JPH05268951A - Production of glucosyltransferase using glucosyltransferase gene - Google Patents

Production of glucosyltransferase using glucosyltransferase gene

Info

Publication number
JPH05268951A
JPH05268951A JP10176092A JP10176092A JPH05268951A JP H05268951 A JPH05268951 A JP H05268951A JP 10176092 A JP10176092 A JP 10176092A JP 10176092 A JP10176092 A JP 10176092A JP H05268951 A JPH05268951 A JP H05268951A
Authority
JP
Japan
Prior art keywords
leu
ala
ser
gly
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10176092A
Other languages
Japanese (ja)
Inventor
Takeshi Uozumi
武司 魚住
Haruhiko Masaki
春彦 正木
Akira Nakamura
顕 中村
Ikuko Nishimura
郁子 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Pharmaceutical Co Ltd filed Critical Amano Pharmaceutical Co Ltd
Priority to JP10176092A priority Critical patent/JPH05268951A/en
Publication of JPH05268951A publication Critical patent/JPH05268951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To enhance the productivity of a glucosyltransferase by using a gene recombination technique. CONSTITUTION:The objective method for producing a glucosyltransferase is to culture in a nutrient culture medium Aspergillusniger in which a recombinant DNA prepared by integrating a DNA containing a glucosyltransferase gene thereinto is transduced, produce the glucosyltransferase in the resultant culture and then collect the obtained glucosyltransferase from the culture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はグルコシルトランスフェ
ラーゼ(以下、GTaseという。)遺伝子を含有する
DNAを組み込んだ組換え体DNAを導入したアスペル
ギルス・ニガー(Aspergillus nige
r)によるGTaseの製造法に関するものである。
TECHNICAL FIELD The present invention relates to an Aspergillus niger into which a recombinant DNA containing a DNA containing a glucosyltransferase (hereinafter referred to as GTase) gene is introduced.
r) according to the method for producing GTase.

【0002】[0002]

【従来の技術】GTaseは、マルトースのグルコシル
基をグルコース又はグルコースからなるオリゴ糖の6位
又は3位に転移させる作用を触媒する酵素であり、酵素
番号EC 2.4.1.24に分類される。この酵素
は、澱粉工業に利用される。
GTase is an enzyme that catalyzes the action of transferring the glucosyl group of maltose to the 6-position or 3-position of glucose or an oligosaccharide consisting of glucose, and is classified into enzyme number EC 2.4.1.24. It This enzyme is used in the starch industry.

【0003】従来、GTaseは、アスペルギルス・ニ
ガー等の微生物を培養して製造されており、その生産性
を高めるために各種の人工突然変異手段による改良法が
試みられてきた。
Conventionally, GTase has been produced by culturing microorganisms such as Aspergillus niger, and an improved method by various artificial mutation means has been tried in order to increase the productivity.

【0004】一方、本発明者らは、より生産性を高める
ために遺伝子組換え法による改良手段を提示した(特開
平3−266989号)。
On the other hand, the present inventors have proposed an improved means by the gene recombination method in order to enhance the productivity (Japanese Patent Laid-Open No. 3-266989).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来行
われてきた種々の人工突然変異手段による改良方法は、
変異がランダムに起こるため、必ずしも高頻度で目的に
かなった菌株が取得できるとは限らないこと、更には、
変異処理において生育や分生子着性能が劣化するという
問題点を有していた。一方、先に本発明者らによってな
されたGTaseを遺伝子操作によって製造する方法
は、宿主としてアスペルギルス・ニデュランス(Asp
ergillus nidulans)を用いたもので
あるため、得られた形質転換体の生産性は工業上で利用
するには、必ずしも充分ではなかった。
However, the conventional improved methods using various artificial mutation means are as follows.
Since the mutations occur randomly, it is not always possible to obtain a highly targeted strain at a high frequency.
There was a problem that growth and conidia attachment performance deteriorated in the mutation treatment. On the other hand, the method for producing GTase by genetic engineering previously performed by the present inventors is as follows: As a host, Aspergillus nidulans (Asp
ergillus nidulans), the productivity of the obtained transformant was not always sufficient for industrial use.

【0006】[0006]

【課題を解決するための手段】そこで本発明者らは、宿
主をアスペルギルス・ニガーとすることによってGTa
se生産性を高めることを検討した。そして又、GTa
se遺伝子含有DNA断片そのものの改良をも試みた。
即ち、その3’末端部位の延長されたGTase遺伝子
含有DNA断片を作製し、これを用いることによってな
お一層の生産性を高めることを試みたものである。そし
て鋭意検討した結果、工業上利用可能な生産性を有する
形質転換株を得ることに成功したものである。
[Means for Solving the Problems] Therefore, the present inventors set GTa by using Aspergillus niger as a host.
Considered to increase the productivity. And again, GTa
We also attempted to improve the se gene-containing DNA fragment itself.
That is, an attempt was made to produce a GTase gene-containing DNA fragment having an extended 3'-terminal portion thereof and to use it to further enhance productivity. As a result of intensive studies, they succeeded in obtaining a transformant having industrially applicable productivity.

【0007】即ち、本発明は、アスペルギルス(Asp
ergillus)属に属する微生物に由来し、図1又
は、図2に示す制限酵素地図で規定されるGTase遺
伝子を組み込んだ組換え体DNAを導入したアスペルギ
ルス・ニガーによるGTaseの製造法である。
That is, the present invention relates to Aspergillus (Asp)
The method is a method for producing GTase by Aspergillus niger introduced with a recombinant DNA derived from a microorganism belonging to the genus Ergillus) and having a GTase gene defined by the restriction enzyme map shown in FIG. 1 or 2.

【0008】そして、本発明に用いるGTase遺伝子
は配列番号:1に示される塩基配列を持ち、同配列に示
されるアミノ酸配列をコードしている。
The GTase gene used in the present invention has the base sequence shown in SEQ ID NO: 1 and encodes the amino acid sequence shown in the same sequence.

【0009】以下に本発明について詳細に説明するGT
aseの生産菌としては、アスペルギルス属菌、ペニシ
リウム属菌等が挙げられる。本発明のGTase遺伝子
を含む染色体DNAの給源としては上記のようなGTa
se生産菌が使用される。例えば、アスペルギルス・ニ
ガーNo.499等が挙げられる。
The GT of the present invention will be described in detail below.
Examples of the ase-producing bacterium include Aspergillus sp. and Penicillium sp. The source of the chromosomal DNA containing the GTase gene of the present invention is GTa as described above.
se-producing bacteria are used. For example, Aspergillus niger No. 499 etc. are mentioned.

【0010】本菌株の菌学的性質は以下の通りである。 (1) 各培地における生育状態 (a)麦芽エキス寒天培地 37℃で生育は良好。基底菌糸層は比較的密。コロニー
表面はビロード状。コロニーの色は最初は白色で分生子
が多数形成されると褐色〜黒色になる。コロニーの裏面
は初めは無色で、後に淡黄色になる。 (b)ツアペック寒天培地 37℃で生育は良好。基底菌糸層は比較的薄く平坦。コ
ロニー表面はビロード状〜羊毛状。コロニーの色は最初
は白色で分生子が多数形成されると褐色〜黒色になる。
コロニーの裏面は初めは無色で、後に黄色になる。
The mycological properties of this strain are as follows. (1) Growth state in each medium (a) Malt extract agar medium Growth is good at 37 ° C. Basal hyphae are relatively dense. The surface of the colony is velvety. The color of the colony is initially white and turns brown to black when a large number of conidia are formed. The back of the colony is initially colorless and later becomes pale yellow. (B) Tuapec agar medium Growth is good at 37 ° C. Basal hyphae are relatively thin and flat. The surface of the colony is velvety to wool. The color of the colony is initially white and turns brown to black when a large number of conidia are formed.
The back of the colony is initially colorless and later yellow.

【0011】(2) 各生理的、生態的性質 (a)最適生育条件(麦芽エキス培地使用) pH : 4〜7 温度 : 25〜35℃ (b)生育の範囲(麦芽エキス培地使用) pH : 3〜8 温度 : 10〜45℃(2) Physiological and ecological properties (a) Optimal growth conditions (using malt extract medium) pH: 4 to 7 Temperature: 25 to 35 ° C (b) Range of growth (using malt extract medium) pH: 3-8 Temperature: 10-45 ° C

【0012】(3) 形態学的性質 分生子頭: 200〜500μ、黒色。 分生子柄: 長さ500μ〜3mm、直径15〜20
μ。基底菌糸ないし気生菌糸から分枝して立ち上がる。
滑面無色。 頂のう : 直径50〜70μ、球形。 メトレ : 約25×5.3μ フイアライド: 約11×3μ。 分生子 : 直径3.0〜4.5μ、球形、粗面、集塊
は黒色。
(3) Morphological properties Conidia head: 200 to 500 μm, black. Conidia peduncle: length 500μ-3mm, diameter 15-20
μ. It branches from basal hyphae or aerial hyphae and rises.
Smooth surface colorless. Apex: 50-70μ in diameter, spherical. Metre: about 25 × 5.3μ Fluoride: about 11 × 3μ. Conidia: diameter 3.0-4.5μ, spherical, rough surface, agglomerate black.

【0013】以上の菌学的性質から、本菌株はアスペル
ギルス属に属する。また、メトレをもった分生子頭が混
在し、分生子頭は球形、古くなると裂け、分生子柄は頂
のう直下でくびれない、分生子頭は黒色、分生子柄は滑
面、縦に裂けることより本菌株はアスペルギルス・ニガ
ーと同定した。尚、本菌株は工業技術院微生物工業技術
研究所に微工研菌寄第11316号(FERM P-11316)と
して寄託されている。
From the above-mentioned mycological properties, this strain belongs to the genus Aspergillus. Also, conidia heads with meteor are mixed, conidia head is spherical, tears as it gets old, conidia peduncle cannot constrict directly under the apex, conidia head is black, conidia stalk is smooth, vertical This strain was identified as Aspergillus niger by tearing. This strain has been deposited with the Institute of Microbial Science and Technology of the Institute of Industrial Science and Technology as Micromachine Research Institute No. 11316 (FERM P-11316).

【0014】上記菌株を通常の培養方法で培養し、培養
物を得、該培養物から常法、例えば、ろ過、遠心分離な
どの処理で培養液を得る。
The above-mentioned strain is cultivated by an ordinary culturing method to obtain a culture, and the culture is obtained from the culture by a conventional method such as filtration and centrifugation.

【0015】上記で得られたアスペルギルス・ニガーの
培養液から常法、例えば、硫安塩析、遠心分離、脱塩及
び各種のクロマトグラフィーを用いてGTaseを精製
する。
GTase is purified from the culture broth of Aspergillus niger obtained above by a conventional method, for example, salting out with ammonium sulfate, centrifugation, desalting and various chromatographies.

【0016】精製GTaseをトリプシンなどで限定分
解し、該限定分解ペプチドをHPLCなどで分離し、分
離したペプチドのN末端アミノ酸配列を例えば公知文献
[Eur. J. Biochem.,1巻,80〜91頁(1967)]に記載
の方法を応用した自動アミノ酸シークエンサーを用いて
決定する。このアミノ酸配列に対応する塩基配列を持つ
DNAを合成する。合成DNAは例えば自動DNA合成
機を使用すれば作ることができる。合成DNAの標識
は、例えば公知文献[Proc. Natl. Acad. Sci. U.S.
A.,74巻,560〜564頁(1977)]に記載の方法に従いT
4ポリヌクレオチドキナーゼを用いて5’末端をγ−32
P−ATPでリン酸化することで行うことができる。こ
の様にしてプローブを調製する。
The purified GTase is subjected to limited digestion with trypsin and the like, the limited digested peptide is separated by HPLC, and the N-terminal amino acid sequence of the separated peptide is described, for example, in a known document [Eur. J. Biochem., Volume 1, 80-91. Page (1967)] is applied using an automated amino acid sequencer. A DNA having a base sequence corresponding to this amino acid sequence is synthesized. Synthetic DNA can be produced, for example, by using an automatic DNA synthesizer. Labeling of synthetic DNA is carried out, for example, by publicly known literature [Proc. Natl. Acad. Sci. US
A., 74, 560-564 (1977)].
The 5'end was γ- 32 using 4 polynucleotide kinase.
It can be performed by phosphorylation with P-ATP. The probe is prepared in this manner.

