JPH05268781A - Position detecting method for electrostatic motor - Google Patents

Position detecting method for electrostatic motor

Info

Publication number
JPH05268781A
JPH05268781A JP4091689A JP9168992A JPH05268781A JP H05268781 A JPH05268781 A JP H05268781A JP 4091689 A JP4091689 A JP 4091689A JP 9168992 A JP9168992 A JP 9168992A JP H05268781 A JPH05268781 A JP H05268781A
Authority
JP
Japan
Prior art keywords
mover
electrode
stator
voltage
electrostatic motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4091689A
Other languages
Japanese (ja)
Inventor
Toshihiro Matsuo
智弘 松尾
Kazunari Matsuzaki
一成 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP4091689A priority Critical patent/JPH05268781A/en
Publication of JPH05268781A publication Critical patent/JPH05268781A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a position detecting method for electrostatic motor having simple constitution for facilitating downsizing wherein a stator electrode is provided with two functions as a driving electrode and a position detecting sensor and no independent position detector is required. CONSTITUTION:In order to detect the position of the mover 2 in an electrostatic motor, a plurality of stator electrodes 11 are arranged at a predetermined pitch in the moving direction on the surface of a stator 1 and a plurality of mover electrodes 21 are arranged at a predetermined pitch on the surface of a mover 2 while opposing through a micro gap to the stator electrode 11. A rectangular driving voltage and a high frequency exciting voltage are applied, while being superposed, onto the stator electrode 11 and an output voltage corresponding to the variation of capacitance between the stator electrode 11 and the mover electrode 21 due to movement of the mover 2 is detected and employed in the determination of the moving amount of the mover.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静電力を用いて可動子
を移動させる静電モータの位置検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the position of an electrostatic motor that moves a mover by using electrostatic force.

【0002】[0002]

【従来の技術】従来、強誘電体からなる短冊状の可動子
電極と低誘電率の絶縁体とを交互に等間隔のピッチで移
動方向に配設し、かつ移動可能に支持した可動子と、微
小空隙を介して可動子電極と対向し、所定のピッチで固
定子電極を配設した固定子と、固定子に可動子の移動量
を検出する位置検出器を備え、多相の駆動電源を用いて
固定子電極に順次駆動電圧を印加し、可動子を駆動する
静電モータが開示されている(例えば、特開昭62−4
4079号公報)。ここで、移動方向の位置は外部から
変位センサ等により検出していたが、その際、可動子に
はセンサターゲット等の測定面が必要となる。
2. Description of the Related Art Conventionally, a strip-shaped mover electrode made of a ferroelectric material and an insulator having a low dielectric constant are alternately arranged at equal pitches in the moving direction and are movably supported. , A multi-phase drive power supply, which includes a stator facing the mover electrode through a minute gap and having stator electrodes arranged at a predetermined pitch, and a position detector for detecting the moving amount of the mover on the stator. There has been disclosed an electrostatic motor that drives a mover by sequentially applying a drive voltage to a stator electrode by using an electromagnetic wave (for example, JP-A-62-4).
No. 4079). Here, the position in the moving direction is detected from the outside by a displacement sensor or the like, but at that time, the mover requires a measurement surface such as a sensor target.

【0003】[0003]

【発明が解決しようとする課題】ところが、外部から移
動量を検出する方法では、可動子にセンサターゲット等
の測定面が必要となり、静電モータの小型化に支障を来
すと共に、その取り付け精度を維持するために多くの手
間がかかるという欠点があった。本発明は、可動子の位
置検出器を別に設けることなく、構成が簡単で小型化を
容易にした静電モータを提供することを目的とするもの
である。
However, in the method of detecting the amount of movement from the outside, the mover needs to have a measuring surface such as a sensor target, which hinders downsizing of the electrostatic motor and its mounting accuracy. There was a drawback that it took a lot of time to maintain. SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrostatic motor having a simple structure and easily miniaturized without separately providing a position detector for a mover.

