JPH0526907A - Monitoring apparatus for distribution line - Google Patents

Monitoring apparatus for distribution line

Info

Publication number
JPH0526907A
JPH0526907A JP3187271A JP18727191A JPH0526907A JP H0526907 A JPH0526907 A JP H0526907A JP 3187271 A JP3187271 A JP 3187271A JP 18727191 A JP18727191 A JP 18727191A JP H0526907 A JPH0526907 A JP H0526907A
Authority
JP
Japan
Prior art keywords
distribution line
core
voltage divider
case body
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3187271A
Other languages
Japanese (ja)
Other versions
JP2932770B2 (en
Inventor
Hidenobu Hamada
英伸 浜田
Onori Ishikawa
大典 石河
Kazuo Toda
和郎 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3187271A priority Critical patent/JP2932770B2/en
Publication of JPH0526907A publication Critical patent/JPH0526907A/en
Application granted granted Critical
Publication of JP2932770B2 publication Critical patent/JP2932770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To reduce a change in characteristics due to a change in the potential of a conductor element such as a potential divider caused by rainfall or the like by a method wherein a distance between cases holding a distribution line between and fixing it and a core of high permeability surrounding the distribution line is made to be equal or larger than a distance between the core and the distribution line. CONSTITUTION:Upper and lower cases 18 and 19 of the present apparatus hold a distribution line 2 between and fix it. An optical current sensor 11, a voltage sensor 9, a capacitor potential divider and inner and outer electrodes 16 and 17 thereof are disposed inside the case 19 and an electrode 20 is disposed in the bottom part thereof, while a horseshoe-shaped core 12 having a gap 13 is provided. Incidence and emission of light on and from the sensors 9 and 11 are conducted through an optical fiber 15. In this constitution, the shortest distances to the potential divider and the electrode 20 incorporated are made to be equal or longer than the shortest spacing between the electrodes 16 and 17 and, besides, the short distance between the core 12 and the outer surface of the case 18 is made to equal or longer than the shortest distance between the core 12 and the distribution line 2. In this way, the effect of a change in the potential of the core on the potential divider and the electrode 20 can be reduced even when contamination or damage is caused by snow or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は配電線モニタリング装置
に関し、この装置は比較的電圧の高い配電線あるいは送
電線の運転状況を監視するために設置されるもので、三
相配電線の零相電圧を簡単に精度良く検出するためのも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distribution line monitoring device, which is installed to monitor the operating condition of a distribution line or a transmission line having a relatively high voltage. To easily and accurately detect.

【0002】[0002]

【従来の技術】現代社会では、瞬時の停電も許されない
状況下にあり常時、送電あるいは配電の状況を把握し、
事故の発生の予知あるいは事故の未然防止を図る必要が
ある。
2. Description of the Related Art In today's society, momentary power outages are unacceptable and the situation of power transmission or distribution is constantly grasped.
It is necessary to predict the occurrence of accidents or prevent them from occurring.

【0003】このような要求に対応して、従来、架空配
電線路に用いる配電線モニタリング装置は、電柱上に設
置された継電開閉器に内蔵された零相変流器(ZCTと
称す)あるいは零相変圧器(ZPTと称す)により電気
的に測定監視していた。しかしこの方法では、高電圧が
印加されている電線路を継電開閉器内でまとめるため、
絶縁が非常に困難となってくる。また常時高電圧がかか
っているため、長時間の信頼性に対して耐えられない。
そして、従来事故の発生はこの部分が多く、未然の防止
には定期的に継電開閉器内の配電線の交換などを必要と
していた。
In response to such a demand, conventionally, a distribution line monitoring device used for an overhead power distribution line has a zero-phase current transformer (referred to as ZCT) or a built-in relay switch installed on a utility pole. It was electrically measured and monitored by a zero-phase transformer (called ZPT). However, in this method, since the electric lines to which a high voltage is applied are put together in the relay switch,
Insulation becomes very difficult. Further, since a high voltage is constantly applied, it cannot withstand long-term reliability.
In the past, many accidents occurred in this area, and it was necessary to regularly replace the distribution lines in the relay switch to prevent them.

【0004】図7に、電柱上の継電開閉器の設置状況を
示す。電柱上に三相配電線2が設置されている。配電線
2は、電柱1上の一定区間毎に設けられた張碍子3によ
り電柱上の腕金4に固定され引っ張られている。
FIG. 7 shows the installation situation of the relay switch on the utility pole. The three-phase distribution line 2 is installed on the telephone pole. The distribution line 2 is fixed to and pulled by the armor 4 on the utility pole by the tension insulators 3 provided at regular intervals on the utility pole 1.

【0005】図7では配電線2をたるみのない状態と
し、次への接続間に継電開閉器5などの装置を設置して
いる。矢印6の三相配電線2は張碍子3を経て継電開閉
器5を介して矢印7の三相配電線2につながる。図7に
示した継電開閉器5の内部には前記のZCTあるいはZ
PD及び配電線路遮断スイッチ(両者とも図示せず)が
内蔵されており、配電線途中での異常をZCTあるいは
ZPDが検知し、変電所への通信連絡あるいはスイッチ
を遮断するものである。このような異常は、電柱1の中
程に設置せられた通信線8により変電所などに伝送され
る構成になっている。
In FIG. 7, the distribution line 2 is in a slack-free state, and a device such as a relay switch 5 is installed between the next connections. The three-phase distribution line 2 indicated by the arrow 6 is connected to the three-phase distribution line 2 indicated by the arrow 7 through the insulator 3 and the relay switch 5. Inside the relay switch 5 shown in FIG.
A PD and a distribution line cutoff switch (both not shown) are built in, and the ZCT or ZPD detects an abnormality in the middle of the distribution line, and cuts off communication communication to the substation or switch. Such an abnormality is configured to be transmitted to a substation or the like through a communication line 8 installed in the middle of the electric pole 1.