【0017】別に、アスペルギルス・ニガー(Aspe
rgillus niger)を培養し、菌体をホモジ
ナイザー等で破砕した後、常法に従って染色体DNAを
得る。ついで、公知文献[Molecular Cloning(2nd Edi
tion),発行所Cold SpringHarbor Laboratory Press
(1989)9.34〜9.58]に記載の方法に従い、上記染色体
DNAを制限酵素で切断し、アガロースゲル電気泳動に
より断片長に応じた分離を与えた後、上記のプローブを
用いてサザン・ハイブリダイゼーションを行う。即ち、
ニトロセルロースフィルターへDNAを吸着させて標識
化合成DNAプローブをハイブリダイズさせ、オートラ
ジオグラムを撮る。使用する制限酵素としてはSphI
などが挙げられる。
Separately, Aspergillus niger (Aspe
rgillus niger) is cultured, and the cells are crushed with a homogenizer or the like, and then chromosomal DNA is obtained according to a conventional method. Then, a known document [Molecular Cloning (2nd Edi
tion), Publisher Cold Spring Harbor Laboratory Press
(1989) 9.34-9.58], the chromosomal DNA is cleaved with a restriction enzyme, separated by agarose gel electrophoresis according to the fragment length, and then subjected to Southern hybridization using the above probe. To do. That is,
DNA is adsorbed to a nitrocellulose filter and hybridized with a labeled synthetic DNA probe, and an autoradiogram is taken. The restriction enzyme used is SphI
And so on.

【0018】次いで、プローブがハイブリダイズする染
色体DNA断片を含む一定の長さのDNA断片集合体を
例えば公知文献[Anal. Biochem.,101巻,339〜341頁
(1980)]に記載のアガロースゲルからのDNA抽出法
に従って回収することができる。
Then, a DNA fragment aggregate of a certain length containing a chromosomal DNA fragment to which the probe hybridizes is agarose gel described in, for example, a known document [Anal. Biochem., 101, 339-341 (1980)]. It can be recovered according to the DNA extraction method from.

【0019】次にコロニー・ハイブリダイゼーションを
行うために、上記回収DNAをベクターDNAに組み込
んで組換えDNAを調製する。染色体DNAのベクター
DNAへの組み込みは、公知文献[J. Mol. Biol.,96
巻,171〜184頁(1975)]に記載の方法に従い染色体D
NA及びベクターDNAを制限酵素で切断し、次いでリ
ガーゼを用いて結合することにより行うことができる。
ベクターDNAとしては、例えばプラスミドDNAが挙
げられ、特に、pBR322やpUC19が好ましい。
リガーゼとしては、例えばT4DNAリガーゼが挙げら
れる。
Next, in order to perform colony hybridization, the above recovered DNA is incorporated into vector DNA to prepare a recombinant DNA. Incorporation of chromosomal DNA into vector DNA is well known [J. Mol. Biol., 96].
Vol. 17, pp. 171-184 (1975)].
It can be carried out by cutting NA and vector DNA with a restriction enzyme, and then ligating with ligase.
Examples of the vector DNA include plasmid DNA, and particularly pBR322 and pUC19 are preferable.
Examples of the ligase include T4 DNA ligase.

【0020】組換えDNAの大腸菌への導入は、例えば
公知文献[Molecular Cloning(2ndEdition),発行所C
old Spring Harbor Laboratory Press(1989)1.82〜1.
84]に記載の方法により行うことができる。尚、使用す
る大腸菌としては、エシエリヒア・コリ(Escher
ichia coli)HB101株が好ましい。GT
ase遺伝子を含んだ組換えDNAを含有する菌株の選
択は、例えば公知文献[Molecular Cloning(2nd Editi
on),発行所Cold Spring Harbor Laboratory Press(1
989)1.90〜1.104]に記載の方法に従って、前記合成D
NAをプローブとしたコロニー・ハイブリダイゼーショ
ンにより行うことができる。即ち、組換えDNAを導入
された大腸菌をアンピシリンを含むL−ブロス寒天培地
にまき、一晩培養後、ニトロセルロースフィルターにレ
プリカして更に2〜3時間アンピシリンを含むL−ブロ
ス寒天培地上で培養し、溶菌及びDNAの固定を行って
合成DNAがハイブリダイズする陽性コロニーを検出す
る。
Introduction of recombinant DNA into Escherichia coli can be carried out, for example, by publicly known literature [Molecular Cloning (2nd Edition), Publisher C.
old Spring Harbor Laboratory Press (1989) 1.82-1.
84]. Escherichia coli to be used is Escherichia coli (Escher)
ichia coli) HB101 strain is preferable. GT
The selection of the strain containing the recombinant DNA containing the ase gene can be carried out, for example, by publicly known literature [Molecular Cloning (2nd Editi
on), Publisher Cold Spring Harbor Laboratory Press (1
989) 1.90 to 1.104], and the synthetic D
It can be performed by colony hybridization using NA as a probe. That is, Escherichia coli introduced with recombinant DNA was spread on L-broth agar medium containing ampicillin, and after overnight culture, it was replicated on a nitrocellulose filter and further cultured for 2-3 hours on L-broth agar medium containing ampicillin. Then, lysis and DNA immobilization are performed to detect positive colonies to which the synthetic DNA hybridizes.

【0021】次に、陽性菌株から、例えば公知文献[Mo
lecular Cloning(2nd Edition),発行所Cold Spring
Harbor Laboratory Press(1989)1.25〜1.28]に記載
の方法によってプラスミドを抽出・精製し各種制限酵素
による分解を行い、制限酵素地図を作成すると共に、再
びサザン・ハイブリダイゼーションによって合成DNA
プローブがハイブリダイズすることを確認する。
Next, from the positive strains, for example, known literature [Mo
lecular Cloning (2nd Edition), Publisher Cold Spring
Harbor Laboratory Press (1989) 1.25 to 1.28], the plasmid is extracted and purified by various methods, and digested with various restriction enzymes to prepare a restriction enzyme map, and again synthetic DNA by Southern hybridization.
Make sure the probe hybridizes.

【0022】ついで、合成DNAプローブがハイブリダ
イズする塩基配列の一部を決定する。さらに、GTas
eの大量発現系を確立する。形質転換系には工業上の高
生産株が期待できるアスペルギルス・ニガーが好まし
い。形質転換ベクターとしてpDH25が使用できる。
pDH25は、アスペルギルス・ニガー中で発現するハ
イグロマイシンBホスホトランスフェラーゼ遺伝子hp
hを持っている。このものと遺伝子断片を挿入したプラ
スミドとを同時にco−transfomation法
にてアスペルギルス・ニガーに導入し、ハイグロマイシ
ン耐性の形質転換株を得る。この形質転換株を培養し、
GTaseを産生させ、該培養物からGTaseを採取
する。
Then, a part of the nucleotide sequence to which the synthetic DNA probe hybridizes is determined. In addition, GTas
Establish a mass expression system for e. For the transformation system, Aspergillus niger, which is expected to have a high industrial production strain, is preferable. PDH25 can be used as a transformation vector.
pDH25 is a hygromycin B phosphotransferase gene hp expressed in Aspergillus niger
have h This product and a plasmid into which a gene fragment has been inserted are simultaneously introduced into Aspergillus niger by a co-transformation method to obtain a hygromycin-resistant transformant. Culturing this transformant,
GTase is produced and GTase is harvested from the culture.

【0023】[0023]

【実施例】【Example】

実施例 (1) GTaseの精製及び部分アミノ酸配列の決定 アスペルギルス・ニガーNo.499(微工研菌寄第11316
号)の胞子スラント1/3本分を1LのCM−CSL培
地(コーンミールをアミラーゼで液化し、その2%溶液
にコーンスティープリカーを終濃度5%になるように加
え、121℃、30分のオートクレーブにより殺菌したも
の)に植菌し、30℃、5〜6日振盪培養する。菌体を3
MMろ紙(ワットマン社製)を用いたろ過により除き、
培養液に対して硫酸アンモニウムを50%飽和になるよう
に添加する。次に生じた沈澱を10,000rpm、30分の遠心
により除き、更に上清に硫酸アンモニウムを90%飽和に
なるように添加する。次に沈澱画分を10,000rpm、30分
の遠心により集め、10mM酢酸塩緩衝液(pH6.0)に溶
解させる。不溶物を15,000rpm、30分の遠心によって取
り除いた後、上清を0.45μmのフィルターによりろ過
し、トヨパールHW-40Cを用いたゲルろ過により、脱塩及
び10mM酢酸塩緩衝液(pH6.0)への平衡化を行った。
Example (1) Purification of GTase and determination of partial amino acid sequence Aspergillus niger No. 499 (Microtech Lab.
Spore slant ⅓) of CM-CSL medium (cornmeal was liquefied with amylase, and corn steep liquor was added to the 2% solution so that the final concentration was 5%, and the temperature was 121 ° C for 30 minutes. Cell sterilized by the autoclave of 1.) and cultured with shaking at 30 ° C. for 5 to 6 days. 3 cells
Removed by filtration using MM filter paper (manufactured by Whatman),
Ammonium sulphate is added to the culture medium to 50% saturation. Next, the resulting precipitate is removed by centrifugation at 10,000 rpm for 30 minutes, and ammonium sulfate is added to the supernatant so that it becomes 90% saturated. Next, the precipitated fraction is collected by centrifugation at 10,000 rpm for 30 minutes and dissolved in 10 mM acetate buffer (pH 6.0). The insoluble matter was removed by centrifugation at 15,000 rpm for 30 minutes, the supernatant was filtered through a 0.45 μm filter, and desalted and 10 mM acetate buffer (pH 6.0) by gel filtration using Toyopearl HW-40C. Was equilibrated to.

【0024】このようにして得られた粗酵素液をFPLCシ
ステム(ファルマシア社製)及びMono Q HR 10/10 カラ
ムを用いた陰イオン交換クロマトグラフィーを用いて分
離した。溶出は、10mM酢酸塩緩衝液(pH6.0)中で0〜5
00mMのNaCl直線グラジエントを形成することにより行っ
た。更に、GTase活性を有する画分からSuperose12
カラムを用いたゲルろ過クロマトグラフィー〔100mM
酢酸塩緩衝液(pH6.0)、200mM NaCl〕によりGT
aseを精製した。
The crude enzyme solution thus obtained was separated using an FPLC system (Pharmacia) and anion exchange chromatography using a Mono Q HR 10/10 column. Elution is 0 to 5 in 10 mM acetate buffer (pH 6.0).
This was done by forming a 00 mM NaCl linear gradient. Furthermore, from the fraction having GTase activity, Superose12
Gel filtration chromatography using a column [100 mM
GT with acetate buffer (pH 6.0), 200 mM NaCl]
The ase was purified.