【0004】[0004]

【課題を解決するための手段】本発明は、表面上の移動
方向に複数個の固定子電極を所定のピッチで配置した固
定子と、前記固定子電極に微小空隙を介して対向するよ
うに複数個の可動子電極を表面上に所定ピッチで配置し
た可動子を備えた静電モータの前記可動子の位置を検出
する方法において、前記固定子電極と前記可動子電極と
の間に矩形波の駆動電圧と高周波励起電圧とを重畳して
印加し、前記固定子電極と前記可動子電極とによって形
成されるコンデンサの前記可動子の移動に伴うキャパシ
タンスの変化により生じた出力電圧から前記可動子の移
動量を検出するものである。
According to the present invention, a stator in which a plurality of stator electrodes are arranged at a predetermined pitch in a moving direction on a surface is opposed to the stator electrode with a minute gap therebetween. In a method of detecting the position of the mover of an electrostatic motor having a mover in which a plurality of mover electrodes are arranged at a predetermined pitch on the surface, a rectangular wave is formed between the stator electrode and the mover electrode. The driving voltage and the high-frequency excitation voltage are superimposed and applied, and the mover is generated from the output voltage generated by the change in the capacitance of the capacitor formed by the stator electrode and the mover electrode as the mover moves. Is to detect the movement amount of.

【0005】[0005]

【作用】可動子が任意の位置から移動した時に、固定子
電極と可動子電極との間の対向する面積が変化するが、
固定子電極と可動子電極とによりコンデンサを形成す
る。それで、静電モータの固定子電極に駆動電圧と高周
波励起電圧とを固定子電極に重畳して印加して、固定子
と可動子の両電極の互いに対向する面積の変化よるコン
デンサのキャパシタンスの変化をコンデンサの出力電圧
の変化として検出し、その出力電圧の変化量から可動子
の位置を検出する。したがって、センサターゲット等の
測定面を特別設けることなく、可動子の位置を検出でき
る。
When the mover moves from an arbitrary position, the facing area between the stator electrode and the mover electrode changes,
A capacitor is formed by the stator electrode and the mover electrode. Therefore, the driving voltage and the high-frequency excitation voltage are applied to the stator electrode of the electrostatic motor in a superimposed manner, and the capacitance of the capacitor changes due to the change in the area where the two electrodes of the stator and the mover face each other. Is detected as a change in the output voltage of the capacitor, and the position of the mover is detected from the amount of change in the output voltage. Therefore, the position of the mover can be detected without specially providing a measurement surface such as a sensor target.

【0006】[0006]

【実施例】本発明を図に示す実施例について説明する。
図1は本発明の実施例を示す側面図で、固定子1の表面
には移動方向に所定のピッチで配設した固定子電極11
を設け、この固定子電極11に微小空隙を介して対向す
るように可動子2を設け、固定子電極11に対向する可
動子2の表面には、等間隔で交互に強誘電体からなる可
動子電極21と低誘電体からなる絶縁体22を移動方向
に配列してある。各固定子電極11にはそれぞれ3相電
源の各相に接続してあり、各相に順次通電することによ
り、固定子電極11と可動子電極21に順次静電力を発
生させて可動子を移動させるようにしてある。各固定子
電極11に印加する電圧は、3相(R,S,T)の駆動
電圧V1 (t)に、位置検出を行うための高周波励起電
圧V2 sinωtを重畳して加えるようにしてある。各
固定子電極11と可動子電極21との間には対向する面
積に応じた静電容量のコンデンサが形成され、可動子2
に移動によって対向面積が変化するため、そのキャパシ
タンスCに変化が生じる。各相での対向面積によるキャ
パシタンスCの変化から出力電圧V3 を出力し、その出
力電圧V3 をバンドパスフィルタ4およびシュミットト
リガ回路5を用いて矩形波に変換し、パルス状の電圧と
して可動子2を駆動するようにしてある。一方、パルス
状の電圧出力をパルスカウンタ6によりパルス数をカウ
ントすることにより移動量Δxを検出する。ここで、キ
ャパシタンスCの変化と可動子2の移動量との関係を示
す原理について説明する。固定子電極11と可動子電極
21との間の印加電圧V0 は次の数式1で示される。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a side view showing an embodiment of the present invention, in which a stator electrode 11 is provided on the surface of a stator 1 at a predetermined pitch in the moving direction.
The movable element 2 is provided so as to face the stator electrode 11 via a minute gap, and the surface of the movable element 2 facing the stator electrode 11 is made of a ferroelectric substance alternately at equal intervals. A child electrode 21 and an insulator 22 made of a low dielectric material are arranged in the moving direction. Each stator electrode 11 is connected to each phase of a three-phase power source, and by sequentially energizing each phase, an electrostatic force is sequentially generated in the stator electrode 11 and the mover electrode 21 to move the mover. I am allowed to do it. The voltage applied to each stator electrode 11 is such that the high-frequency excitation voltage V 2 sin ωt for position detection is superimposed on the three-phase (R, S, T) drive voltage V 1 (t) and applied. is there. A capacitor having an electrostatic capacity corresponding to the opposing area is formed between each stator electrode 11 and the mover electrode 21.
Since the facing area changes due to the movement, the capacitance C changes. The output voltage V 3 is output from the change in the capacitance C due to the facing area in each phase, and the output voltage V 3 is converted into a rectangular wave by using the bandpass filter 4 and the Schmitt trigger circuit 5, and moved as a pulsed voltage. The child 2 is driven. On the other hand, the moving amount Δx is detected by counting the number of pulses of the pulsed voltage output by the pulse counter 6. Here, the principle showing the relationship between the change in the capacitance C and the movement amount of the mover 2 will be described. The applied voltage V 0 between the stator electrode 11 and the mover electrode 21 is expressed by the following mathematical formula 1.