【0006】[0006]

【発明が解決しようとする課題】図7に示したように、
三本の配電線2は継電開閉器5の内部へ導かれさらにZ
CTなどの部分で集中する。またZPTの場合でもコン
デンサなどを介して接続されることになる。このため配
電線の相間電圧が非常に狭いところに集中することにな
り、長時間の使用による劣化や継電開閉器5の気密状態
によっては絶縁が保持できなくなり、線間の短絡あるい
は配電線と機器の短絡などに進行し事故の原因を自ら発
生させてしまうことがあった。
[Problems to be Solved by the Invention] As shown in FIG.
The three distribution lines 2 are guided into the relay switch 5 and further Z
Focus on areas such as CT. Even in the case of ZPT, it will be connected via a capacitor or the like. For this reason, the interphase voltage of the distribution line is concentrated in a very narrow place, and insulation cannot be maintained depending on deterioration due to long-term use or the airtight state of the relay switch 5, resulting in short circuit between lines or distribution line In some cases, the cause of the accident itself occurred due to the progress of equipment short circuits.

【0007】配電線モニタリング装置では、事故の検知
あるいは予知のために常時配電線に流れる電流,電圧を
監視している。この情報は、長期間の設置によっても、
またあらゆる気象条件下においても誤差が生じず、安定
したものでなくてはならない。 従って、この装置を別
の構成としたときも従来の継電開閉器の内部にあるよう
な気候の変化を受けないものであることが望まれる。気
候の変化の主なものは雨による水ぬれ、積雪などであ
り、さらに三相の配電線それぞれを個別に監視する構成
とする場合、検出手段において特性のばらつきが無視で
きる程度の小さいことが要求される。
The distribution line monitoring device constantly monitors the current and voltage flowing through the distribution line in order to detect or predict an accident. This information is
It must be stable and stable under all weather conditions. Therefore, it is desired that even when this device is configured differently, it is not subject to climate change as in the conventional relay switch. The main changes in climate are wetness due to rain, snowfall, etc.In addition, if the configuration is such that each of the three-phase distribution lines is individually monitored, it is required that the variation in characteristics be small enough to be ignored in the detection means. To be done.

【0008】本発明は、このような課題を克服し三相配
電線が一定間隔で設置された状態でモニタリング装置を
設置し配電線の情報を得ようとするものである。
The present invention aims to overcome such problems and obtain a distribution line information by installing a monitoring device in a state where three-phase distribution lines are installed at regular intervals.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明は、上下2つの部分からなり、配電線を挟みつけ
て固定するケースと、前記ケース内部に配置され、配電
線を周回する高透磁率コアと、前記コアによって集めら
れた磁束の変化を検出する磁束検出手段とからなり、前
記コアとケースの外側表面の最短距離が、前記コアと前
記配電線との最短距離以上とすることを特徴とする配電
線モニタリング装置である。
In order to achieve the above-mentioned object, the present invention comprises a case which is composed of two parts, an upper part and a lower part, for sandwiching and fixing a distribution line, and a high position which is arranged inside the case and which surrounds the distribution line. It is composed of a magnetic permeability core and magnetic flux detecting means for detecting a change in magnetic flux collected by the core, and the shortest distance between the core and the outer surface of the case is equal to or more than the shortest distance between the core and the distribution line. Is a distribution line monitoring device.

【0010】また、上下2つの部分からなり、配電線を
挟みつけて固定するケースと、前記2つのケースのすく
なくともどちらか一方に構成され、配電線と大地間の浮
遊容量をコンデンサー分圧する分圧器と、前記分圧器に
よって分圧された電圧を検出する電圧検出手段と、配電
線を周回する高透磁率コアと、前記コアによって集めら
れた磁束の変化を検出する磁束検出手段とからなり、前
記コアと前記分圧器の最短距離が、前記分圧器を構成す
るの導体の間隔以上となるように配置することを特徴と
する配電線モニタリング装置である。
Further, a case composed of two parts, an upper part and a lower part, for fixing the distribution line by sandwiching it and at least one of the two cases, the voltage divider for dividing the stray capacitance between the distribution line and the ground into a capacitor. A voltage detecting means for detecting a voltage divided by the voltage divider, a high magnetic permeability core that circulates around a distribution line, and a magnetic flux detecting means for detecting a change in magnetic flux collected by the core, In the distribution line monitoring device, the core and the voltage divider are arranged such that the shortest distance between them is equal to or more than the distance between the conductors of the voltage divider.

【0011】また、上下2つの部分からなり、配電線を
挟みつけて固定するケースと、前記2つのケースのすく
なくともどちらか一方に構成され、配電線と大地間の浮
遊容量をコンデンサー分圧する分圧器と、前記分圧器に
よって分圧された電圧を検出する電圧検出手段と、配電
線を周回する高透磁率コアと、前記コアによって集めら
れた磁束の変化を検出する磁束検出手段と、前記分圧器
を収納する側のケース体に設置された導体とからなり、
前記コンデンサ分圧器の外側導体を、前記分圧器を収納
する側のケース体に設置した導体に接続し、前記コアと
前記分圧器の最短距離及び前記コアと前記ケース体に設
置した導体の最短距離の両者が何れも前記分圧器の導体
間距離以上となるように配置することを特徴とする配電
線モニタリング装置であり、さらに、前記コアを前記分
圧器を収納する上ケース体と下ケース体の境界近傍で分
割し、前記分割されたコアの間に絶縁物を介して接続す
ることを特徴とする配電線モニタリング装置である。
Further, a case composed of two parts, an upper part and a lower part, for fixing the distribution line by sandwiching it and at least one of the two cases, the voltage divider for dividing the stray capacitance between the distribution line and the ground into a capacitor. A voltage detecting means for detecting the voltage divided by the voltage divider, a high-permeability core that circulates around the distribution line, a magnetic flux detecting means for detecting a change in the magnetic flux collected by the core, and the voltage divider. It consists of a conductor installed in the case body on the side where
The outer conductor of the capacitor voltage divider is connected to the conductor installed in the case body on the side that houses the voltage divider, and the shortest distance between the core and the voltage divider and the shortest distance between the core and the conductor installed in the case body. Is a distribution line monitoring device characterized in that both are arranged so as to be equal to or more than the distance between the conductors of the voltage divider, and further, the core includes an upper case body and a lower case body for accommodating the voltage divider. The distribution line monitoring device is characterized in that it is divided near the boundary and is connected between the divided cores via an insulator.