【0025】次に得られた精製GTase 5mgに対し
てトリプシンを100μg添加し、100mM Tris-HCl(pH8.
5)、0.001%ドデシル硫酸ナトリウム(SDS)中で37
℃、5時間作用させ、GTaseの限定分解を行った。
更にその反応液をC-18カラム(VP-318-2251、センシュ
ー科学(株)製)にかけ、GTaseの限定分解ペプチ
ドを 0.1%トリフルオロ酢酸存在下高速液体クロマト
グラフィーによる0〜80%アセトニトリル直線グラジエ
ントにより分取した。分取したペプチドのいくつかのN
末端をmodel 470A型(アプライド・バイオシステムズ社
製)アミノ酸シークエンサーを用いたエドマン分解法に
よって決定した。決定したアミノ酸配列は配列番号:2
及び配列番号:3に示すとおりである。
Next, 100 μg of trypsin was added to 5 mg of the obtained purified GTase, and 100 mM Tris-HCl (pH 8.
5), 37 in 0.001% sodium dodecyl sulfate (SDS)
It was allowed to act at 5 ° C. for 5 hours to perform limited decomposition of GTase.
Further, the reaction solution was applied to a C-18 column (VP-318-2251, Senshu Kagaku Co., Ltd.), and the GTase limited decomposition peptide was subjected to high performance liquid chromatography in the presence of 0.1% trifluoroacetic acid to give a linear gradient of 0 to 80% acetonitrile. It was collected by. Some N of the fractionated peptides
The ends were determined by the Edman degradation method using a model 470A type (manufactured by Applied Biosystems) amino acid sequencer. The determined amino acid sequence is SEQ ID NO: 2
And SEQ ID NO: 3.

【0026】(2) GTase遺伝子の同定 GTaseのアミノ酸配列のうち、DNA塩基配列に変
換したときに特異性が高くなると思われる部分を検索し
て、配列番号:2のA部及びB部に対応する配列を持っ
た合成DNA2本を380B型(アプライド・バイオシステ
ムズ社製)DNA合成機を用いて合成した。合成した配
列を以下に示す。 A: GARTAYATMTGGACNGA B: GAYTAYATGCAYGGNTA (但しRはA又はG、YはC又はT、MはA、C又は
T、NはA、C、G又はTを示す。)
(2) Identification of GTase gene The amino acid sequence of GTase is searched for a portion which is expected to have high specificity when converted into a DNA base sequence, and corresponds to the A and B portions of SEQ ID NO: 2. Two synthetic DNAs having the sequence shown below were synthesized using a 380B type (Applied Biosystems) DNA synthesizer. The synthesized sequences are shown below. A: GARTAYATMTGGACNGA B: GAYTAYATGCAYGGNTA (where R is A or G, Y is C or T, M is A, C or T, N is A, C, G or T)

【0027】合成DNA溶液は保護基をはずすため65
℃、12時間処理した後にN−1型ロータリーエバポレー
ター(東京理科(株)製)により100μl程度まで濃縮
し、3M酢酸ナトリウム(pH4.8)10μl及びエタノー
ル250μlを加えて-80℃、30分静置してから遠心するこ
とによりエタノール沈澱を行った。このようにして得ら
れたDNA 0.5μgを50mM Tris-HCl(pH7.6)、10mM
MgCl2、10mM 2−メルカプトエタノールを含む溶液
中でT4DNAキナーゼ10単位、(γ−32P−)ATP1.85
MBq(アマシャム社製 PB10218)と37℃、30
分インキュベートすることにより5’末端をラベルし、
プローブとした。
The synthetic DNA solution is used to remove the protecting group.
After treatment at ℃ for 12 hours, concentrated to about 100 μl with N-1 type rotary evaporator (manufactured by Tokyo Rika Co., Ltd.), added 10 μl of 3M sodium acetate (pH 4.8) and 250 μl of ethanol, and kept still at -80 ° C. for 30 minutes. After standing, centrifugation was performed to precipitate ethanol. 0.5 μg of the DNA thus obtained was added to 50 mM Tris-HCl (pH 7.6), 10 mM
10 units of T4 DNA kinase, (γ- 32 P-) ATP1.85 in a solution containing MgCl 2 , 10 mM 2-mercaptoethanol
MBq (PB10218 from Amersham) and 37 ℃, 30
Label the 5'end by incubating
It was used as a probe.

【0028】次にアスペルギルス・ニガーNo.499
をYPD培地(2%グルコース、1%ペプトン、0.5%
イースト抽出物)中で30℃、30時間培養した後、ガーゼ
でろ過して菌体を集め、液体窒素で凍結させた。凍結菌
体はホモジナイザー(日本精機製作所製、AM-8型)で1
8,000rpm、15分処理することにより破砕した。次に50mM
EDTA(pH 8.0)、0.5% SDS、0.1mg/mlプロティナー
ゼK(ぞれぞれ終濃度)を加え、50℃、4時間インキュ
ベートした。更にその溶液にTE(10mM Tris-HCl、1
mM EDTA、pH8.0)飽和フェノールを等量加え、緩やか
に攪拌した後、15,000rpm、30分遠心し水相を分取し
た。
Next, Aspergillus niger No. 499
YPD medium (2% glucose, 1% peptone, 0.5%
After culturing in yeast extract) at 30 ° C. for 30 hours, the cells were collected by filtration with gauze and frozen with liquid nitrogen. Use a homogenizer (AM-8 type, manufactured by Nippon Seiki Seisakusho) to freeze cells.
It was crushed by treating at 8,000 rpm for 15 minutes. Then 50 mM
EDTA (pH 8.0), 0.5% SDS, 0.1 mg / ml proteinase K (each final concentration) was added, and the mixture was incubated at 50 ° C for 4 hours. Furthermore, TE (10 mM Tris-HCl, 1
mM EDTA, pH8.0) an equal amount of saturated phenol was added and gently stirred, and then centrifuged at 15,000 rpm for 30 minutes to separate the aqueous phase.

【0029】同様の処理をもう一度行った後、TE飽和
フェノールの代わりにTE飽和フェノールとクロロホル
ムを1:1で混合したもの、次いでクロロホルムを用い
て同様の処理を2回ずつ行った。このようにして得られ
た核酸粗抽出液に50%ポリエチレングリコール#6000を
1/4量加え、0℃、2時間インキュベートした。3,00
0rpm、3分の遠心により沈澱画分を回収した後、8mlの
TES緩衝液(20mMTris-HCl、5mM EDTA、100mM NaC
l、pH7.5)に再溶解し、8.7gのCsClを加え、更に5mg
の臭化ethidiumを加えて44,500rpm、16時間のCsCl−臭
化ethidium平衡密度勾配遠心にかけた。この遠心により
形成されるDNAのバンドを回収し、1−ブタノールを
用いて臭化ethidiumを除いてTEに対して透析を行っ
た。この方法により100gの湿菌体より4.5mgの染色体D
NAを取得した。
After the same treatment was performed once again, a mixture of TE saturated phenol and chloroform at a ratio of 1: 1 instead of TE saturated phenol was used, and then the same treatment was repeated twice using chloroform. A 1/4 amount of 50% polyethylene glycol # 6000 was added to the thus obtained crude nucleic acid extract, and the mixture was incubated at 0 ° C. for 2 hours. 3,00
After collecting the precipitated fraction by centrifugation at 0 rpm for 3 minutes, 8 ml of TES buffer (20 mM Tris-HCl, 5 mM EDTA, 100 mM NaC was added.
redissolved in pH 7.5), added 8.7g of CsCl, and added 5mg
Ethidium bromide was added and subjected to CsCl-ethidium bromide equilibrium density gradient centrifugation at 44,500 rpm for 16 hours. The DNA band formed by this centrifugation was recovered, and dialyzed against TE after removing ethidium bromide with 1-butanol. By this method, 4.5 mg of chromosome D from 100 g of wet cells
Obtained NA.

【0030】以上のようにして得られたアスペルギルス
・ニガーNo.499染色体DNA10μgに対して制限
酵素SphI 30単位を37℃、3時間作用させることによ
り完全分解を行った。その反応液を1%アガロースゲル
電気泳動し、上記のプローブを用いてサザンハイブリダ
イゼーションを行った。
Aspergillus niger No. obtained as described above. Complete decomposition was carried out by reacting 10 units of 499 chromosomal DNA with 30 units of the restriction enzyme SphI at 37 ° C. for 3 hours. The reaction solution was subjected to 1% agarose gel electrophoresis, and Southern hybridization was performed using the above probe.

【0031】6×SSC(1×SSCは150mM NaCl、15mM t
risodium citrateを含む)、0.1%SDS、0.2%牛血清ア
ルブミン、0.2% Ficoll 400、0.2%ポリビニルピロ
リドン中でフィルターを65℃、8時間インキュベートし
てプレハイブリダイゼーションを行った後、上記プロー
ブを加えて40℃、一夜静置してハイブリダイゼーション
を行った。次にフィルターを6×SSC、0.1% SDS中
で52℃で30分洗浄し、オートラジオグラフィーにより分
析した。その結果2種のプローブが共に4.3Kbの位置に
ハイブリダイズすることが観察された。
6 × SSC (1 × SSC is 150 mM NaCl, 15 mM t
(including risodium citrate), 0.1% SDS, 0.2% bovine serum albumin, 0.2% Ficoll 400, 0.2% polyvinylpyrrolidone at 65 ° C for 8 hours to perform prehybridization, and then add the above probe. Hybridization was carried out at 40 ° C. overnight. The filters were then washed in 6X SSC, 0.1% SDS for 30 minutes at 52 ° C and analyzed by autoradiography. As a result, it was observed that the two kinds of probes both hybridized to the position of 4.3 Kb.

【0032】(3) GTase遺伝子のクローニング アスペルギルス・ニガーNo.499染色体DNA5μ
gをSphI 10単位により完全分解した後、1%アガロー
スゲル電気泳動し、臭化ethidiumによって染色し約4.3
Kbに当たる位置のゲルを切取り、そのゲル片に対して3
倍容量の8NNaClO4を加え、37℃、10分インキュベート
してアガロースを溶解させる。
(3) Cloning of GTase gene Aspergillus niger No. 499 chromosome DNA 5μ
g was completely decomposed with 10 units of SphI, then subjected to 1% agarose gel electrophoresis, stained with ethidium bromide and stained with about 4.3
Cut off the gel at the position that hits Kb, and cut the gel piece into 3 pieces.
Double volume of 8N NaClO 4 is added and incubated at 37 ° C. for 10 minutes to dissolve agarose.

【0033】次にその溶液中のDNAを6mm径のGF/
C(ワットマン社製)グラスフィルターに吸着させ、フ
ィルターを1mlのTEに溶解した6N NaClO4の溶液、
続いて1mlの95%エタノールで洗浄し、乾燥させた。こ
のフィルターにTEを30μl加え、37℃、30分インキュ
ベートした。その後に15,000rpm、2分の遠心により水
相を回収した。このようにしてアガロースゲルからアス
ペルギルス・ニガーNo.499染色体DNA由来の4.
3Kb付近のSphI片を回収した。
Next, the DNA in the solution was added with GF / diameter of 6 mm.
C (manufactured by Whatman) Adsorbed on a glass filter, the filter was dissolved in 1 ml of TE, 6N NaClO 4 solution,
It was subsequently washed with 1 ml of 95% ethanol and dried. 30 μl of TE was added to this filter and incubated at 37 ° C. for 30 minutes. Then, the aqueous phase was recovered by centrifugation at 15,000 rpm for 2 minutes. In this way, the Aspergillus niger No. 4. Derived from 499 chromosomal DNA
SphI pieces near 3 Kb were collected.

