum Corp Composite material of aluminum material/thermoplastic foamed resin layer and method of manufacturing the same
KR20220156682A (en) * 2021-05-18 2022-11-28 최형석 Exterior finishing material for liquefied gas tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757269B1 (en) * 2003-10-23 2007-09-10 김완수 Sandwich paner
KR100973668B1 (en) * 2010-01-26 2010-08-04 김흥철 Heat insulator, apparatus for manufacturing heat insulator and method for manufacturing heat insulator
JP2012025145A (en) * 2010-06-22 2012-02-09 Furukawa-Sky Aluminum Corp Composite material of aluminum material/thermoplastic foamed resin layer and method of manufacturing the same
KR20220156682A (en) * 2021-05-18 2022-11-28 최형석 Exterior finishing material for liquefied gas tank

Also Published As

Publication number Publication date
JP3111108B2 (en) 2000-11-20

Similar Documents

Publication Publication Date Title
US4937125A (en) Lightweight sandwich designed for making multilayer structures resistant to impact and thermal aggressions
US6164030A (en) Fixed vacuum insulation panel
US20140137497A1 (en) Composite insulating building panel and system and method for attaching building panels
EP0817718A1 (en) Insulating modular panels incorporating vacuum insulation panels and methods for manufacturing
BR112015002108B1 (en) CONTINUOUS PROCESS TO PREPARE A FOAM LAMINATE HAVING METALLIC COATING SHEETS AND INSULATION PANEL
US4828635A (en) Laminated, thermal insulation panel
JPH05269905A (en) Production of heat insulating material
JPH09174741A (en) Composite heat insulation panel
JPH10315362A (en) Structure enveloping honeycomb structure and its manufacturing
US20030186045A1 (en) Built-up roof system
KR20180072360A (en) Outer packaging materials having high temperature resistance for vacuum insulation panel, Vacuum insulation panel using the same, and Manufacturing method thereof
JP3018209B2 (en) Insulated waterproof roof and roofing material
JPH0820086A (en) Heat insulating panel and production thereof
JPH09226045A (en) Fireproofing sheet
CN217782428U (en) Tongue-and-groove lapped heat preservation and decoration integrated plate and wall system
JP2566446Y2 (en) Thermal insulation panel
JPH08174731A (en) Honeycomb composite molded article and production thereof
US7112364B1 (en) Foam laminates
JP3790605B2 (en) Thermal insulation
JPS5811122A (en) Manufacture for piled plate such as shutter
JP7387287B2 (en) Heat insulating structure and plate-shaped heat insulating material
JP3534556B2 (en) Thermal insulation structure between tank and skirt in low-temperature cargo tank
JPS60157597A (en) Elastic blanket with unified high-strength surface material and manufacture thereof
JP3132139B2 (en) Insulation
JP2010024673A (en) Composite heat-insulating material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12