【0012】さらに詳しく述べると、光方式の電圧・電
流センサをケース体に収納し前記ケース体には配電線に
設置可能なように凹部が設けられている。そのケース体
を下側とし上方より配電線設置凹部を有した別のケース
体を配電線を介してはさみ固定するものである。前記下
側ケース体の内部には配電線と大地間の浮遊容量を分圧
するためのコンデンサ分圧器が2つの導体で構成され内
蔵されている。さらに、前記ケース体の内側底壁面に設
置された導体に前記コンデンサ分圧器の外側導体が接続
された構成であり、光方式電圧センサはこのコンデンサ
分圧器外側導体とケース体壁面の導体の間に設置され
る。前記電圧センサへの電圧印加の接続は前記2つの導
体の内側と下側ケース体壁面に設置した導体と接続した
導体部分より実施するものである。
More specifically, an optical voltage / current sensor is housed in a case body, and the case body is provided with a recess so that it can be installed on a distribution line. The case body is located on the lower side, and another case body having a distribution line installation concave portion is sandwiched and fixed from above by the distribution line. Inside the lower case body, a capacitor voltage divider for dividing the stray capacitance between the distribution line and the ground is constructed by two conductors and built in. Furthermore, the outer conductor of the capacitor voltage divider is connected to the conductor installed on the inner bottom wall surface of the case body, and the optical voltage sensor has a structure in which the outer conductor of the capacitor voltage divider is connected to the conductor of the case body wall surface. Is installed. The connection of the voltage application to the voltage sensor is performed from the inside of the two conductors and the conductor portion connected to the conductors installed on the wall surface of the lower case body.

【0013】また、電流センサ用高透磁率珪素鋼コアは
配電線を周回し前記コアのギャプが前記電流センサの取
付位置にくるように固定される。
The high-permeability silicon steel core for the current sensor is fixed around the distribution line so that the gap of the core is located at the mounting position of the current sensor.

【0014】本発明の配電線モニタリング装置のセンサ
部は配電線上に直接取り付けられるもので雨、降雪など
直接濡れたりケース上に積雪がある。このような状況下
にあっても内部のコンデンサ分圧器出力が影響受けない
ようなケース体構成にすることが必要である。そのため
には、内部に収納されるコアとコンデンサ分圧器の位置
関係とケース体の大きさが重要であり、前記コアと前記
ケース体外側表面の最短距離を前記コアと配電線の最短
距離以上とする。
The sensor portion of the distribution line monitoring apparatus of the present invention is directly mounted on the distribution line, and is directly wet by rain, snowfall, etc., or there is snow on the case. It is necessary to make the case body structure so that the output of the internal capacitor voltage divider is not affected even under such a condition. For that purpose, the positional relationship between the core and the capacitor voltage divider housed inside and the size of the case body are important, and the shortest distance between the core and the outer surface of the case body is equal to or more than the shortest distance between the core and the distribution line. To do.

【0015】また、前記コアと前記分圧器の最短距離及
び前記コアと前記ケース体に設置した導体の最短距離の
両者は何れも前記分圧器の導体間距離以上とする。
Both the shortest distance between the core and the voltage divider and the shortest distance between the core and the conductor installed in the case body are both equal to or greater than the inter-conductor distance of the voltage divider.

【0016】更に、前記コアを下ケース体と上のケース
体の境界近傍で分割し、分割位置に絶縁物等を配置して
前記分割されたコア同志が磁気的には結合されている
が、電気的に接続されないようにする。
Further, the core is divided in the vicinity of the boundary between the lower case body and the upper case body, and an insulator or the like is arranged at the dividing position so that the divided cores are magnetically coupled. Avoid electrical connection.

【0017】[0017]

【作用】上記構成により、本発明は、配電線モニタリン
グ装置の光センサ外ケース形状及び電流センサ用コアの
配置を操作することにより、降雨あるいは降雪などの汚
損物による大地間浮遊容量の変化が引き起こす電圧セン
サ用分圧器等導体部の電位変化による配電線モニタリン
グ装置の特性変動を小さくする。
With the above structure, according to the present invention, by changing the shape of the outer case of the optical sensor of the distribution line monitoring device and the arrangement of the core for the current sensor, a change in the floating capacitance between the ground due to contaminants such as rain or snow is caused. To reduce fluctuations in the characteristics of the distribution line monitoring device due to changes in the potential of conductors such as voltage dividers for voltage sensors.

【0018】[0018]

【実施例】以下、本発明の詳細について説明する。ま
ず、光方式電圧センサの概要を簡単に述べる。光方式電
圧センサは、ポッケルス効果を利用するものでポッケル
ス素子中を光が通過する際、結晶の複屈折が電界に対し
て変化する量を検出し、電界を検知するものである。本
発明では電圧センサと同時に電流センサもケース体に収
納する構成としているため光方式電流センサについても
概略を述べる。
The present invention will be described in detail below. First, the outline of the optical voltage sensor will be briefly described. The optical voltage sensor utilizes the Pockels effect, and detects the electric field by detecting the amount of change in the birefringence of the crystal with respect to the electric field when light passes through the Pockels element. In the present invention, the current sensor is housed in the case body at the same time as the voltage sensor, so an outline of the optical current sensor will also be described.