【0034】また別にベクタープラスミドpBR322
0.1μgをSphI5単位で37℃、2時間処理し、更に1
M Tris-HCl(pH9.0)をその反応液に対して5分の1
量、アルカリ性ホスファターゼを0.5単位加え、65℃、3
0分インキュベートした。この反応液をアガロースゲル
電気泳動し、臭化ethidium染色した後でpBR322の
分子量に相当するバンドを切出し、回収した。上記2種
のDNAを混合し、66mM Tris-HCl(pH 7.6)、6.6mM
MgCl2、10mMジチオスレイトール、1mM ATP(それぞ
れ終濃度)で300単位のT4DNAリガーゼを加えて4
℃、一夜インキュベートしてライゲーション反応を行っ
た。
Alternatively, the vector plasmid pBR322
Treat 0.1 μg with 5 units of SphI for 2 hours at 37 ℃
1/5 M Tris-HCl (pH 9.0) to the reaction solution
Amount, add 0.5 units of alkaline phosphatase, 65 ℃, 3
Incubated for 0 minutes. This reaction solution was subjected to agarose gel electrophoresis and stained with ethidium bromide, and then a band corresponding to the molecular weight of pBR322 was cut out and collected. The above two kinds of DNA are mixed, and 66 mM Tris-HCl (pH 7.6), 6.6 mM
Add 4 units of T4 DNA ligase with MgCl 2 , 10 mM dithiothreitol, 1 mM ATP (each final concentration) to 4
Ligation reaction was carried out by incubating at 0 ° C. overnight.

【0035】次に大腸菌HB101株のコンピテントセ
ルを調製し、上のライゲーション反応物を用いて形質転
換した。形質転換株はアンピシリン50μg/ml、1.2%寒
天を含むLB培地〔1% Bacto Tryptone(ディフコ社
製)、0.5% 酵母エキス、0.5% NaCl〕上で選択した
後にニトロセルロースフィルター上に移してプローブB
を用いたコロニーハイブリダイゼーションを行った。但
し、ハイブリダイゼーション及び洗浄の条件はサザンハ
イブリダイゼーションの場合と同様に行った。
Then, competent cells of Escherichia coli HB101 strain were prepared and transformed with the above ligation reaction product. The transformant was selected on LB medium [1% Bacto Tryptone (manufactured by Difco), 0.5% yeast extract, 0.5% NaCl] containing 50 μg / ml of ampicillin and 1.2% agar, and then transferred to a nitrocellulose filter for probe B.
Colony hybridization was carried out. However, the hybridization and washing conditions were the same as those for Southern hybridization.

【0036】オートラジオグラフィーによる分析を行っ
た結果、約1000株の形質転換株中24株の陽性クローンが
得られた。これらの形質転換株よりプラスミドDNAを
調製し、それぞれ0.1μgに対してBamHI,EcoRI,PvuI
I,SnaBI,SphI等の制限酵素各5単位を37℃、2時間作
用させ、アガロースゲル電気泳動法を用いて解析したと
ころ、全てのプラスミドが4.3KbのDNA断片をpBR
322のSphI部位に含んでいた。このプラスミドをpG
TY02と命名した。
As a result of analysis by autoradiography, positive clones of 24 strains out of about 1000 transformants were obtained. Plasmid DNA was prepared from these transformants, and 0.1 μg of BamHI, EcoRI, and PvuI were prepared for each.
When 5 units each of restriction enzymes such as I, SnaBI, and SphI were allowed to act at 37 ° C for 2 hours and analyzed by agarose gel electrophoresis, all the plasmids contained a 4.3 Kb DNA fragment of pBR.
322 at the SphI site. This plasmid is called pG
It was named TY02.

【0037】(4) 4.3kb断片の塩基配列の決定 プラスミドpGTY02を各種制限酵素で切断して得ら
れたDNA断片をpUC118及びpUC119にサブ
クローニングした。このようにして得られたプラスミド
をCsCl−エチジウムブロマイド密度勾配遠心で精製した
後、Henikoff等の方法〔Gene,28巻,351−359(198
4)〕にしたがってデリーション・シリーズを作製し
た。調製したデリーションシリーズでE.coli MW1184株
を形質転換し、いろいろな長さのDNAを持つプラスミ
ドを保持している形質転換体を得た。
(4) Determination of nucleotide sequence of 4.3 kb fragment The DNA fragment obtained by digesting plasmid pGTY02 with various restriction enzymes was subcloned into pUC118 and pUC119. The thus obtained plasmid was purified by CsCl-ethidium bromide density gradient centrifugation, and then subjected to the method of Henikoff et al. [Gene, 28, 351-359 (198
4)] and the deletion series was prepared. E. coli MW1184 strain was transformed with the prepared deletion series to obtain transformants carrying plasmids having DNAs of various lengths.

【0038】次に、得られた形質転換体を2×YT培地
で培養し、ヘルパーファージM13K07を感染させる
ことによって一本鎖DNAを得、これを精製して塩基配
列の決定に用いた。
Next, the obtained transformant was cultured in 2 × YT medium and infected with helper phage M13K07 to obtain single-stranded DNA, which was purified and used for determining the nucleotide sequence.

【0039】塩基配列の決定は、Sangerラノdideoxy法〔P
roc. Nat. Acad. Sci. USA.,74巻,5463−5467(197
7)〕によって行った。伸長反応には、おもにAmpli Taq
(宝酒造)を用いた。部分的に縮重が起こる場合には、
Sequenase(東洋紡)を使用し、dGTPの代わりにdITPを
用いることによって解消した。なお、GTase構造遺
伝子のコードするアミノ酸配列については、千葉らによ
ってGTase蛋白質の全アミノ酸配列が報告されてい
るので〔日本農芸化学会誌,64巻,510頁(1990)及び
生化学,63巻,787頁(1991)〕それを参考にして決定
した。その結果は配列番号:1に示される。配列番号:
1中で下線部は、イントロンの存在を示すものであり、
アミノ酸配列部分は、GTase蛋白質の一次構造を示
すものである。
The nucleotide sequence is determined by the Sanger Rano dideoxy method [P
roc. Nat. Acad. Sci. USA., Vol. 74, 5463-5467 (197
7)]. Ampli Taq is mainly used for the extension reaction.
(Takara Shuzo) was used. If partial degeneracy occurs,
This was resolved by using Sequenase (Toyobo) and substituting dITP for dGTP. Regarding the amino acid sequence encoded by the GTase structural gene, the entire amino acid sequence of the GTase protein has been reported by Chiba et al. [Journal of the Japanese Society of Agricultural Chemistry, 64, 510 (1990) and Biochemistry, 63, 787]. Page (1991)] It was decided with reference to it. The result is shown in SEQ ID NO: 1. Sequence number:
The underlined part in 1 indicates the presence of an intron,
The amino acid sequence portion shows the primary structure of GTase protein.

【0040】この結果GTase遺伝子の3’側の領域
はこのSphI断片中には、39bpしか存在しないことが判明
した。一般に、構造遺伝子を充分発現させるためには、
構造遺伝子の両端部分が適当な長さにおいて保持された
遺伝子断片が好ましいと見なされている。そこで、本発
明者らは、GTase構造遺伝子の3’末端部位を更に
広げる為にgene walkingを行った。
As a result, it was revealed that the region on the 3'side of the GTase gene had only 39 bp in this SphI fragment. Generally, in order to express a structural gene sufficiently,
Gene fragments in which both ends of the structural gene are retained in a suitable length are considered to be preferable. Therefore, the present inventors carried out gene walking in order to further expand the 3'end portion of the GTase structural gene.

【0041】(5)gene walking (2)で得られた染色体DNAのサザンハイブリダイゼ
ーションを常法に従って行った。プローブには、4.3kb
のSphI断片中の3’側に位置するPstI−SphI断片を用
い、アスペルギルス・ニガーの全DNAのEcoRI-XbaI,
EcoRI-SacI,EcoRI-SalIの2重消化物に対してハイブリ
ダイゼーションを行った。プローブのラベルには〔α−
32P〕を用い、Random Primed DNA Labeling Kit(ベー
リンガーマンハイム社製品)によってラベルした。ハイ
ブリダイゼーション終了後の洗浄は、室温で2×SSC,
0.1%SDS中30分後、65℃で0.1×SSC,0.1%SDS中
で30分おこなった。
(5) Gene walking Southern hybridization of the chromosomal DNA obtained in (2) was performed according to a conventional method. 4.3kb for the probe
EcoRI-XbaI of the total DNA of Aspergillus niger using the PstI-SphI fragment located on the 3'side of the SphI fragment of
Hybridization was performed on the double digests of EcoRI-SacI and EcoRI-SalI. The label of the probe is [α-
32 P] was used for labeling with Random Primed DNA Labeling Kit (product of Boehringer Mannheim). After the hybridization, wash at room temperature with 2 x SSC,
After 30 minutes in 0.1% SDS, the reaction was performed at 65 ° C. in 0.1 × SSC, 0.1% SDS for 30 minutes.

【0042】次に、サザンハイブリダイゼーションで使
用したものと同じEcoRI-SacIの2重消化物をアカガロー
スゲル電気泳動し、先のハイブリダイズした付近のゲル
を切り出してDNAを抽出し、同じ制限酵素で切断した
ベクターpUC119に挿入した。そしてE. coli MV11
84 株を形質転換し、常法によりコロニーハイブリダイ
ゼーションを行った。約2000株の形質転換体から3つの
陽性コロニーが得られた。この3つの形質転換体よりプ
ラスミドDNAを調製し、制限酵素パターンを調べ、目
的とするEcoRI-SacI断片を得た。
Next, the same double digestion product of EcoRI-SacI used in Southern hybridization was subjected to agarose gel electrophoresis, the gel in the vicinity of the hybridized region was excised, DNA was extracted, and digested with the same restriction enzymes. Was inserted into the vector pUC119. And E. coli MV11
84 strains were transformed, and colony hybridization was performed by a conventional method. Three positive colonies were obtained from about 2000 transformants. Plasmid DNA was prepared from these three transformants, the restriction enzyme pattern was examined, and the desired EcoRI-SacI fragment was obtained.

【0043】(6)GTaseのアスペルギルス・ニガ
ーでの発現 先ず、形質転換に使用するプラスミドとして次の2つの
プラスミドを作製した。 4.3kbのSphI断片をpUC19のSphIサイトに挿入
したもの(このプラスミドをpGTI43と命名し、図
1に示した。)。 4.3kbのBamHI-SphI断片(先のSphI断片より5’側
が30bp短い)のその3’側1.2kbのSphI-SacI断片を結合
したもの、即ち5.5kb BamHI-SacI断片をpUC19のB
amHI-SacIサイトに挿入したものを作成し、このプラス
ミドをpGTI55と命名し、図2に示した。尚、BamH
I-SacI断片は、4.3kbのSphI断片とgene walkingで得たE
coRI-SacI断片とから作製した。
(6) Expression of GTase in Aspergillus niger First, the following two plasmids were prepared as plasmids used for transformation. A 4.3 kb SphI fragment inserted into the SphI site of pUC19 (this plasmid was named pGTI43 and is shown in FIG. 1). BamHI-SphI fragment of 4.3 kb (5 'side is 30 bp shorter than the previous SphI fragment) ligated with 1.2 kb of SphI-SacI fragment on the 3'side, that is, 5.5 kb BamHI-SacI fragment of pUC19
One inserted into the amHI-SacI site was prepared, and this plasmid was named pGTI55 and shown in FIG. BamH
The I-SacI fragment was obtained by gene walking with the 4.3 kb SphI fragment.
It was prepared from the coRI-SacI fragment.