【0007】[0007]

【数1】 [Equation 1]

【0008】その時の静電エネルギUはキャパシタンス
Cと印加電圧V0 より、次の数式2で与えられる。
The electrostatic energy U at that time is given by the following equation 2 from the capacitance C and the applied voltage V 0 .

【0009】[0009]

【数2】 [Equation 2]

【0010】固定子電極11と可動子電極21が一部重
なった時の静電推力Fは、エネルギ保存則から、次の数
式3で与えられる。
The electrostatic thrust F when the stator electrode 11 and the mover electrode 21 partially overlap each other is given by the following formula 3 from the law of conservation of energy.

【0011】[0011]

【数3】 [Equation 3]

【0012】ここで、電極長さをL、固定子電極11と
可動子電極21が一部重なった時に対向する電極幅を
x、固定子電極11と可動子電極21の間の微小空隙の
長さをd、微小空隙の誘電率をεとした時、キャパシタ
ンスC(x)は次の数式4によって求められる。
Here, the electrode length is L, the electrode width facing each other when the stator electrode 11 and the mover electrode 21 partially overlap with each other, x is the length of a minute gap between the stator electrode 11 and the mover electrode 21. Where d is the permittivity and ε is the permittivity of the minute voids, the capacitance C (x) is obtained by the following mathematical formula 4.

【0013】[0013]

【数4】 [Equation 4]

【0014】数式4を数式3に代入して静電推力Fを求
めると、次の数式5で表され、対向する電極幅xに関係
なく一定となる。
When the electrostatic thrust F is calculated by substituting the equation 4 into the equation 3, the electrostatic thrust F is expressed by the following equation 5 and is constant regardless of the opposing electrode width x.

【0015】[0015]

【数5】 [Equation 5]

【0016】更に、数式1を数式5に代入すると静電推
力Fは次の数式6によって表される。
Further, by substituting the equation 1 into the equation 5, the electrostatic thrust F is expressed by the following equation 6.

【0017】[0017]

【数6】 [Equation 6]

【0018】ここで、高周波励起電圧V2 は検出用であ
るため、駆動電圧V1 (t)に比べて十分小さく設定す
ることにより、可動子2は駆動電圧V1 (t)のみで駆
動されると考えてよい。可動子2の位置の検出は、可動
子2が任意の位置から移動量Δxだけ移動した時に、電
極間の対向する面積が変化することによるキャパシタン
スCの変化を利用する。すなわち、長ストロークでの位
置検出を行うためには、図1に示すように、電極間をコ
ンデンサ3と考え、3相全てに高周波励起電圧V2 si
nωtを印加し、各相での対向面積によるキャパシタン
スCの変化から出力電圧V3 を出力する。この場合、出
力電圧V3 は次の数式7によって示される。
[0018] Here, since the high frequency excitation voltage V 2 is used to detect, by setting sufficiently smaller than the drive voltage V 1 (t), the mover 2 is driven only by the driving voltage V 1 (t) You can think of it. The position of the mover 2 is detected by utilizing the change in the capacitance C due to the change in the area where the electrodes face each other when the mover 2 moves from an arbitrary position by the movement amount Δx. That is, in order to detect a position with a long stroke, as shown in FIG. 1, the electrodes 3 are considered to be capacitors 3 and the high frequency excitation voltage V 2 si is applied to all three phases.
By applying nωt, the output voltage V 3 is output from the change of the capacitance C due to the facing area in each phase. In this case, the output voltage V 3 is represented by the following Equation 7.

【0019】[0019]

【数7】 [Equation 7]

【0020】有理化を行い、絶対値を取ると、出力電圧
3 は次の数式8、数式9によって出力電圧V4 として
示される。
When rationalization is performed and the absolute value is taken, the output voltage V 3 is represented as the output voltage V 4 by the following formulas 8 and 9.