【0019】光方式電流センサは、ファラデー効果を利
用するもので電線路に電流が流れたとき周辺に発生する
磁界をファラデー素子中を通過する光の回転角により検
知するものである。このような電圧センサ及び電流セン
サを一体化し配電線に設置する概略図を図5に示す。
The optical type current sensor utilizes the Faraday effect and detects the magnetic field generated around the electric current when a current flows through the electric line by the rotation angle of the light passing through the Faraday element. FIG. 5 shows a schematic diagram in which such a voltage sensor and a current sensor are integrated and installed on a distribution line.

【0020】具体的に説明すると配電線2に電流センサ
用のギャップ13を有した馬蹄形コア12を設置しその
ギャップ13の部分に光方式電流センサ11を配置す
る。光方式電圧センサ9では浮遊容量を分圧するための
コンデンサ分圧器10が設置され、分圧器の2つの導体
を光方式電圧センサ9の端子(図示せず)に接続する。
光方式電圧・電流センサには入射及び出射のための光フ
ァイバ15が接続され、途中より1本の光ファイバケー
ブル14となり端部のコネクタ19に導かれる。
More specifically, a horseshoe-shaped core 12 having a gap 13 for a current sensor is installed on the distribution line 2, and the optical current sensor 11 is arranged in the gap 13. The optical voltage sensor 9 is provided with a capacitor voltage divider 10 for dividing stray capacitance, and two conductors of the voltage divider are connected to terminals (not shown) of the optical voltage sensor 9.
An optical fiber 15 for incidence and emission is connected to the optical voltage / current sensor, and one optical fiber cable 14 is formed midway and guided to a connector 19 at the end.

【0021】図6(a)に配電線と電圧センサ及び大地
間の等価回路を示す。配電線2と大地42の間にコンデ
ンサ分圧器10及び電圧センサ9が設置される。C1
3は配電線2の導体と、コンデンサ分圧器10の内側電
極との間の静電容量である。C2 44はコンデンサ分圧
器10の内側電極と外側電極との間の静電容量である。
3 45は電圧センサの端子間容量である。C4 46は
コンデンサ分圧器の外側電極と大地間に形成される大気
を含む静電容量である。
FIG. 6A shows an equivalent circuit between the distribution line, the voltage sensor and the ground. A capacitor voltage divider 10 and a voltage sensor 9 are installed between the distribution line 2 and the ground 42. C 14
3 is an electrostatic capacitance between the conductor of the distribution line 2 and the inner electrode of the capacitor voltage divider 10. C 2 44 is the capacitance between the inner and outer electrodes of the capacitor voltage divider 10.
C 3 45 is a capacitance between terminals of the voltage sensor. C 4 46 is an electrostatic capacitance including the air formed between the outer electrode and the earth divider capacitive divider.

【0022】このC1 43,C2 44,C3 45,C4
46のうちC1 43,C2 44,C 3 45は構成部品の
組成で決定せられるがC4 46のみ大気中の湿度の影響
と大地となるアース部がどこにくるか等により変動する
部分である。またコンデンサ分圧器10の外側電極と大
地間に、さらに電極となりうる水膜や積雪が形成された
場合、同様にC4 46の値が変動し、結局、コンデンサ
分圧器10の分圧出力が変動することになる。本実施例
は、このC4 46の容量値が変動しても、影響を受ける
ことなくコンデンサ分圧器10より分電圧出力を得よう
とするものである。
This C1 43, C2 44, C3 45, CFour 
C out of 461 43, C2 44, C 3 45 is a component
C can be determined by compositionFour Only 46 is affected by atmospheric humidity
And it changes depending on where the earth part, which is the ground, comes
It is a part. Also, the outer electrode of the capacitor voltage divider 10 and the large
A water film or snow that could become an electrode was formed between the ground.
Likewise CFour The value of 46 fluctuates, and eventually the capacitor
The divided voltage output of the voltage divider 10 changes. Example
Is this CFour Even if the capacitance value of 46 fluctuates, it will be affected
Get the divided voltage output from the capacitor voltage divider 10 without
It is what

【0023】図6(b)に等価回路より外的影響により
変化すると考えられる場所を示す。配電線モニタリング
装置の側面あるいは外周まで濡れた場合、大地に対する
コンデンサ分圧器の外側電極の位置と高電位部が混乱し
変動してくる。その時の大地間静電容量は大地間との対
向面積の変化などによりC4 ’47のような可変容量と
なる。本発明はこのように雨、積雪を含めた水の影響を
受ける部分に対策をおこなうものである。
FIG. 6 (b) shows a place where the equivalent circuit is considered to change due to external influence. If the side surface or the outer periphery of the distribution line monitoring device gets wet, the position of the outer electrode of the capacitor voltage divider with respect to the ground and the high-potential portion are confused and fluctuate. At that time, the capacitance between the earth and the earth becomes a variable capacitance such as C 4 '47 due to a change in the area facing the earth. As described above, the present invention takes measures against a portion affected by water such as rain and snow.