【0044】次に、これら2種類のプラスミド及び対照
となるプラスミドpUC19(各20μg)とハイグロマ
イシンBホスホトランスフェラーゼ要求性相補遺伝子hp
hを持つプラスミドpDH25(10μg)とを用い、co-t
ransformation法によりアスペルギルス・ニガーに導入
し、形質転換を行った。その結果、ハイグロマイシンB
100μg/mlを含む培地でも良好に生育し、胞子を着生す
る形質転換株即ちpGTI43由来のTR43ー21及
びpGTI55由来のTR55−22の2株及び対照と
なるpUC19由来のTR19−1株を得た。
Next, these two types of plasmids and a control plasmid pUC19 (20 μg each) and a hygromycin B phosphotransferase-required complementary gene hp
Using plasmid pDH25 (10 μg) having h, co-t
It was introduced into Aspergillus niger by the ransformation method and transformed. As a result, hygromycin B
A transformant that grows well even in a medium containing 100 μg / ml and that colonizes spores, namely, TR43-21 derived from pGTI43 and TR55-22 derived from pGTI55, and a TR19-1 strain derived from pUC19 serving as a control were obtained. It was

【0045】これらの形質転換株及び対照株について染
色体DNAを調製して、サザンハイブリダイゼーション
を行い、GTase遺伝子の導入を確認した。形質転換
株によるGTase生産の経時変化(即ち、培養上清1
ml当たりのGTase活性の変化を示す。)を図3に示
す。図3から明らかなように得られた形質転換株は対照
株に比較して1.6〜2.4倍のGTaseを生産することが
わかる。
Chromosomal DNAs were prepared from these transformants and control strains, and Southern hybridization was carried out to confirm the introduction of GTase gene. Time-dependent changes in GTase production by the transformant (ie, culture supernatant 1
The change in GTase activity per ml is shown. ) Is shown in FIG. As is clear from FIG. 3, it is understood that the transformed strain obtained produces 1.6 to 2.4 times more GTase than the control strain.

【0046】尚、GTase活性の測定は、以下の方法
で行った。 (1)酵素液の調製 培養液10mlをサンプリングし、15000rpmで10分遠心した
後の上清を0.45μmのフィルターで濾過し、この濾過液
2mlを100μl以下迄濃縮し、これを50mM酢酸ソーダで
計500μlになるように希釈し、これを酵素液とした。
The GTase activity was measured by the following method. (1) Preparation of enzyme solution 10 ml of culture solution was sampled, centrifuged at 15000 rpm for 10 minutes, and the supernatant was filtered through a 0.45 μm filter. 2 ml of this filtrate was concentrated to 100 μl or less, and this was concentrated with 50 mM sodium acetate. It was diluted to a total of 500 μl and used as the enzyme solution.

【0047】(2)活性測定 岩野等の方法に基づいて行った〔J. Brew. Soc. Japa
n,72巻,517−520(1977)〕。即ち、50mMの酢酸ナト
リウム緩衝液(pH5.0)に4%メチル−α−グルコシド
を溶解したもの0.5mlを40℃、5分間予熱し、(1)の
酵素液0.1mlを加える。40℃、30分間反応した後、DN
S溶液1mlを加え、100℃、5分間煮沸後、氷水中で急
冷し、4.5mlの水を加えて希釈し波長525nmで吸光度を測
定し、反応によって生成したグルコース量を酵素活性量
とした。酵素活性の単位は、1分間に1μmolのグルコ
ースを遊離させる酵素量を1単位とした。
(2) Activity measurement The measurement was carried out based on the method of Iwano et al. [J. Brew. Soc. Japa
n, 72, 517-520 (1977)]. That is, 0.5 ml of 4% methyl-α-glucoside dissolved in 50 mM sodium acetate buffer (pH 5.0) is preheated at 40 ° C. for 5 minutes, and 0.1 ml of the enzyme solution (1) is added. After reacting at 40 ℃ for 30 minutes, DN
After adding 1 ml of S solution and boiling at 100 ° C. for 5 minutes, it was rapidly cooled in ice water, diluted with 4.5 ml of water, and the absorbance was measured at a wavelength of 525 nm. The amount of glucose produced by the reaction was taken as the enzyme activity amount. As the unit of enzyme activity, the amount of enzyme that liberates 1 μmol glucose per minute was defined as 1 unit.

【0048】[0048]

【発明の効果】本発明によれば、本発明のGTase遺
伝子の組み込まれた組換え体DNAを含むアスペルギル
ス・ニガーを培地に培養することにより、極めて効率よ
くGTaseを得ることができ、澱粉工業界に寄与する
ところ大である。
INDUSTRIAL APPLICABILITY According to the present invention, GTase can be obtained very efficiently by culturing Aspergillus niger containing the recombinant DNA in which the GTase gene of the present invention has been incorporated in a medium, and the GTase can be obtained very efficiently. It is a big contribution to.

【0049】[0049]