【0021】[0021]

【数8】 [Equation 8]

【0022】[0022]

【数9】 [Equation 9]

【0023】ここで、出力電圧V4 の変化により可動子
2の移動量を検出することはできるが、高周波成分のみ
を取り出して検出精度を高める。すなわち、駆動電圧V
1 (t)の応答周波数に比べて位置検出用の高周波励起
電圧V2 sinωtの周波数ωを十分大きくとり、バン
ドパスフィルタ4を通して高周波成分を取り出し、シュ
ミットトリガ回路5を用いて矩形波に変換し、パルス状
の電圧となって可動子2を駆動し、一方、パルス状の電
圧出力をパルスカウンタ6によりパルス数をカウントす
ることにより移動量Δxを検出する。適度なハイパスフ
ィルタやバンドパスフィルタを通すと、出力電圧V4
次の数式10で出力電圧V5 として与えられる。
Here, although the amount of movement of the mover 2 can be detected by the change of the output voltage V 4 , only the high frequency component is taken out to improve the detection accuracy. That is, the drive voltage V
The frequency ω of the high-frequency excitation voltage V 2 sinωt for position detection is made sufficiently large as compared with the response frequency of 1 (t), the high-frequency component is extracted through the bandpass filter 4, and converted into a rectangular wave using the Schmitt trigger circuit 5. Then, the mover 2 is driven with a pulsed voltage, while the pulsed voltage output is counted by the pulse counter 6 to detect the movement amount Δx. After passing through an appropriate high-pass filter or band-pass filter, the output voltage V 4 is given as the output voltage V 5 by the following formula 10.

【0024】[0024]

【数10】 [Equation 10]

【0025】数式4を数式10に代入すると、出力電圧
5 は次の数式11で出力電圧V6として表される。な
お、可動子2の移動中の印加電圧V1 ,V2 と出力電圧
4,V6 との関係は図2に示すとおりである。
Substituting equation 4 into equation 10, the output voltage V 5 is expressed as the output voltage V 6 in the following equation 11. The relationship between the applied voltages V 1 and V 2 and the output voltages V 4 and V 6 during the movement of the mover 2 is as shown in FIG.

【0026】[0026]

【数11】 [Equation 11]

【0027】ここで、対向した電極幅xは数式11から
求められる次の数式12によって表される。
Here, the opposed electrode width x is represented by the following formula 12 obtained from formula 11.

【0028】[0028]

【数12】 [Equation 12]

【0029】そこで、対向した電極幅xの変化量が移動
量Δxとなるので、静止時の出力電圧をV61とし、微小
移動した時の出力電圧をV62とする時、移動量Δxは次
の数式13で与えられる。
Therefore, since the amount of change in the electrode width x facing each other becomes the movement amount Δx, when the output voltage at rest is V 61 and the output voltage at the time of slight movement is V 62 , the movement amount Δx is Equation 13 is given.

【0030】[0030]

【数13】 [Equation 13]

【0031】例えば、3相の静電モータとし、数式11
において、基準抵抗R=22MΩ,励起周波数ω=10
KHz,電極長さL=10mm,電極幅w=10μm,
電極間ピッチ=20μm,高周波励起電圧V2 =10V
とする時の3相の各出力電圧は図3に示すようになり、
可動子2が1ピッチ分移動した時の出力電圧の変化を示
している。ここで、可動子2が時間ta で図3に示した
移動距離が0μm、時間tb で移動距離が5μm,時間
c で移動距離が10μmでそれぞれ停止した時のR相
の出力電圧V66をそれぞれV6a,V6b,V6cとすると、
各出力電圧の大きさと、R相の可動子電極21および固
定子電極11との位置関係は図4(a),(b),
(c)に示すようになる。したがって、時間ta から時
間tb までに移動した移動距離は、V6b−V6aに比例し
た値として求められ、図1に示した構成は、その値をパ
ルス数で求めるようにしたものである。長ストロークの
移動では1ピッチ間の検出電圧を繰り返すので、前記の
方法で各相の出力電圧の大きさをパルスに変換して、そ
のパルス数を数えることにより、長ストロークでの移動
距離を検出することができる。また、3相間で立ち上が
る順番を検出することにより移動方向も確認できる。す
なわち、3相のR相、S相、T相の順序で検出するか、
T相、S相、R相の順序で検出するかにより、その立ち
上がる順番により可動子2の移動方向を検出することが
できる。図3は可動子2が移動する時の移動量に対する
R相、S相、T相の出力電圧を示したグラフで、実線の
場合は、移動方向に対してR相、S相、T相の順序で立
ち上がっていることから右方向に移動することが確認で
き、破線の場合はT相、S相、R相の順序で立ち上がっ
ていることから左方向に移動することが確認できる。な
お、以上は直線運動する静電モータについて述べたが、
本発明は、固定子および可動子を円板状または円筒状に
形成することで、回転運動する静電モータにも適用でき
る。
For example, assuming that a three-phase electrostatic motor is used,
, Reference resistance R = 22 MΩ, excitation frequency ω = 10
KHz, electrode length L = 10 mm, electrode width w = 10 μm,
Electrode pitch = 20 μm, high frequency excitation voltage V 2 = 10 V
The respective output voltages of the three phases are as shown in Fig. 3,
The change in the output voltage when the mover 2 moves by one pitch is shown. Here, the moving distance of the movable element 2 is shown in FIG. 3 at time t a is 0 .mu.m, time t b in the moving distance is 5 [mu] m, the output voltage V of the R-phase when the movement distance is stopped respectively 10μm at time t c If 66 is V 6a , V 6b and V 6c respectively,
The magnitudes of the output voltages and the positional relationship between the R-phase mover electrode 21 and the stator electrode 11 are shown in FIGS.
As shown in (c). Therefore, the movement distance traveled from time t a to time t b is obtained as a value proportional to V 6b -V 6a, the configuration shown in FIG. 1 is obtained by the seek the value in the number of pulses is there. Since the detection voltage for one pitch is repeated during a long stroke movement, the movement distance in a long stroke is detected by converting the magnitude of the output voltage of each phase into a pulse by the above method and counting the number of pulses. can do. In addition, the moving direction can be confirmed by detecting the rising order between the three phases. That is, the three phases R, S, T are detected in this order,
The moving direction of the mover 2 can be detected by the rising order depending on whether the T phase, the S phase, and the R phase are detected in this order. FIG. 3 is a graph showing the output voltage of the R phase, S phase, and T phase with respect to the moving amount when the mover 2 moves. In the case of the solid line, the R phase, S phase, and T phase of the moving direction are shown. It can be confirmed that it moves to the right because it rises in order, and in the case of the broken line, it can be confirmed that it moves to the left because it rises in the order of T phase, S phase, and R phase. Although the electrostatic motor that moves linearly has been described above,
The present invention can also be applied to an electrostatic motor that rotates by forming the stator and the mover in a disk shape or a cylindrical shape.

【0032】[0032]

【発明の効果】以上述べたように、本発明によれば、静
電モータの固定子電極に駆動電圧と高周波励起電圧とを
重畳して印加することにより、可動子の位置を検出する
ことができるので、固定子電極に駆動電極と位置検出用
のセンサとの二つの機能を持たせることができ、位置検
出器を別に設ける必要がなく、かつ構成が簡単で小型化
を容易にする効果がある。
As described above, according to the present invention, the position of the mover can be detected by applying the drive voltage and the high frequency excitation voltage in a superimposed manner to the stator electrode of the electrostatic motor. Therefore, the stator electrode can have two functions of a drive electrode and a position detection sensor, and it is not necessary to separately provide a position detector, and the structure is simple and the effect of facilitating downsizing can be achieved. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す側断面図である。FIG. 1 is a side sectional view showing an embodiment of the present invention.

【図2】本発明の出力波形を示すグラフである。FIG. 2 is a graph showing an output waveform of the present invention.

【図3】各相の出力電圧と移動量との関係を示す説明図
である。
FIG. 3 is an explanatory diagram showing a relationship between an output voltage of each phase and a movement amount.

【図4】R相の移動した位置における出力電圧と、可動
子と固定子の相対位置関係を示す説明図である。
FIG. 4 is an explanatory diagram showing an output voltage at a moved position of an R phase and a relative positional relationship between a mover and a stator.

【符号の説明】[Explanation of symbols]

1 固定子 11 固定子電極 2 可動子 21 可動子電極 3 コンデンサ 4 バンドパスフィ
ルタ 5 シュミットトリガ回路 6 パルスカウンタ
1 Stator 11 Stator Electrode 2 Mover 21 Mover Electrode 3 Capacitor 4 Band Pass Filter 5 Schmidt Trigger Circuit 6 Pulse Counter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面上の移動方向に複数個の固定子電極
を所定のピッチで配置した固定子と、前記固定子電極に
微小空隙を介して対向するように複数個の可動子電極を
表面上に所定ピッチで配置した可動子を備えた静電モー
タの前記可動子の位置を検出する方法において、前記固
定子電極と前記可動子電極との間に矩形波の駆動電圧と
高周波励起電圧とを重畳して印加し、前記固定子電極と
前記可動子電極とによって形成されるコンデンサの前記
可動子の移動に伴うキャパシタンスの変化により生じた
出力電圧から前記可動子の移動量を検出することを特徴
とする静電モータの位置検出方法。
1. A stator having a plurality of stator electrodes arranged at a predetermined pitch in the moving direction on the surface, and a plurality of mover electrodes on the surface so as to face the stator electrodes with a minute gap therebetween. In the method of detecting the position of the mover of the electrostatic motor having the mover arranged at a predetermined pitch above, a rectangular-wave drive voltage and a high-frequency excitation voltage are provided between the stator electrode and the mover electrode. Is superimposed and applied, and the moving amount of the mover is detected from the output voltage generated by the change in the capacitance of the capacitor formed by the stator electrode and the mover electrode that accompanies the move of the mover. Characteristic electrostatic motor position detection method.
JP4091689A 1992-03-16 1992-03-16 Position detecting method for electrostatic motor Pending JPH05268781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4091689A JPH05268781A (en) 1992-03-16 1992-03-16 Position detecting method for electrostatic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4091689A JPH05268781A (en) 1992-03-16 1992-03-16 Position detecting method for electrostatic motor

Publications (1)

Publication Number Publication Date
JPH05268781A true JPH05268781A (en) 1993-10-15

Family

ID=14033478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4091689A Pending JPH05268781A (en) 1992-03-16 1992-03-16 Position detecting method for electrostatic motor

Country Status (1)

Country Link
JP (1) JPH05268781A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333720A (en) * 2004-05-19 2005-12-02 Olympus Corp Electrostatic actuator
JP2009053183A (en) * 2007-07-31 2009-03-12 Kyocera Corp Device for detecting location variation of stage and transporting device equipped with the same
CN102118118A (en) * 2011-03-18 2011-07-06 广东嘉和微特电机股份有限公司 Linear type ultrasonic micromotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333720A (en) * 2004-05-19 2005-12-02 Olympus Corp Electrostatic actuator
JP2009053183A (en) * 2007-07-31 2009-03-12 Kyocera Corp Device for detecting location variation of stage and transporting device equipped with the same
CN102118118A (en) * 2011-03-18 2011-07-06 广东嘉和微特电机股份有限公司 Linear type ultrasonic micromotor

Similar Documents

Publication Publication Date Title
JP2851673B2 (en) Pulse-driven accelerometer
JPS6093312A (en) Capacity type measuring machine of displacement
JPS59133408A (en) Sensor for high-revolution position
JP5679781B2 (en) Control device for vibration actuator
US6635977B2 (en) Control apparatus for vibration wave actuator
US20170003314A1 (en) Z-axis physical proximity switch
Horenstein et al. Differential capacitive position sensor for planar MEMS structures with vertical motion
GB2118720A (en) Capacitive position transducers
JPH05268781A (en) Position detecting method for electrostatic motor
US10908361B2 (en) Capacitive position sensing for capacitive drive MEMS devices
Nishijima et al. A built-in displacement sensor for an electrostatic film motor
KR102353549B1 (en) Positioning of the motor by means of capacitive measurement
Zhang et al. Toward self-sensing of an electrostatic film motor using driving currents
JPH0522960A (en) Guide support mechanism of electrostatic levitated linear motor
JPH0739927B2 (en) Position detector
JP3094333B2 (en) Traveling wave motor having temperature measuring device and temperature measuring method thereof
RU2659179C1 (en) Unit for determining friction coefficient
Ling et al. Design, fabrication and characterization of a single-chip three-dimensional electric field microsensor
US7028558B2 (en) Method for measuring a medium that flows through a measuring tube
JPH06230158A (en) Ultrasonic meter
Ho et al. A Driving Distance Extended Piezoelectric Actuator Using Multidriving Pads and Capacitive Patches
US10837776B2 (en) Method for operating a rotation rate sensor using different frequencies
SU1218410A1 (en) Device for counting moving objects
Bryce et al. Overcoming hysteresis in multilayered piezoceramic actuators used in adaptive optics
CN116500349A (en) Piezoelectric capacitance type MEMS electric field sensor