【0024】以下、本発明の具体的な例を示し詳細な説
明を行なう。図1に本発明第1実施例の配電線モニタリ
ング装置の構成斜視図を示す。配電線2は下ケース体1
9と上ケース体18が上下よりはさみこまれる。下ケー
ス体19の内部には光方式の電流センサ11、電圧セン
サ9、電圧センサ用平行コンデンサ分圧器の外側電極1
6及び内側電極17が設置される。外側電極16及び内
側電極17は導体線21で電圧センサ9に接続されてい
る。また、下ケース19の底部内側に電極20を配置
し、外側電極16に電気的に接続されている。電流セン
サ用馬蹄形コア12は配電線2を周回し、下ケース内部
の電流センサ11がギャップ13の位置にくるように設
置される。電流センサ11及び電圧センサ9の光の入出
射は、光ファイバ15で行なわれ、下ケース体19内で
外部より導入された光ファイバケーブル14に接続され
る。内側電極17は配電線2に近接し、内側電極17と
外側電極16の最短間隔を約10mm、コア12と配電
線2の最短距離を約5mm、コア12と上ケース体外側
表面の最短距離を10mm、コアと前記コンデンサ分圧
器の最短距離を約20mm、コアと電極20の最短距離
を約20mmとし、配電線2はコア12の中心を通らな
い。このようにコア12と上下ケース体の外側表面をは
なすことにより外側に積雪あるいは雨による水濡れなど
があっても、距離が離れていない故にコンデンサ分圧器
及び電極20と電気的に弱く結合されているコア12の
電位変化を軽減できる。また、コア12とコンデンサ分
圧器及びコアと電極20の距離を離すことによって、汚
損によるコア12の電位変化のコンデンサ分圧器及び電
極20に及ぼす影響を軽減できる。しかし、降雨あるい
は積雪等の気象による汚損は汚損カ所が上部と側部に集
中するため、上ケース体18のみをコア12から離すだ
けでも効果は充分ある。
A detailed example of the present invention will be described below. FIG. 1 shows a configuration perspective view of a distribution line monitoring apparatus according to a first embodiment of the present invention. Distribution line 2 is lower case 1
9 and the upper case body 18 are sandwiched between the upper and lower sides. Inside the lower case body 19, an optical current sensor 11, a voltage sensor 9, and an outer electrode 1 of a voltage sensor parallel capacitor voltage divider are provided.
6 and the inner electrode 17 are installed. The outer electrode 16 and the inner electrode 17 are connected to the voltage sensor 9 by a conductor wire 21. An electrode 20 is arranged inside the bottom of the lower case 19 and is electrically connected to the outer electrode 16. The current sensor horseshoe-shaped core 12 circulates around the distribution line 2, and is installed so that the current sensor 11 inside the lower case is located at the position of the gap 13. Light entering and exiting the current sensor 11 and the voltage sensor 9 is performed by the optical fiber 15, and is connected to the optical fiber cable 14 introduced from the outside in the lower case body 19. The inner electrode 17 is close to the distribution line 2, and the shortest distance between the inner electrode 17 and the outer electrode 16 is about 10 mm, the shortest distance between the core 12 and the distribution line 2 is about 5 mm, and the shortest distance between the core 12 and the outer surface of the upper case body. The shortest distance between the core and the capacitor voltage divider is about 20 mm, the shortest distance between the core and the electrode 20 is about 20 mm, and the distribution line 2 does not pass through the center of the core 12. By separating the core 12 and the upper and lower case bodies from each other in this way, even if there is snow or water wet on the outside, since they are not separated from each other, they are electrically weakly coupled to the capacitor voltage divider and the electrode 20. It is possible to reduce the potential change of the existing core 12. Further, by separating the core 12 and the capacitor voltage divider and the core and the electrode 20 from each other, the influence of the potential change of the core 12 on the capacitor voltage divider and the electrode 20 due to contamination can be reduced. However, since the stains due to weather such as rainfall or snow are concentrated on the upper and side portions, it is sufficient to separate only the upper case body 18 from the core 12.

【0025】図2に本実施例のケース体内部の各部品の
位置関係による電界分布を示すために本発明の配電線モ
ニタリング装置断面図(図1におけるAOB−A’O’
B’で切断)を示す。ただし、図の電界分布は配電線2
の電位が高電位の時のものであり、電界22は配電線2
を起点として大地23に向かって進む。また、本発明に
関係の無い細かな電界変化等は説明の都合上省略する。
配電線2の上側の電界分布は、図の通り配電線2の垂直
方向に進む。一方、配電線の下側の電界分布は、コンデ
ンサ分圧器のある方向は、配電線2から外側電極16ま
では電極の端部を除き直進するが、外側電極16と下ケ
ース体19の底部内側に設けられた電極20は導体21
で接続されているため導電位で外側電極16と電極20
の間には電界は存在しない。そして、電極20から大地
23に向かって再び電界が進むようになる。また、コン
デンサ分圧器から離れている方向は上側と同様に配電線
2から大地23に向かって電界は直進する。しかし、コ
ンデンサ分圧器端近傍は電界分布が複雑で図のように内
側電極17と外側電極16端部から横側に洩れてくる電
界があり、配電線2から直進する電界と合成される。本
実施例のようにコア12からケース外側表面、コンデン
サ分圧器及び電極20までの各々の距離を離しておけ
ば、降雨あるいは積雪等の外部汚損の影響がコアを媒介
として下側ケース体内部のコンデンサ分圧器に及ぶこと
を防ぐことができる。
FIG. 2 is a sectional view of the distribution line monitoring device of the present invention (AOB-A'O 'in FIG. 1) for showing the electric field distribution according to the positional relationship of each component inside the case body of this embodiment.
B '). However, the electric field distribution in the figure is distribution line 2
The electric field 22 is at a high electric potential, and the electric field 22 is
Starting from, proceed toward the earth 23. Further, minute electric field changes and the like which are not related to the present invention are omitted for convenience of explanation.
The electric field distribution on the upper side of the distribution line 2 advances in the vertical direction of the distribution line 2 as illustrated. On the other hand, the electric field distribution on the lower side of the distribution line goes straight in the direction of the capacitor voltage divider from the distribution line 2 to the outer electrode 16 except for the ends of the electrodes, but inside the bottom part of the outer electrode 16 and the lower case body 19. The electrode 20 provided on the
Since they are connected with each other, the outer electrode 16 and the electrode 20 are electrically conductive.
There is no electric field between them. Then, the electric field again proceeds from the electrode 20 toward the ground 23. In the direction away from the capacitor voltage divider, the electric field goes straight from the distribution line 2 toward the ground 23 as in the upper direction. However, the electric field distribution is complicated in the vicinity of the capacitor voltage divider end, and there is an electric field leaking laterally from the ends of the inner electrode 17 and the outer electrode 16 as shown in the figure, which is combined with the electric field traveling straight from the distribution line 2. If the distance from the core 12 to the outer surface of the case, the capacitor voltage divider, and the electrode 20 is set apart as in the present embodiment, the influence of external pollution such as rainfall or snow cover the inside of the lower case body via the core. It is possible to prevent the capacitor voltage divider from being reached.