【配列表】配列番号:1 配列の長さ:4300 配列の型:核酸 配列 GCATGCCATG AGTTGTTGGG CCGGCCTGAA GGATCCATCA TTGGGACCAA GGGCATCATC 60 CATGCGCTAC GGAGTACTTT CGGAGAATCA GCACCCCTGC ACAAAGCATT GTCAATGTGT 120 TTTCTTATGT CAAAAGCTGA CAGAGTCTGA GGCTCGCTGA CGATGGGATT CATGCTAATG 180 ACGGTCCGAA AGAGCTTTCA CGTAACACTG GTGAACATCC CACTCGGGAA GCCGAGACTT 240 GTGACCTACT TAGTCAAATG AGATGATTAT CAAAGCCATT AAATGCCTCG CTGTCAGGGG 300 CCCTGGTAAG TGTCTTCATT AATCGAAACC CATCTTCATT CGTCCCCGCC TTCAGTGCTC 360 ATCATTTTAG GTTTAGAAGC AAGATTGAGT GCCACCTGCT TTACAAACCA GCATGGGTAG 420 TCTGCTGTTG AAATTCTTCA CCGGGAGCAT TCTGGGGAAG GTGCAAAAGG CGGCGCGAAG 480 TGGTCGGGTC GCGATTGTAG TCTGGATTGG AGCACAAGAA TCGTCAGAGC CGAAGCCCGA 540 ACTGAGGGGG TCTCGGTCAT TTATCGGGAT GAGAGCCAAT CAGCGTGCGC TCATCATCTG 600 ATCGTCTGGC TGCCAGGCCC CTCAGGCATC AATACGGTAC TCGGCAGTAT CCACTCCCGT 660 TTCTCCGGTG CAACAAATCA TCGTTGGAGA ATCCCCAGCT CCCCCGCCAA CTGGGGTCGA 720 TGCTTCTCCA GTTGTCCTGG TTTCTCCCAT GAACTCGCTT ACGATAAGCT GCTGTACCAG 780 CCCACCAGCA CAACAATATC TTCAATCAGG TAGGTGCTTG TTCGTTACCT GCCCCATCCT 840 CTCCTCTTCT TCGGTCATTA TGAACTCAAT TCGGTCGCTA GCTTTGCCGA TTCTCCGCAG 900 TCCATAAAAA TATATCTGCA TTTGCCCCTT ACACGTCGGG AATTCACCGG CGCAATGAGC 960 CTTCGGGTAT GGTCGCACAG CGTCATGTCA ATAGGAGGCT GCTCCTAGTG GTGATCTACT 1020 AGTCGCCTCA ACACAGCAAT ATATAAATAA CAAGAGCATT CCTTGAGCAC ATCTGGGTAA 1080 TAGCTGTTCC ATTCTCATCA AGGATTACGC GACCGTGCCT CGAGCCTCCT TAAGCGAGCC 1140 ATG GTG AAG TTG ACG CAT CTC CTT GCC AGA GCA TGG CTT GTC CCT CTG 1188 Met Val Lys Leu Thr His Leu Leu Ala Arg Ala Trp Leu Val Pro Leu GCT TAT GGA GCG AGC CAG TCA CTC TTA TCC ACC ACT GCC CCT TCG CAG 1236 Ala Tyr Gly Ala Ser Gln Ser Leu Leu Ser Thr Thr Ala Pro Ser Gln CCG CAG TTT ACC ATT CCT GCT TCC GCA GAT GTC GGT GCG CAG CTG ATT 1284 Pro Gln Phe Thr Ile Pro Ala Ser Ala Asp Val Gly Ala Gln Leu Ile GCC AAC ATC GAT GAT CCT CAG GCT GCC GAC GCG CAG TCG GTT TGT CCG 1332 Ala Asn Ile Asp Asp Pro Gln Ala Ala Asp Ala Gln Ser Val Cys Pro GGC TAC AAG GCT TCA AAA GTG CAG CAC AAT TCA CGT GGA TTC ACT GCC 1380 Gly Tyr Lys Ala Ser Lys Val Gln His Asn Ser Arg Gly Phe Thr Ala AGT CTT CAG CTC GCG GGC AGG CCA TGT AAC GTA TAC GGC ACA GAT GTT 1428 Ser Leu Gln Leu Ala Gly Arg Pro Cys Asn Val Tyr Gly Thr Asp Val GAG TCC TTG ACA CTG TCT GTG GAG TAC CAG GAT TCG GAT CGA CTG AAT 1476 Glu Ser Leu Thr Leu Ser Val Glu Tyr Gln Asp Ser Asp Arg Leu Asn ATT CAG ATT CTC CCC ACT CAT GTT GAC TCC ACA AAC GCT TCT TGG TAC 1524 Ile Gln Ile Leu Pro Thr His Val Asp Ser Thr Asn Ala Ser Trp Tyr TTT CTT TCG GAA AAC CTG GTC CCC AGA CCC AAG GCT TCC CTC AAT GCA 1572 Phe Leu Ser Glu Asn Leu Val Pro Arg Pro Lys Ala Ser Leu Asn Ala TCT GTA TCC CAG AGC GAC CTT TTT GTG TCA TGG TCA AAT GAG CCG TCG 1620 Ser Val Ser Gln Ser Asp Leu Phe Val Ser Trp Ser Asn Glu Pro Ser TTC AAT TTC AAG GTG ATC CGA AAG GCT ACA GGC GAC GCG CTT TTC AGT 1668 Phe Asn Phe Lys Val Ile Arg Lys Ala Thr Gly Asp Ala Leu Phe Ser ACA GAA GGC ACT GTG CTC GTA TAT GAG AAT CAG TTC ATC GAA TTT GTG 1716 Thr Glu Gly Thr Val Leu Val Tyr Glu Asn Gln Phe Ile Glu Phe Val ACC GCG CTC CCT GAA GAA TAT AAC TTG TAT GGC CTT GGG GAG CAT ATC 1764 Thr Ala Leu Pro Glu Glu Tyr Asn Leu Tyr Gly Leu Gly Glu His Ile ACG CAA TTC CGC CTC CAG AGA AAT GCT AAT CTG ACC ATA TAT CCT TCG 1812 Thr Gln Phe Arg Leu Gln Arg Asn Ala Asn Leu Thr Ile Tyr Pro Ser GAT GAT GGA ACA CCT ATT GAC CAG TGAGTACTGA TATCCCGCCC GTATCTTCTG 1866 Asp Asp Gly Thr Pro Ile Asp Gln GTTCTACTCT TGAAACTTAC TCGTCCTAG A AAC CTC TAC GGC 1908 Asn Leu Tyr Gly CAA CAT CCC TTC TAT CTG GAT ACA AGA TAT TAC AAA GGA GAT AGG CAG 1956 Gln His Pro Phe Tyr Leu Asp Thr Arg Tyr Tyr Lys Gly Asp Arg Gln AAT GGG TCT TAT ATT CCC GTC AAA AGC AGC GAG GCT GAT GCC TCG CAA 2004 Asn Gly Ser Tyr Ile Pro Val Lys Ser Ser Glu Ala Asp Ala Ser Gln GAT TAT ATC TCC CTC TCT CAT GGC GTG TTT CTG AGG AAC TCT CAT GGA 2052 Asp Tyr Ile Ser Leu Ser His Gly Val Phe Leu Arg Asn Ser His Gly CTT GAG ATA CTC CTC CGG TCT CAA AAA TTG ATC TGG CGG ACC CTA GGT 2100 Leu Glu Ile Leu Leu Arg Ser Gln Lys Leu Ile Trp Arg Thr Leu Gly GGA GGA ATC GAT CTC ACC TTC TAC TCA GGC CCC GCC CCG GCC GAT GTT 2148 Gly Gly Ile Asp Leu Thr Phe Tyr Ser Gly Pro Ala Pro Ala Asp Val ACC AGG CAA TAT CTT ACC AGC ACT GTG GGA TTA CCG GCC ATG CAG CAA 2196 Thr Arg Gln Tyr Leu Thr Ser Thr Val Gly Leu Pro Ala Met Gln Gln TAC AAC ACT CTT GGA TTC CAC CAA TGT CGT TGG GGC TAC AAC AAC TGG 2244 Tyr Asn Thr Leu Gly Phe His Gln Cys Arg Trp Gly Tyr Asn Asn Trp TCG GAT CTG GCG GAC GTT GTT GCG AAC TTT GAG AAG TTT GAG ATC CCG 2292 Ser Asp Leu Ala Asp Val Val Ala Asn Phe Glu Lys Phe Glu Ile Pro TTG GAA TAT ATC TGG TGCGTATTGT ACTGGTTTAT GGTATCTCAA AACAGTCTAA 2347 Leu Glu Tyr Ile Trp CAGGCACTT AG G ACC GAT ATT GAC TAC ATG CAC GGA TAT CGC AAC TTT 2395 Thr Asp Ile Asp Tyr Met His Gly Tyr Arg Asn Phe GAC AAC GAT CAA CAT CGC TTT TCC TAC AGT GAG GGC GAT GAA TTT CTC 2443 Asp Asn Asp Gln His Arg Phe Ser Tyr Ser Glu Gly Asp Glu Phe Leu AGC AAG CTA CAT GAG AGT GGA CGC TAC TAT GTA CCC ATT GTT GAT GCG 2491 Ser Lys Leu His Glu Ser Gly Arg Tyr Tyr Val Pro Ile Val Asp Ala GCG CTC TAC ATT CCT AAT CCC GAA AAT GCC TCT GAT GCG TAAGTGTCTA 2540 Ala Leu Tyr Ile Pro Asn Pro Glu Asn Ala Ser Asp Ala GTGACAAATT ATATTACTGC CTGTATGCTA ATTAGCGATA CAG A TAC GCT ACG TAT 2596 Tyr Ala Thr Tyr GAC AGA GGA GCT GCG GAC GAC GTC TTC CTC AAG AAT CCC GAT GGT AGC 2644 Asp Arg Gly Ala Ala Asp Asp Val Phe Leu Lys Asn Pro Asp Gly Ser CTC TAT ATT GGA GCC GTT TGG CCA GGA TAT ACA GTC TTC CCC GAT TGG 2692 Leu Tyr Ile Gly Ala Val Trp Pro Gly Tyr Thr Val Phe Pro Asp Trp CAT CAT CCC AAG GCA GTT GAC TTC TGG GCT AAC GAG CTT GTT ATC TGG 2740 His His Pro Lys Ala Val Asp Phe Trp Ala Asn Glu Leu Val Ile Trp TCG AAG AAA GTG GCG TTC GAT GGT GTG TGG TAC GAC ATG TCT GAA GTT 2788 Ser Lys Lys Val Ala Phe Asp Gly Val Trp Tyr Asp Met Ser Glu Val TCA TCC TTC TGT GTC GGG AGC TGT GGC ACA GGT AAC CTG ACT CTG AAC 2836 Ser Ser Phe Cys Val Gly Ser Cys Gly Thr Gly Asn Leu Thr Leu Asn CCG GCA CAC CCA TCG TTT CTT CTC CCC GGT GAG CCT GGT GAT ATC ATA 2884 Pro Ala His Pro Ser Phe Leu Leu Pro Gly Glu Pro Gly Asp Ile Ile TAT GAT TAC CCA GAG GCT TTC AAT ATC ACC AAC GCT ACA GAG GCG GCG 2932 Tyr Asp Tyr Pro Glu Ala Phe Asn Ile Thr Asn Ala Thr Glu Ala Ala TCA GCT TCG GCG GGA GCT TCC AGT CAG GCT GCA GCA ACC GCG ACC ACC 2980 Ser Ala Ser Ala Gly Ala Ser Ser Gln Ala Ala Ala Thr Ala Thr Thr ACG TCG ACT TCG GTA TCA TAT CTG CGG ACA ACG CCC ACG CCT GGT GTC 3028 Thr Ser Thr Ser Val Ser Tyr Leu Arg Thr Thr Pro Thr Pro Gly Val CGC AAT GTT GAG CAC CCA CCC TAT GTG ATC AAC CAT GAC CAA GAA GGC 3076 Arg Asn Val Glu His Pro Pro Tyr Val Ile Asn His Asp Gln Glu Gly CAT GAT CTC AGT GTC CAT GCG GTG TCG CCG AAT GCA ACG CAT GTT GAT 3124 His Asp Leu Ser Val His Ala Val Ser Pro Asn Ala Thr His Val Asp GGT GTT GAG GAG TAT GAT GTG CAC GGT CTC TAC GGA CAT CAA GGA TTG 3172 Gly Val Glu Glu Tyr Asp Val His Gly Leu Tyr Gly His Gln Gly Leu AAC GCT ACC TAC CAA GGT CTG CTT GAG GTC TGG TCT CAT AAG CGG CGG 3220 Asn Ala Thr Tyr Gln Gly Leu Leu Glu Val Trp Ser His Lys Arg Arg CCA TTT ATT ATT GGC CGC TCA ACC TTC GCT GGC TCT GGC AAA TGG GCA 3268 Pro Phe Ile Ile Gly Arg Ser Thr Phe Ala Gly Ser Gly Lys Trp Ala GGC CAC TGG GGC GGC GAC AAC TAT TCC AAA TGG TGG TCC ATG TAC TAC 3316 Gly His Trp Gly Gly Asp Asn Tyr Ser Lys Trp Trp Ser Met Tyr Tyr TCC ATC TCG CAA GCC CTC TCC TTC TCA CTT TTC GGC ATT CCG ATG TTT 3364 Ser Ile Ser Gln Ala Leu Ser Phe Ser Leu Phe Gly Ile Pro Met Phe GGT GCG GAC ACC TGT GGG TTT AAC GGA AAC TCC GAT GAG GAG CTC TGC 3412 Gly Ala Asp Thr Cys Gly Phe Asn Gly Asn Ser Asp Glu Glu Leu Cys AAC CGA TGG ATG CAA CTG TCC GCA TTC TTC CCA TTC TAC CGA AAC CAC 3460 Asn Arg Trp Met Gln Leu Ser Ala Phe Phe Pro Phe Tyr Arg Asn His AAT GAG CTC TCC ACA ATC CCA CAG GAG CCT TAT CGG TGG GCT TCT GTT 3508 Asn Glu Leu Ser Thr Ile Pro Gln Glu Pro Tyr Arg Trp Ala Ser Val ATT GAA GCA ACC AAG TCC GCC ATG AGA ATT CGG TAC GCC ATC CTA CCT 3556 Ile Glu Ala Thr Lys Ser Ala Met Arg Ile Arg Tyr Ala Ile Leu Pro TAC TTT TAT ACG TTG TTT GAC CTG GCC CAC ACC ACG GGC TCC ACT GTA 3604 Tyr Phe Tyr Thr Leu Phe Asp Leu Ala His Thr Thr Gly Ser Thr Val ATG CGC GCA CTT TCC TGG GAA TTC CCT AAT GAC CCA ACA TTG GCT GCG 3652 Met Arg Ala Leu Ser Trp Glu Phe Pro Asn Asp Pro Thr Leu Ala Ala GTT GAG ACT CAA TTC ATG GTT GGG CCG GCC ATC ATG GTG GTC CCG GTA 3700 Val Glu Thr Gln Phe Met Val Gly Pro Ala Ile Met Val Val Pro Val TTG GAG CCT CTG GTC AAT ACG GTC AAG GGC GTA TTC CCA GGA GTT GGA 3748 Leu Glu Pro Leu Val Asn Thr Val Lys Gly Val Phe Pro Gly Val Gly CAT GGC GAA GTG TGG TAC GAT TGG TAC ACC CAG GCT GCA GTT GAT GCG 3796 His Gly Glu Val Trp Tyr Asp Trp Tyr Thr Gln Ala Ala Val Asp Ala AAG CCC GGG GTC AAC ACG ACC ATT TCG GCA CCA TTG GGC CAC ATC CCA 3844 Lys Pro Gly Val Asn Thr Thr Ile Ser Ala Pro Leu Gly His Ile Pro GTT TAT GTA CGA GGT GGA AAC ATC TTG CCG ATG CAA GAG CCG GCA TTG 3892 Val Tyr Val Arg Gly Gly Asn Ile Leu Pro Met Gln Glu Pro Ala Leu ACC ACT CGT GAA GCC CGG CAA ACC CCG TGG GCT TTG CTA GCT GCA CTA 3940 Thr Thr Arg Glu Ala Arg Gln Thr Pro Trp Ala Leu Leu Ala Ala Leu GGA AGC AAT GGA ACC GCG TCG GGG CAG CTC TAT CTC GAT GAT GGA GAG 3988 Gly Ser Asn Gly Thr Ala Ser Gly Gln Leu Tyr Leu Asp Asp Gly Glu AGC ATC TAC CCC AAT GCC ACC CTC CAT GTG GAC TTC ACG GCA TCG CGG 4036 Ser Ile Tyr Pro Asn Ala Thr Leu His Val Asp Phe Thr Ala Ser Arg TCA AGC CTG CGC TCG TCG GCT CAA GGA AGA TGG AAA GAG AGG AAC CCG 4084 Ser Ser Leu Arg Ser Ser Ala Gln Gly Arg Trp Lys Glu Arg Asn Pro CTT GCT AAT GTG ACG GTG CTC GGA GTG AAC AAG GAG CCC TCT GCG GTG 4132 Leu Ala Asn Val Thr Val Leu Gly Val Asn Lys Glu Pro Ser Ala Val ACC CTG AAT GGA CAG GCC GTA TTT CCC GGG TCT GTC ACG TAC AAT TCT 4180 Thr Leu Asn Gly Gln Ala Val Phe Pro Gly Ser Val Thr Tyr Asn Ser ACG TCC CAG GTT CTC TTT GTT GGG GGG CTG CAA AAC TTG ACG AAG GGC 4228 Thr Ser Gln Val Leu Phe Val Gly Gly Leu Gln Asn Leu Thr Lys Gly GGC GCA TGG GCG GAA AAC TGG GTA TTG GAA TGG TAGTGTCAGC CACAAGCCAG 4281 Gly Ala Trp Ala Glu Asn Trp Val Leu Glu Trp * GTGTGCGCGTACAGCATGC 4300[Sequence