【0026】図3に、ケース体形状を一定とし、配電線
2とコアの距離(図2のd)及び配電線2と上ケース体
18外側表面の距離(図2のh)を変数とした場合の汚
損による影響度を示す。横軸は配電線2とコア12の距
離d(コア12と上ケース体18の外側表面の距離に負
の相関)、縦軸は汚損による影響度、曲線24は配電線
2と上ケース体18の距離hによる汚損影響度の違いを
示しており、hが大きいほど汚損影響度は小さくなる。
図からわかるように、hは大きくなるほど汚損影響度は
小さくなり特性が良くなるが、外観及び重量等を考慮し
て本実施例では点Aで示される曲線上のものを実施し
た。また、配電線2とコア12の距離dと汚損影響度の
関係については、点Bで示すdが大きいところでは汚損
影響度も高く、小さくなるに連れ小さくなり点Aで最小
値を示し、更に小さくすると再び汚損影響度は大きくな
る。これは、点Bではコア12とコンデンサ分圧器10
の距離が小さくコア12とコンデンサ分圧器10の電気
的結合が比較的強く、汚損によるコア12の電位変化が
コンデンサ分圧器に影響し、点A近傍ではコア12から
コンデンサ分圧器及び電極20までの距離が各々離れて
いるため外部汚損の影響が分圧器まで伝わっていない。
点Aよりもdが小さい所では今度はコア12と電極20
の距離が近くなるため、再び汚損による影響が現われる
からである。
In FIG. 3, the case body shape is fixed, and the distance between the distribution line 2 and the core (d in FIG. 2) and the distance between the distribution line 2 and the outer surface of the upper case body 18 (h in FIG. 2) are used as variables. In this case, the degree of influence of pollution is shown. The horizontal axis represents the distance d between the distribution line 2 and the core 12 (negative correlation with the distance between the core 12 and the outer surface of the upper case body 18), the vertical axis represents the degree of influence of contamination, and the curve 24 represents the distribution line 2 and the upper case body 18. Shows the difference in pollution influence degree depending on the distance h, and the larger h is, the smaller the pollution influence degree is.
As can be seen from the figure, the larger h is, the smaller the pollution influence degree is and the better the characteristics are. However, in consideration of the appearance, weight and the like, in this example, the curve on the point A was used. Regarding the relationship between the distance d between the distribution line 2 and the core 12 and the degree of pollution influence, the point where the point d is large is also high in the degree of pollution influence, and the smaller it is, the smaller it is and the smaller the point A is, the minimum value is shown. The smaller the value, the greater the pollution impact. This is because at point B, the core 12 and the capacitor voltage divider 10
Is small, the electric coupling between the core 12 and the capacitor voltage divider 10 is relatively strong, and the potential change of the core 12 due to pollution affects the capacitor voltage divider, and in the vicinity of the point A, the distance from the core 12 to the capacitor voltage divider and the electrode 20 is increased. Since the distances are different, the influence of external pollution is not transmitted to the voltage divider.
Where d is smaller than point A, this time the core 12 and the electrode 20
This is because the effect of pollution will appear again because the distance between the two becomes shorter.

【0027】このように本実施例によれば、コア12と
コンデンサ分圧器の電極16、17の相対位置を制御し
て、降雨、降雪等による電界の乱れによる電位変化を軽
減することができ、C4 46の容量値が変動しても、そ
の影響を受けることなくコンデンサ分圧器10より分電
圧出力を得ることができる。
As described above, according to this embodiment, the relative position of the core 12 and the electrodes 16 and 17 of the capacitor voltage divider can be controlled to reduce the potential change due to the disturbance of the electric field due to rainfall, snowfall, etc. be varied capacitance value of C 4 46 is, it is possible to obtain a divided voltage output from the capacitor divider 10 without being affected.

【0028】次に本発明第2実施例の配電線モニタリン
グ装置の構成斜視図を図4に示す。コア12と電流セン
サ11の配置以外は全て第1実施例と同じであるので、
以下異なる部分のみ説明する。コア12は配電線2が中
心となるように配置し、上ケース体と下ケース体の境界
近傍で分割し、絶縁体等のスペーサ25を前記分割部分
に配置して上下に分割したコア12の上下の電気的なつ
ながりを弱くする。ここで、スペーサ25の厚さは約
0.3mmのポリエチレン・シートを使用し、磁界の強
度低下を最小限にした。
Next, FIG. 4 is a perspective view showing the configuration of the distribution line monitoring apparatus according to the second embodiment of the present invention. Since all are the same as the first embodiment except the arrangement of the core 12 and the current sensor 11,
Only different parts will be described below. The core 12 is arranged so that the distribution line 2 is at the center, divided near the boundary between the upper case body and the lower case body, and the spacer 25 such as an insulator is arranged in the divided portion to divide the core 12 into upper and lower parts. It weakens the electrical connection between the top and bottom. Here, the thickness of the spacer 25 is a polyethylene sheet having a thickness of about 0.3 mm to minimize the decrease in the strength of the magnetic field.

【0029】以上のように本実施例によれば、コア12
を2つに分割し、コア上下の電気的結合を弱くすること
により、頻度の高い上部と上側部の汚損によるコア12
上部の電位変化を下ケース体19内のコンデンサ分圧器
に伝達するのを妨げることができ、頻度の高い上側の汚
損によるコア12の電位変化を下ケース体内のコンデン
サ分圧器に伝達するのを妨げることができる。
As described above, according to this embodiment, the core 12
The core 12 is divided into two to weaken the electrical coupling between the upper and lower parts of the core, so that the core 12 is frequently damaged by the upper and upper parts.
It is possible to prevent the change in the electric potential of the upper part from being transmitted to the capacitor voltage divider in the lower case body 19, and prevent the change in the electric potential of the core 12 due to the frequent contamination of the upper side to be transmitted to the capacitor voltage divider in the lower case body. be able to.

【0030】なお、本発明では実施例に示した構成を複
数あるいは1部採用した図を示したが、各々の発明単独
でも、組み合わせても有効である。なお本実施例では配
電線一本での説明としたが三相配電線に各々設置される
場合も同様の構成および効果がえられる。
In the present invention, a plurality of or a part of the structures shown in the embodiments are adopted, but the inventions of each invention may be used alone or in combination. In the present embodiment, the description has been made with only one distribution line, but the same configuration and effect can be obtained when each is installed in a three-phase distribution line.

【0031】さらに、電圧センサ用分圧器の電極形状は
必要な分電圧強度を取り出せるものならば任意でよい。
Further, the electrode shape of the voltage sensor voltage divider may be arbitrary as long as the required voltage intensity can be taken out.

【0032】[0032]

【発明の効果】以上のように本発明は次のような効果を
奏する。すなわち、光方式で電圧または電流の検出を行
なう配電線モニタリング装置において、気候変化、特に
雨水による濡れでの特性変化、積雪での特性変化を軽減
することができ、安定性のよい装置を提供できる。また
この構成によれば装置形状を特別大きくすることなしに
可能となる。
As described above, the present invention has the following effects. That is, in a distribution line monitoring device for detecting voltage or current by an optical method, it is possible to reduce climate change, particularly characteristic change due to wetness by rainwater, characteristic change due to snowfall, and to provide a stable device. . Further, according to this configuration, it is possible without making the device shape particularly large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例の配電線モニタリング装置
の構成斜視図
FIG. 1 is a configuration perspective view of a distribution line monitoring device according to a first embodiment of the present invention.

【図2】同装置の断面図FIG. 2 is a sectional view of the device.

【図3】各部品の配置と汚損影響度の相関図[Fig. 3] Correlation diagram of placement of each part and degree of pollution influence

【図4】本発明の第二実施例の配電線モニタリング装置FIG. 4 is a distribution line monitoring device according to a second embodiment of the present invention.

【図5】光方式の電圧センサ及び電流センサを使用した
同装置の概念図
FIG. 5 is a conceptual diagram of the same device using an optical voltage sensor and current sensor.

【図6】同装置の電圧センサ側の配電線とコンデンサ分
圧器と大地間の等価回路図と配電線とコンデンサ分圧器
と大地間の外的影響を受ける時の等価回路図
FIG. 6 is an equivalent circuit diagram between the distribution line on the voltage sensor side of the device, the capacitor voltage divider, and the ground, and an equivalent circuit diagram when the distribution line, the capacitor voltage divider, and the ground are externally affected.

【図7】従来の零相変流器が内臓された継電開閉器の電
柱上設置図
[Fig. 7] Installation view of a conventional relay switch with a built-in zero-phase current transformer on a utility pole

【符号の説明】[Explanation of symbols]

1 電柱 2 配電線 3 張碍子 4 腕金 5 継電開閉器 8 通信線 9 電圧センサ 10 コンデンサ分圧器 11 電流センサー 12 高透磁率馬蹄形珪素鋼コア 13 ギャプ 14 光ファイバーケーブル 15 光ファイバー心線 16 外側電極 17 内側電極 18 上ケース体 19 下ケース体 20 電極 21 導体線 22 電界 23 大地 1 utility pole 2 distribution lines 3 Zhang insulator 4 armor 5 relay switches 8 communication lines 9 Voltage sensor 10 condenser voltage divider 11 Current sensor 12 High permeability horseshoe-shaped silicon steel core 13 Gaps 14 Optical fiber cable 15 Optical fiber core 16 Outer electrode 17 Inner electrode 18 Upper case body 19 Lower case body 20 electrodes 21 conductor wire 22 electric field 23 Earth