Listing] SEQ ID NO: the length of one sequence: 4300 SEQ type: nucleic acid sequence GCATGCCATG AGTTGTTGGG CCGGCCTGAA GGATCCATCA TTGGGACCAA GGGCATCATC 60 CATGCGCTAC GGAGTACTTT CGGAGAATCA GCACCCCTGC ACAAAGCATT GTCAATGTGT 120 TTTCTTATGT CAAAAGCTGA CAGAGTCTGA GGCTCGCTGA CGATGGGATT CATGCTAATG 180 ACGGTCCGAA AGAGCTTTCA CGTAACACTG GTGAACATCC CACTCGGGAA GCCGAGACTT 240 GTGACCTACT TAGTCAAATG AGATGATTAT CAAAGCCATT AAATGCCTCG CTGTCAGGGG 300 CCCTGGTAAG TGTCTTCATT AATCGAAACC CATCTTCATT CGTCCCCGCC TTCAGTGCTC 360 ATCATTTTAG GTTTAGAAGC AAGATTGAGT GCCACCTGCT TTACAAACCA GCATGGGTAG 420 TCTGCTGTTG AAATTCTTCA CCGGGAGCAT TCTGGGGAAG GTGCAAAAGG CGGCGCGAAG 480 TGGTCGGGTC GCGATTGTAG TCTGGATTGG AGCACAAGAA TCGTCAGAGC CGAAGCCCGA 540 ACTGAGGGGG TCTCGGTCAT TTATCGGGAT GAGAGCCAAT CAGCGTGCGC TCATCATCTG 600 ATCGTCTGGC TGCCAGGCCC CTCAGGCATC AATACGGTAC TCGGCAGTAT CCACTCCCGT 660 TTCTCCGGTG CAACAAATCA TCGTTGGAGA ATCCCCAGCT CCCCCGCCAA CTGGGGTCGA 720 TGCTTCTCCA GTTGTCCTGG TTTCTCCCAT GAACTCGCTT ACGATAAGCT GCTGTACCAG 7 80 CCCACCAGCA CAACAATATC TTCAATCAGG TAGGTGCTTG TTCGTTACCT GCCCCATCCT 840 CTCCTCTTCT TCGGTCATTA TGAACTCAAT TCGGTCGCTA GCTTTGCCGA TTCTCCGCAG 900 TCCATAAAAA TATATCTGCA TTTGCCCCTT ACACGTCGGG AATTCACCGG CGCAATGAGC 960 CTTCGGGTAT GGTCGCACAG CGTCATGTCA ATAGGAGGCT GCTCCTAGTG GTGATCTACT 1020 AGTCGCCTCA ACACAGCAAT ATATAAATAA CAAGAGCATT CCTTGAGCAC ATCTGGGTAA 1080 TAGCTGTTCC ATTCTCATCA AGGATTACGC GACCGTGCCT CGAGCCTCCT TAAGCGAGCC 1140 ATG GTG AAG TTG ACG CAT CTC CTT GCC AGA GCA TGG CTT GTC CCT CTG 1188 Met Val Lys Leu Thr His Leu Leu Ala Arg Ala Trp Leu Val Pro Leu GCT TAT GGA GCG AGC CAG TCA CTC TTA TCC ACC ACT GCC CCT TCG CAG 1236 Ala Tyr Gly Ala Ser Gln Ser Leu Leu Ser Thr Thr Ala Pro Ser Gln CCG CAG TTT ACC ATT CCT GCT TCC GCA GAT GTC GGT GCG CAG CTG ATT 1284 Pro Gln Phe Thr Ile Pro Ala Ser Ala Asp Val Gly Ala Gln Leu Ile GCC AAC ATC GAT GAT CCT CAG GCT GCC GAC GCG CAG TCG GTT TGT CCG 1332 Ala Asn Ile Asp Asp Pro Gln Ala Ala Asp Ala Gln Ser Val Cys Pro GGC TAC AAG GCT TCA AAA GTG CAG CAC AAT TC A CGT GGA TTC ACT GCC 1380 Gly Tyr Lys Ala Ser Lys Val Gln His Asn Ser Arg Gly Phe Thr Ala AGT CTT CAG CTC GCG GGC AGG CCA TGT AAC GTA TAC GGC ACA GAT GTT 1428 Ser Leu Gln Leu Ala Gly Arg Pro Cys Asn Val Tyr Gly Thr Asp Val GAG TCC TTG ACA CTG TCT GTG GAG TAC CAG GAT TCG GAT CGA CTG AAT 1476 Glu Ser Leu Thr Leu Ser Val Glu Tyr Gln Asp Ser Asp Arg Leu Asn ATT CAG ATT CTC CCC ACT CAT GTT GAC TCC ACA AAC GCT TCT TGG TAC 1524 Ile Gln Ile Leu Pro Thr His Val Asp Ser Thr Asn Ala Ser Trp Tyr TTT CTT TCG GAA AAC CTG GTC CCC AGA CCC AAG GCT TCC CTC AAT GCA 1572 Phe Leu Ser Glu Asn Leu Val Pro Arg Pro Lys Ala Ser Leu Asn Ala TCT GTA TCC CAG AGC GAC CTT TTT GTG TCA TGG TCA AAT GAG CCG TCG 1620 Ser Val Ser Gln Ser Asp Leu Phe Val Ser Trp Ser Asn Glu Pro Ser TTC AAT TTC AAG GTG ATC CGA AAG GCT ACA GGC GAC GCG CTT TTC AGT 1668 Phe Asn Phe Lys Val Ile Arg Lys Ala Thr Gly Asp Ala Leu Phe Ser ACA GAA GGC ACT GTG CTC GTA TAT GAG AAT CAG TTC ATC GAA TTT GTG 1716 Thr Glu Gly Thr Val Leu Val Tyr Glu Asn Gl n Phe Ile Glu Phe Val ACC GCG CTC CCT GAA GAA TAT AAC TTG TAT GGC CTT GGG GAG CAT ATC 1764 Thr Ala Leu Pro Glu Glu Tyr Asn Leu Tyr Gly Leu Gly Glu His Ile ACG CAA TTC CGC CTC CAG AGA AAT GCT AAT CTG ACC ATA TAT CCT TCG 1812 Thr Gln Phe Arg Leu Gln Arg Asn Ala Asn Leu Thr Ile Tyr Pro Ser GAT GAT GGA ACA CCT ATT GAC CA G TGAGTACTGA TATCCCGCCC GTATCTTCTG 1866 Asp Asp Gly Thr Pro Ile Asp Gln GTTCTACTCTTCTAGAACT GGC 1908 Asn Leu Tyr Gly CAA CAT CCC TTC TAT CTG GAT ACA AGA TAT TAC AAA GGA GAT AGG CAG 1956 Gln His Pro Phe Tyr Leu Asp Thr Arg Tyr Tyr Lys Gly Asp Arg Gln AAT GGG TCT TAT ATT CCC GTC AAA AGC AGC GAG GCT GAT GCC TCG CAA 2004 Asn Gly Ser Tyr Ile Pro Val Lys Ser Ser Glu Ala Asp Ala Ser Gln GAT TAT ATC TCC CTC TCT CAT GGC GTG TTT CTG AGG AAC TCT CAT GGA 2052 Asp Tyr Ile Ser Leu Ser His Gly Val Phe Leu Arg Asn Ser His Gly CTT GAG ATA CTC CTC CGG TCT CAA AAA TTG ATC TGG CGG ACC CTA GGT 2100 Leu Glu Ile Leu Leu Arg Ser Gln Lys Leu Ile Trp Arg Thr Leu Gly GGA GG A ATC GAT CTC ACC TTC TAC TCA GGC CCC GCC CCG GCC GAT GTT 2148 Gly Gly Ile Asp Leu Thr Phe Tyr Ser Gly Pro Ala Pro Ala Asp Val ACC AGG CAA TAT CTT ACC AGC ACT GTG GGA TTA CCG GCC ATG CAG CAA 2196 Thr Arg Gln Tyr Leu Thr Ser Thr Val Gly Leu Pro Ala Met Gln Gln TAC AAC ACT CTT GGA TTC CAC CAA TGT CGT TGG GGC TAC AAC AAC TGG 2244 Tyr Asn Thr Leu Gly Phe His Gln Cys Arg Trp Gly Tyr Asn Asn Trp TCG GAT CTG GCG GAC GTT GTT GCG AAC TTT GAG AAG TTT GAG ATC CCG 2292 Ser Asp Leu Ala Asp Val Val Ala Asn Phe Glu Lys Phe Glu Ile Pro TTG GAA TAT ATC TG G TGCGTATTGT ACTGGTTTAT GGTATCTCAA AACAGTCTAA 2347 Leu Glu Tyr Ile Trp CAGGCACTT AG G ACC GAT ATT GAC TAC ATG CAC GGA TAT CGC AAC TTT 2395 Thr Asp Ile Asp Tyr Met His Gly Tyr Arg Asn Phe GAC AAC GAT CAA CAT CGC TTT TCC TAC AGT GAG GGC GAT GAA TTT CTC 2443 Asp Asn Asp Gln His Arg Phe Ser Tyr Ser Glu Gly Asp Glu Phe Leu AGC AAG CTA CAT GAG AGT GGA CGC TAC TAT GTA CCC ATT GTT GAT GCG 2491 Ser Lys Leu His Glu Ser Gly Arg Tyr Tyr Val Pro Ile Val Asp Ala GC G CTC TAC ATT CCT AAT CCC GAA AAT GCC TCT GAT GC G TAAGTGTCTA 2540 Ala Leu Tyr Ile Pro Asn Pro Glu Asn Ala Ser Asp Ala GTGACAAATT ATATTACTGC CTGTATGCTA ATTAGCGATA CAG A TAC GCT ACG TAT 2596 Tyr Ala ThrGA GCT GGA AGA GAC GTC TTC CTC AAG AAT CCC GAT GGT AGC 2644 Asp Arg Gly Ala Ala Asp Asp Val Phe Leu Lys Asn Pro Asp Gly Ser CTC TAT ATT GGA GCC GTT TGG CCA GGA TAT ACA GTC TTC CCC GAT TGG 2692 Leu Tyr Ile Gly Ala Val Trp Pro Gly Tyr Thr Val Phe Pro Asp Trp CAT CAT CCC AAG GCA GTT GAC TTC TGG GCT AAC GAG CTT GTT ATC TGG 2740 His His Pro Lys Ala Val Asp Phe Trp Ala Asn Glu Leu Val Ile Trp TCG AAG AAA GTG GCG TTC GAT GGT GTG TGG TAC GAC ATG TCT GAA GTT 2788 Ser Lys Lys Val Ala Phe Asp Gly Val Trp Tyr Asp Met Ser Glu Val TCA TCC TTC TGT GTC GGG AGC TGT GGC ACA GGT AAC CTG ACT CTG AAC 2836 Ser Ser Phe Cys Val Gly Ser Cys Gly Thr Gly Asn Leu Thr Leu Asn CCG GCA CAC CCA TCG TTT CTT CTC CCC GGT GAG CCT GGT GAT ATC ATA 2884 Pro Ala His Pro Ser Phe Leu Leu Pro Gly Glu Pro Gly Asp Ile Ile TAT GAT TAC CCA GAG GCT TTC AAT ATC ACC AAC GCT ACA GAG GCG GCG 2932 Tyr Asp Tyr Pro Glu Ala Phe Asn Ile Thr Asn Ala Thr Glu Ala Ala TCA GCT TCG GCG GGA GCT TCC AGT CAG GCT GCA GCA ACC GCG ACC ACC 2980 Ser Ala Ser Ala Gly Ala Ser Ser Gln Ala Ala Ala Thr Ala Thr Thr ACG TCG ACT TCG GTA TCA TAT CTG CGG ACA ACG CCC ACG CCT GGT GTC 3028 Thr Ser Thr Ser Val Ser Tyr Leu Arg Thr Thr Pro Thr Pro Gly Val CGC AAT GTT GAG CAC CCA CCC TAT GTG ATC AAC CAT GAC CAA GAA GGC 3076 Arg Asn Val Glu His Pro Pro Tyr Val Ile Asn His Asp Gln Glu Gly CAT GAT CTC AGT GTC CAT GCG GTG TCG CCG AAT GCA ACG CAT GTT GAT 3124 His Asp Leu Ser Val His Ala Val Ser Pro Asn Ala Thr His Val Asp GGT GTT GAG GAG TAT GAT GTG CAC GGT CTC TAC GGA CAT CAA GGA TTG 3172 Gly Val Glu Glu Tyr Asp Val His Gly Leu Tyr Gly His Gln Gly Leu AAC GCT ACC TAC CAA GGT CTG CTT GAG GTC TGG TCT CAT AAG CGG CGG 3220 Asn Ala Thr Tyr Gln Gly Leu Leu Glu Val Trp Ser His Lys Arg Arg CCA TTT ATT ATT GGC CGC TCA ACC TTC GCT GGC TCT GGC AAA TGG GCA 3 268 Pro Phe Ile Ile Gly Arg Ser Thr Phe Ala Gly Ser Gly Lys Trp Ala GGC CAC TGG GGC GGC GAC AAC TAT TCC AAA TGG TGG TCC ATG TAC TAC 3316 Gly His Trp Gly Gly Asp Asn Tyr Ser Lys Trp Trp Ser Met Tyr Tyr TCC ATC TCG CAA GCC CTC TCC TTC TCA CTT TTC GGC ATT CCG ATG TTT 3364 Ser Ile Ser Gln Ala Leu Ser Phe Ser Leu Phe Gly Ile Pro Met Phe GGT GCG GAC ACC TGT GGG TTT AAC GGA AAC TCC GAT GAG GAG CTC TGC 3412 Gly Ala Asp Thr Cys Gly Phe Asn Gly Asn Ser Asp Glu Glu Leu Cys AAC CGA TGG ATG CAA CTG TCC GCA TTC TTC CCA TTC TAC CGA AAC CAC 3460 Asn Arg Trp Met Gln Leu Ser Ala Phe Phe Pro Phe Tyr Arg Asn His AAT GAG CTC TCC ACA ATC CCA CAG GAG CCT TAT CGG TGG GCT TCT GTT 3508 Asn Glu Leu Ser Thr Ile Pro Gln Glu Pro Tyr Arg Trp Ala Ser Val ATT GAA GCA ACC AAG TCC GCC ATG AGA ATT CGG TAC GCC ATC CTA CCT 3556 Ile Glu Ala Thr Lys Ser Ala Met Arg Ile Arg Tyr Ala Ile Leu Pro TAC TTT TAT ACG TTG TTT GAC CTG GCC CAC ACC ACG GGC TCC ACT GTA 3604 Tyr Phe Tyr Thr Leu Phe Asp Leu Ala His Thr Thr Gly Ser Thr Val A TG CGC GCA CTT TCC TGG GAA TTC CCT AAT GAC CCA ACA TTG GCT GCG 3652 Met Arg Ala Leu Ser Trp Glu Phe Pro Asn Asp Pro Thr Leu Ala Ala GTT GAG ACT CAA TTC ATG GTT GGG CCG GCC ATC ATG GTG GTC CCG GTA 3700 Val Glu Thr Gln Phe Met Val Gly Pro Ala Ile Met Val Val Pro Val TTG GAG CCT CTG GTC AAT ACG GTC AAG GGC GTA TTC CCA GGA GTT GGA 3748 Leu Glu Pro Leu Val Asn Thr Val Lys Gly Val Phe Pro Gly Val Gly CAT GGC GAA GTG TGG TAC GAT TGG TAC ACC CAG GCT GCA GTT GAT GCG 3796 His Gly Glu Val Trp Tyr Asp Trp Tyr Thr Gln Ala Ala Val Asp Ala AAG CCC GGG GTC AAC ACG ACC ATT TCG GCA CCA TTG GGC CAC ATC CCA 3844 Lys Pro Gly Val Asn Thr Thr Ile Ser Ala Pro Leu Gly His Ile Pro GTT TAT GTA CGA GGT GGA AAC ATC TTG CCG ATG CAA GAG CCG GCA TTG 3892 Val Tyr Val Arg Gly Gly Asn Ile Leu Pro Met Gln Glu Pro Ala Leu ACC ACT CGT GAA GCC CGG CAA ACC CCG TGG GCT TTG CTA GCT GCA CTA 3940 Thr Thr Arg Glu Ala Arg Gln Thr Pro Trp Ala Leu Leu Ala Ala Leu GGA AGC AAT GGA ACC GCG TCG GGG CAG CTC TAT CTC GAT GAT GGA GAG 3988 G ly Ser Asn Gly Thr Ala Ser Gly Gln Leu Tyr Leu Asp Asp Gly Glu AGC ATC TAC CCC AAT GCC ACC CTC CAT GTG GAC TTC ACG GCA TCG CGG 4036 Ser Ile Tyr Pro Asn Ala Thr Leu His Val Asp Phe Thr Ala Ser Arg TCA AGC CTG CGC TCG TCG GCT CAA GGA AGA TGG AAA GAG AGG AAC CCG 4084 Ser Ser Leu Arg Ser Ser Ala Gln Gly Arg Trp Lys Glu Arg Asn Pro CTT GCT AAT GTG ACG GTG CTC GGA GTG AAC AAG GAG CCC TCT GCG GTG 4132 Leu Ala Asn Val Thr Val Leu Gly Val Asn Lys Glu Pro Ser Ala Val ACC CTG AAT GGA CAG GCC GTA TTT CCC GGG TCT GTC ACG TAC AAT TCT 4180 Thr Leu Asn Gly Gln Ala Val Phe Pro Gly Ser Val Thr Tyr Asn Ser ACG TCC CAG GTT CTC TTT GTT GGG GGG CTG CAA AAC TTG ACG AAG GGC 4228 Thr Ser Gln Val Leu Phe Val Gly Gly Leu Gln Asn Leu Thr Lys Gly GGC GCA TGG GCG GAA AAC TGG GTA TTG GAA TGG TAGTGTCAGC CACAAGCCAG 4281 Aly Glu Ala Tla Asn Trp Val Leu Glu Trp * GTGTGCGCGTACAGCATGC 4300

【0050】配列番号:2 配列の長さ:19 配列の型:アミノ酸 配列 Phe Glu Ile Pro Leu Glu Tyr Ile Trp Thr Asp Ile Asp Tyr Met 15 A B His Gly Tyr Arg 19SEQ ID NO: 2 Sequence length: 19 Sequence type: Amino acid sequence Phe Glu Ile Pro Leu Glu Tyr Ile Trp Thr Asp Ile Asp Tyr Met 15 A B His Gly Tyr Arg 19

【0051】配列番号:3 配列の長さ:20 配列の型:アミノ酸 配列 Leu X Glu Ser Gly Arg Tyr Tyr Val Pro Ile Val Asp Ala Ala 15 Leu Tyr Ile Pro Asn 20 (Xは決定できなかったアミノ酸を示す。)SEQ ID NO: 3 Sequence length: 20 Sequence type: Amino acid sequence Leu X Glu Ser Gly Arg Tyr Tyr Val Pro Ile Val Asp Ala Ala 15 Leu Tyr Ile Pro Asn 20 (X cannot be determined) Show.)

【図面の簡単な説明】[Brief description of drawings]

【図1】プラスミドpGTI43を示すものである。な
お、図中のSpはSphIを、BはBamHIを、Pv
はPvuIIを、SBはSnaBIを、EはEcoRI
をそれぞれ示すものであり、黒塗り部分は、GTase
構造遺伝子を示すものである。
FIG. 1 shows the plasmid pGTI43. In the figure, Sp is SphI, B is BamHI, Pv
Is PvuII, SB is SnaBI, E is EcoRI
, And the black-painted part indicates GTase.
It shows a structural gene.

【図2】プラスミドpGTI55を示すものである。な
お、図中のSpはSphIを、BはBamHIを、Pv
はPvuIIを、SBはSnaBIを、EはEcoRI
を、ScはSacIをそれぞれ示すものである。
FIG. 2 shows the plasmid pGTI55. In the figure, Sp is SphI, B is BamHI, Pv
Is PvuII, SB is SnaBI, E is EcoRI
, Sc represents SacI, respectively.

【図3】形質転換体のGTase生産の経時変化を示す
ものである。図中白丸は、TR43−21を、黒丸は、
TR55−22を、四角は、TR19−1をそれぞれ示
す。
FIG. 3 shows the time course of GTase production of transformants. In the figure, the white circles are TR43-21 and the black circles are
TR55-22 and TR19-1 are shown in a square.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 15/54 C12R 1:685) (72)発明者 西村 郁子 東京都文京区西片2−18−15 メゾン・ ド・イストワール 302号室─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI technical display location (C12N 15/54 C12R 1: 685) (72) Inventor Ikuko Nishimura 2-18 Nishikata, Bunkyo-ku, Tokyo −15 Maison de Istoire Room 302

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】グルコシルトランスフェラーゼ遺伝子を含
有するDNAを組み込んだ組換え体DNAを導入したア
スペルギルス・ニガーを栄養培地で培養し、培養物中に
グルコシルトランスフェラーゼを生産せしめた後、該培
養物よりグルコシルトランスフェラーゼを採取すること
を特徴とするグルコシルトランスフェラーゼの製造法。
1. An Aspergillus niger into which a recombinant DNA incorporating a DNA containing a glucosyltransferase gene has been introduced is cultured in a nutrient medium to produce glucosyltransferase in the culture, and then the glucosyltransferase is produced from the culture. A method for producing glucosyltransferase, which comprises:
JP10176092A 1992-03-27 1992-03-27 Production of glucosyltransferase using glucosyltransferase gene Pending JPH05268951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10176092A JPH05268951A (en) 1992-03-27 1992-03-27 Production of glucosyltransferase using glucosyltransferase gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10176092A JPH05268951A (en) 1992-03-27 1992-03-27 Production of glucosyltransferase using glucosyltransferase gene

Publications (1)

Publication Number Publication Date
JPH05268951A true JPH05268951A (en) 1993-10-19

Family

ID=14309195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10176092A Pending JPH05268951A (en) 1992-03-27 1992-03-27 Production of glucosyltransferase using glucosyltransferase gene

Country Status (1)

Country Link
JP (1) JPH05268951A (en)

Similar Documents

Publication Publication Date Title
US5338676A (en) Cephalosporin acetylhydrolase gene and protein encoded by said gene
AU718990B2 (en) Lysophospholipase produced from Aspergillus by recombinant methods
JPH08507695A (en) EG III Cellulase Purification and Molecular Cloning
US6337201B1 (en) β-fructofuranosidase and its gene, method of isolating β-fructofuranosidase gene, system for producing β-fructofuranosidase, and β-fructofuranosidase variant
HU225673B1 (en) Production of enzymatically active recombinant carboxypeptidase b
JP3036775B2 (en) Method for producing r-glutamyl transpeptidase
AU655312B2 (en) Isolation and characterization of a novel protease from streptomyces lividans
JP3087575B2 (en) Heptaprenyl diphosphate synthase and DNA encoding the same
JPH05199882A (en) Production of bilirubin oxidase
AU636500B2 (en) Cloning and overexpression of glucose-6-phosphate dehydrogenase from leuconostoc dextranicus
JP2007312790A (en) Alpha-1,4-glucan lyase from a fungus, its purification, gene cloning, and expression in microorganisms
JPH05268951A (en) Production of glucosyltransferase using glucosyltransferase gene
JPH05268953A (en) Production of glucoamylase with low glucosyltransferase activity
EP0489201B1 (en) Method for the isolation and expression of a gene which codes for streptokinase, nucleotide sequence obtained, recombinant DNA and transformed microorganisms
JP3044325B2 (en) Glucosyltransferase gene and method for producing glucosyltransferase using the same
JP4021123B2 (en) New production method of raffinose
US20040091998A1 (en) Method for microbial production of difructose anhydride III , micro-organism used therefor and enzyme with inulase II activity and dna sequences coding therefor
JP2674796B2 (en) Gene encoding elastase
JP2002085078A (en) Alkali cellulase gene
US6518047B1 (en) Enzyme or cell preparation with inulinase activity
JPH0824573B2 (en) Chitinase, chitinase gene and method for producing chitinase
JP3113947B2 (en) Bile acid sulfate sulfatase gene, novel recombinant DNA and method for producing bile acid sulfate sulfatase
JPH06303984A (en) Recombinant dna, yeast transformed therewith and production of aqualysin i using the same
JP2001321178A (en) HEAT-RESISTANT alpha-GALACTOSIDASE
JPH05276943A (en) Mboi restriction and modification system enzyme gene and its production