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】上下2つの部分からなり、配電線を挟みつ
けて固定するケースと、前記ケース内部に配置され、配
電線を周回する高透磁率コアと、前記コアによって集め
られた磁束の変化を検出する磁束検出手段とからなり、
前記コアとケースの外側表面の最短距離が、前記コアと
前記配電線との最短距離以上とすることを特徴とする配
電線モニタリング装置。
1. A case composed of two parts, an upper part and a lower part, for sandwiching and fixing a distribution line, a high magnetic permeability core arranged inside the case and surrounding the distribution line, and a change in magnetic flux collected by the core. And a magnetic flux detecting means for detecting
A distribution line monitoring device, wherein the shortest distance between the core and the outer surface of the case is equal to or more than the shortest distance between the core and the distribution line.
【請求項2】上下2つの部分からなり、配電線を挟みつ
けて固定するケースと、前記2つのケースのすくなくと
もどちらか一方に構成され、配電線と大地間の浮遊容量
をコンデンサー分圧する分圧器と、前記分圧器によって
分圧された電圧を検出する電圧検出手段と、配電線を周
回する高透磁率コアと、前記コアによって集められた磁
束の変化を検出する磁束検出手段とからなり、前記コア
と前記分圧器の最短距離が、前記分圧器を構成するの導
体の間隔以上となるように配置することを特徴とする配
電線モニタリング装置。
2. A case composed of two parts, an upper part and a lower part, for sandwiching and fixing a distribution line, and a voltage divider for dividing the stray capacitance between the distribution line and the ground into a capacitor by at least one of the two cases. A voltage detecting means for detecting a voltage divided by the voltage divider, a high magnetic permeability core that circulates around a distribution line, and a magnetic flux detecting means for detecting a change in magnetic flux collected by the core, The distribution line monitoring device is arranged such that the shortest distance between the core and the voltage divider is not less than the distance between the conductors of the voltage divider.
【請求項3】上下2つの部分からなり、配電線を挟みつ
けて固定するケースと、前記2つのケースのすくなくと
もどちらか一方に構成され、配電線と大地間の浮遊容量
をコンデンサー分圧する分圧器と、前記分圧器によって
分圧された電圧を検出する電圧検出手段と、配電線を周
回する高透磁率コアと、前記コアによって集められた磁
束の変化を検出する磁束検出手段と、前記分圧器を収納
する側のケース体に設置された導体とからなり、前記コ
ンデンサ分圧器の外側導体を、前記分圧器を収納する側
のケース体に設置した導体に接続し、前記コアと前記分
圧器の最短距離及び前記コアと前記ケース体に設置した
導体の最短距離の両者が何れも前記分圧器の導体間距離
以上となるように配置することを特徴とする配電線モニ
タリング装置。
3. A case composed of two parts, an upper part and a lower part, for sandwiching and fixing a distribution line, and a voltage divider for dividing the stray capacitance between the distribution line and the ground into a capacitor by at least one of the two cases. A voltage detecting means for detecting the voltage divided by the voltage divider, a high-permeability core that circulates around the distribution line, a magnetic flux detecting means for detecting a change in the magnetic flux collected by the core, and the voltage divider. And a conductor installed in the case body on the side of storing the capacitor, the outer conductor of the capacitor voltage divider is connected to the conductor installed in the case body on the side of storing the voltage divider, and the core and the voltage divider The distribution line monitoring device is arranged such that both the shortest distance and the shortest distance between the core and the conductor installed in the case body are equal to or greater than the distance between conductors of the voltage divider.
【請求項4】前記コアを前記分圧器を収納する上ケース
体と下ケース体の境界近傍で分割し、前記分割されたコ
アの間に絶縁物を介して接続することを特徴とする請求
項1、2または3に記載の配電線モニタリング装置。
4. The core is divided in the vicinity of a boundary between an upper case body and a lower case body that house the voltage divider, and the divided cores are connected via an insulator. The distribution line monitoring device according to 1, 2, or 3.
JP3187271A 1991-07-26 1991-07-26 Distribution line monitoring device Expired - Fee Related JP2932770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3187271A JP2932770B2 (en) 1991-07-26 1991-07-26 Distribution line monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3187271A JP2932770B2 (en) 1991-07-26 1991-07-26 Distribution line monitoring device

Publications (2)

Publication Number Publication Date
JPH0526907A true JPH0526907A (en) 1993-02-05
JP2932770B2 JP2932770B2 (en) 1999-08-09

Family

ID=16203072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3187271A Expired - Fee Related JP2932770B2 (en) 1991-07-26 1991-07-26 Distribution line monitoring device

Country Status (1)

Country Link
JP (1) JP2932770B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768315B2 (en) 2001-05-16 2004-07-27 Hitachi, Ltd. Voltage measuring apparatus for sheathed power cable
US20140043016A1 (en) * 2012-08-13 2014-02-13 John A. Kovacich System including a magnetoelectric device for powering a load or visually indicating an energized power bus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768315B2 (en) 2001-05-16 2004-07-27 Hitachi, Ltd. Voltage measuring apparatus for sheathed power cable
US20140043016A1 (en) * 2012-08-13 2014-02-13 John A. Kovacich System including a magnetoelectric device for powering a load or visually indicating an energized power bus

Also Published As

Publication number Publication date
JP2932770B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US7191074B2 (en) Electric power monitoring and response system
EP0338542B1 (en) A current and/or voltage detector for a distribution system
US6429661B1 (en) Fault indicator for three-phase sheathed cable
EA000068B1 (en) A device for sensing of electric discharges in a test object
EP0187309B1 (en) Insulation deterioration monitoring apparatus
JPH0526907A (en) Monitoring apparatus for distribution line
US4249126A (en) On-line fault locator for gas-insulated conductors with plural detectors
JPS62132178A (en) Voltage/current detector
Yamada et al. Observation and analysis of lightning surges at substations connected with UHV designed transmission lines
KR101621632B1 (en) State monitoring device for electrical device
JP2932771B2 (en) Distribution line monitoring device
KR100606422B1 (en) Voltage and current sensing apparatus
JPH0670665B2 (en) Non-contact electric field magnetic field sensor
JP3765780B2 (en) Electromagnetic field sensor
JP2001228197A (en) Insulator monitoring device
JP3184199B2 (en) Distribution line monitoring equipment
JP2004170172A (en) Electric field and magnetic field sensor
JP2984104B2 (en) Distribution line monitoring device
RU2798495C1 (en) Diagnosis and protection device for overhead power line
JP2866172B2 (en) Transmission line fault direction locating method
JPS6325567A (en) Optical type partial discharge detector
JPS644201Y2 (en)
JP2673010B2 (en) Supporting insulator with optical CT
JPS637116A (en) Failure detector of enclosed electric equipment
JPH02108976A (en) Double rated type light applied current sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees