JPH05267776A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPH05267776A JPH05267776A JP4064183A JP6418392A JPH05267776A JP H05267776 A JPH05267776 A JP H05267776A JP 4064183 A JP4064183 A JP 4064183A JP 6418392 A JP6418392 A JP 6418392A JP H05267776 A JPH05267776 A JP H05267776A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- face
- semiconductor laser
- laser device
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/16—Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
- H01S5/164—Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はAlGaAs系の端面出
射型の高出力半導体レーザ装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AlGaAs type edge emitting type high power semiconductor laser device.
【0002】[0002]
【従来の技術】光ディスク装置などの光源として、Al
GaAs系の半導体レーザ装置が幅広く用いられてきて
いる。半導体レーザ装置を書き込み可能な追記型光ディ
スク装置の光源として用いる場合には、50mW以上の高
い光出力状態においても高い信頼性を有することが要求
される。またYAG(Yttrium Aluminum Garnet)レー
ザ装置の励起用光源や、高精細プリンター用の光源とし
て使用されるような場合は、100mW以上の高出力が要
求される。2. Description of the Related Art As a light source for an optical disk device
GaAs semiconductor laser devices have been widely used. When the semiconductor laser device is used as a light source for a writable write-once optical disc device, it is required to have high reliability even in a high light output state of 50 mW or more. When used as a light source for excitation of a YAG (Yttrium Aluminum Garnet) laser device or a light source for a high-definition printer, a high output of 100 mW or more is required.
【0003】半導体レーザ装置の高出力化を図る実用的
な方法として、光出射端面に反射率が10%になるよう
な、例えばAl203などからなる低反射率保護膜を、光
出射側と逆側の端面には反射率が90%となるような、
例えばAl2O3層とSi層との多層膜からなる高反射率
保護膜を形成して外部量子効率を上げる方法がある。本
方法で横モード制御された780nm帯の半導体レーザ装
置で100mW以上の高出力特性が確認されている。As a practical method for increasing the output of a semiconductor laser device, a low reflectance protective film made of, for example, Al 2 O 3 having a reflectance of 10% is provided on the light emitting side. The reflectance on the opposite end surface is 90%,
For example, there is a method of increasing the external quantum efficiency by forming a high reflectance protective film composed of a multilayer film of an Al 2 O 3 layer and a Si layer. A high output characteristic of 100 mW or more has been confirmed in a 780 nm band semiconductor laser device in which the transverse mode is controlled by this method.
【0004】[0004]
【発明が解決しようとする課題】ところが、単に低反射
率保護膜及び高反射率保護膜を端面に形成しただけの半
導体レーザ装置では、長期にわたっての高出力特性の信
頼性に問題があった。その主たる原因は端面劣化であ
る。これは光出射端面では光密度が高いので、局部的に
発熱を生じることに起因している。この発熱は光出射端
面に存在する表面準位に、キャリアとしての電子あるい
は正孔が捕捉され、非発光過程を経てエネルギーが解放
されるときに生じる。特に高出力でレーザ発振させてい
る場合には、発熱量が大きくなって光出射端面の温度が
上昇し、ひいては結晶の融点にまで至り端面破壊(CO
D)が生じる。However, in the semiconductor laser device in which the low reflectance protective film and the high reflectance protective film are simply formed on the end face, there is a problem in reliability of high output characteristics for a long period of time. The main cause is deterioration of the end surface. This is because the light emitting end face has a high light density and thus locally generates heat. This heat generation occurs when electrons or holes as carriers are captured by the surface level existing on the light emitting end face, and energy is released through a non-light emitting process. In particular, when laser oscillation is performed at a high output, the amount of heat generated increases and the temperature of the light emitting end face rises, eventually reaching the melting point of the crystal, and the end face destruction (CO
D) occurs.
【0005】このような光出射端面の発熱に起因する端
面劣化を防止するために光出射端面にS(硫黄)を含む
膜を形成する方法が提案されている(たとえば、Extend
edAbstracts of the 21st Conference on Solid State
Devices and Materials,Tokyo,(1989) p337〜340 参
照)。この方法により、半導体レーザ素子の最大光出力
は通常の2倍に相当する200mW以上まで向上する。こ
れはS原子層あるいはS分子層が半導体レーザの光出射
端面に存在する未結合手を終端し、光出射端面を不活性
化するためである。言い換えれば、半導体レーザの光出
射特性の向上の妨げとなっていた上記の表面準位密度を
著しく低減させ得るからである。A method of forming a film containing S (sulfur) on the light emitting end face in order to prevent the end face deterioration due to the heat generation of the light emitting end face has been proposed (for example, Extend.
edAbstracts of the 21st Conference on Solid State
Devices and Materials, Tokyo, (1989) p337-340). By this method, the maximum optical output of the semiconductor laser device is improved to 200 mW or more, which is twice the normal maximum output. This is because the S atomic layer or the S molecular layer terminates dangling bonds existing on the light emitting end surface of the semiconductor laser and inactivates the light emitting end surface. In other words, it is possible to significantly reduce the surface state density, which has been an obstacle to improving the light emission characteristics of the semiconductor laser.
【0006】しかしながら、上記のSを含む膜を光出射
端面に形成する提案された方法によっても半導体レーザ
装置の長期にわたる信頼性には問題が残っていた。なぜ
ならば、光出射端面の未結合手とSとの結び付きは弱
く、長期にわたる高出力状態での駆動の結果、Sの代わ
りに表面準位の原因になるO(酸素)が光出射端面の未
結合手と結び付いて酸化膜が形成されてしまうからであ
る。However, even with the proposed method of forming the above S-containing film on the light emitting end face, there remains a problem in the long-term reliability of the semiconductor laser device. This is because the bond between the dangling bond on the light emitting end face and S is weak, and as a result of driving in a high output state for a long period of time, O (oxygen), which causes a surface state, is replaced by S on the light emitting end face. This is because an oxide film is formed in association with the bond.
【0007】ところで、GaAsを対象としたものであ
るが、その表面状態を改善すべく、GaAsの表面にG
aAsより格子定数の大きいInP層を数原子層形成す
る方法が知られている(Extended Abstractsof the 23r
d Conference on Solid State Devices and Materials,
Yokohama (1991) pp683〜685 参照)。これはGaAs
の表面の表面準位形成の原因となる酸化膜を取り除き、
GaAs表面に一種の窓層を形成するものである。この
InP層が窓層となるのは、InP層がレーザ素子のG
aAsから圧縮応力を受けることで起こる歪みの影響で
InP層のバンドギャップが著しく増大するからであ
る。By the way, although the target is GaAs, in order to improve the surface condition of the GaAs,
There is known a method of forming an InP layer having a larger lattice constant than aAs by several atomic layers (Extended Abstracts of the 23r
d Conference on Solid State Devices and Materials,
Yokohama (1991) pp683-685). This is GaAs
The oxide film that causes the formation of surface states on the surface of
A kind of window layer is formed on the GaAs surface. This InP layer serves as the window layer because the InP layer is the G of the laser element.
This is because the band gap of the InP layer remarkably increases due to the effect of strain caused by receiving compressive stress from aAs.
【0008】しかしながら、光素子の端面、中でもAl
GaAs系半導体レーザ装置の端面については、上述の
ような表面への超薄膜形成による改良がこれまで試みら
れていなかった。これはAlが非常に活性な物質であ
り、しかもその酸化膜が安定であって、上記のような方
法では表面準位の少ない良好なAlGaAs表面を形成
することができないと考えられていたからである。However, the end faces of the optical element, especially Al
The end face of the GaAs semiconductor laser device has not been attempted to be improved by forming an ultrathin film on the surface as described above. This is because Al was a very active substance, and its oxide film was stable, and it was thought that a good AlGaAs surface having a small number of surface states could not be formed by the above method.
【0009】本発明の目的は、光出射端面における酸化
物に起因する表面準位を抑制することができ、高出力状
態においても端面破壊の生じにくいAlGaAs系半導
体レーザ装置を提供することにある。An object of the present invention is to provide an AlGaAs semiconductor laser device capable of suppressing the surface level caused by an oxide at the light emitting end face and hardly causing end face breakdown even in a high output state.
【0010】[0010]
【課題を解決するための手段】本発明の半導体レーザ装
置は、複数層を積層してなるレーザ素子の1つの層がA
lGaAs活性層からなる半導体レーザ装置において、
該レーザ素子の光出射端面にInP又はInGaPを含
む材料からなる層が形成されており、そのことにより上
記目的が達成される。In the semiconductor laser device of the present invention, one layer of a laser element formed by laminating a plurality of layers is A
In a semiconductor laser device including an lGaAs active layer,
A layer made of a material containing InP or InGaP is formed on the light emitting end face of the laser element, and the above object is achieved by this.
【0011】前記光出射端面と該端面上に形成した層と
の間にAl混晶比が前記AlGaAs活性層よりも高い
AlGaAsからなる窓層を形成してもよい。A window layer made of AlGaAs having a higher Al mixed crystal ratio than the AlGaAs active layer may be formed between the light emitting end face and a layer formed on the end face.
【0012】前記光出射端面上に形成した層をInGa
Pを含む材料で形成し、そのInGaPにおけるInの
構成比率をIII族元素であるInとGaとの全体に対し
て49%よりも大きくしてもよい。The layer formed on the light emitting end face is formed of InGa.
It may be formed of a material containing P, and the composition ratio of In in InGaP may be greater than 49% with respect to the total of Group III elements In and Ga.
【0013】前記光出射端面上に形成した層の厚さは、
該層に転位が生じる臨界層厚よりも薄くしてもよい。The thickness of the layer formed on the light emitting end surface is
It may be thinner than the critical layer thickness at which dislocations occur in the layer.
【0014】[0014]
【作用】本発明の半導体レーザ装置は、その光出射端面
上にInP又はInGaPを含む材料からなる層が形成
されている。この光出射端面上に形成した層の表面にも
わずかに表面準位が形成されるものの、光出射端面上に
形成した層の格子定数がAlGaAs活性層より大きい
ため、圧縮応力を受けると、InP又はInGaP中間
層のバンドギャップが著しく大きくなる。よって、その
表面準位に捕捉されたキャリアは、AlGaAs活性層
の伝導帯あるいは価電子帯へトンネリング(共鳴)効果
で再注入されて発光に使われるので、表面での発熱には
つながらない。つまり、光出射端面上に形成した層は一
種の窓層として作用する。In the semiconductor laser device of the present invention, a layer made of a material containing InP or InGaP is formed on the light emitting end face thereof. Although a surface level is slightly formed on the surface of the layer formed on the light emitting end face, the lattice constant of the layer formed on the light emitting end face is larger than that of the AlGaAs active layer. Alternatively, the band gap of the InGaP intermediate layer becomes extremely large. Therefore, the carriers trapped in the surface level are re-injected into the conduction band or valence band of the AlGaAs active layer by the tunneling (resonance) effect and used for light emission, and thus do not lead to heat generation on the surface. That is, the layer formed on the light emitting end face acts as a kind of window layer.
【0015】前記光出射端面と前記光出射端面上に形成
した層との間に、Al混晶比が前記AlGaAs活性層
よりも高いAlGaAsからなる窓層を形成した場合
は、より効果的である。It is more effective to form a window layer made of AlGaAs having a higher Al mixed crystal ratio than the AlGaAs active layer between the light emitting end face and the layer formed on the light emitting end face. ..
【0016】前記光出射端面上に形成した層の格子定数
をAlGaAs活性層より大きくするためには、光出射
端面上に形成した層をInPを含む材料で形成する場合
は問題はないが、InGaPを含む材料で形成する場合
は、そのInGaPにおけるInの構成比率をIII族元
素であるInとGaとの全体に対して49%よりも大き
くすればよい。In order to make the lattice constant of the layer formed on the light emitting end face larger than that of the AlGaAs active layer, there is no problem if the layer formed on the light emitting end face is made of a material containing InP. When it is formed of a material containing In, the composition ratio of In in InGaP may be greater than 49% with respect to the total of Group III elements In and Ga.
【0017】また、前記光出射端面上に形成した層はA
lGaAs系に対して格子不整合系ではあるものの、転
位が生じる臨界層厚よりも薄く形成すると、結晶性に影
響を及ぼさないようにできる。The layer formed on the light emitting end face is A
Although it is a lattice-mismatched system with respect to the 1GaAs system, if it is formed thinner than the critical layer thickness at which dislocations occur, the crystallinity can be prevented from being affected.
【0018】[0018]
【実施例】以下に本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.
【0019】本発明を適用する母体としてのAlGaA
s系半導体レーザ素子の基本的な構造については、従来
から用いられているいかなる公知の端面出射型のもので
も良いが、ここではVSIS( V-channeled substrate
inner stripe )レーザ(たとえばApplied Physics Le
tters vol.40 (1982) 372 参照)を例に挙げて説明す
る。AlGaA as a base material to which the present invention is applied
The s-semiconductor laser device may be of any known end-face emission type that has been conventionally used, but here, VSIS (V-channeled substrate) is used.
inner stripe) laser (eg Applied Physics Le
tters vol.40 (1982) 372) as an example.
【0020】《第1実施例》第1実施例にかかる半導体
レーザ装置の端面近傍を示す斜視図を図1に示す。本発
明を適用する母体としてのVSISレーザは、p-Ga
As基板11上にn-GaAs電流狭窄層21、p-Al
0.45Ga0.55Asクラッド層12、p-Al0. 15Ga
0.85As活性層13、n-Al0.45Ga0.55Asクラッ
ド層14、n-GaAsキャップ層15をこの順に積層
したもので、その上下に更に電極31、32も形成され
ている。このうちnーGaAs電流狭窄層21は電流通
路、並びに光導波路を形成するため、V状の溝が形成さ
れている。本レーザ素子は780nm帯のものであり、2
回のLPE(Liquid Phase Epitaxy)成長で作製され
る。<< First Embodiment >> FIG. 1 is a perspective view showing the vicinity of an end face of a semiconductor laser device according to a first embodiment. The VSIS laser as a base material to which the present invention is applied is p-Ga.
N-GaAs current confinement layer 21, p-Al on As substrate 11
0.45 Ga 0.55 As clad layer 12, p-Al 0. 15 Ga
A 0.85 As active layer 13, an n-Al 0.45 Ga 0.55 As clad layer 14, and an n-GaAs cap layer 15 are laminated in this order, and electrodes 31 and 32 are further formed on the upper and lower sides thereof. Of these, the n-GaAs current confinement layer 21 has a V-shaped groove formed to form a current path and an optical waveguide. This laser device is for the 780 nm band, and
It is produced by a single LPE (Liquid Phase Epitaxy) growth.
【0021】かかるレーザ素子の光出射端面にInPか
らなる層51が厚み15オングストロームで形成され、
その上にAl2O3からなる低反射保護膜61が作成され
ている。以下層51を中間層という。光出射側と反対側
の端面上には高反射保護膜が形成されている。中間層5
1は半導体レーザ装置の光出射端面を劈開により形成し
た後、TMI(トリメチルインジウム)とPH3(フォ
スフィン)を用いてMOCVD(Metal Organic Chemic
al Vapor Deposition)法で形成した。また保護膜61
は電子ビーム蒸着法で作成した。A layer 51 of InP having a thickness of 15 angstroms is formed on the light emitting end face of the laser device.
A low reflection protective film 61 made of Al 2 O 3 is formed on it. Hereinafter, the layer 51 is referred to as an intermediate layer. A high reflection protection film is formed on the end face opposite to the light emitting side. Middle layer 5
1 is MOCVD (Metal Organic Chemic) using TMI (trimethylindium) and PH 3 (phosphine) after cleaving the light emitting end face of the semiconductor laser device.
al Vapor Deposition) method. In addition, the protective film 61
Was prepared by the electron beam evaporation method.
【0022】図2に上記半導体レーザ装置の電流対光出
力特性を曲線Aで示すと共に、比較のため、劈開後の端
面に直接保護膜を形成した従来と同様の構成を有する半
導体レーザ装置の特性を曲線Bで示した。この図より理
解されるように、従来例では約120mWの光出力におい
て端面破壊によりレーザ素子の劣化が生じているのに対
して、本実施例では最大約250mWの光出力が得られ、
しかもその時点で端面破壊が生じていない。FIG. 2 shows the current vs. light output characteristics of the semiconductor laser device by curve A, and for comparison, the characteristics of the semiconductor laser device having the same structure as the conventional one in which a protective film is directly formed on the end face after cleavage. Is shown by curve B. As can be seen from this figure, in the conventional example, the laser element is deteriorated due to the end face destruction at the optical output of about 120 mW, whereas in the present example, the maximum optical output of about 250 mW is obtained.
Moreover, no end face destruction occurred at that time.
【0023】上述のように本実施例が高い光出力を得ら
れた理由を解明すべく試験を行った。Al0.15Ga0.85
As単層をGaAs基板上に成長させただけの試料と、
同様の試料の表面にInP層を15オングストローム形
成した別の試料とを作製し、これらをフォトルミネッセ
ンス法で評価した結果、後者は前者より50倍大きな強
度が得られた。このことより、本実施例では酸化膜に起
因する表面準位の低減が図られたことが解る。A test was conducted in order to elucidate the reason why a high optical output was obtained in this example as described above. Al 0.15 Ga 0.85
A sample obtained by simply growing an As single layer on a GaAs substrate,
Another sample having an InP layer of 15 angstrom formed on the surface of the same sample was prepared and evaluated by the photoluminescence method. As a result, the latter was 50 times stronger than the former. From this, it is understood that the surface level caused by the oxide film was reduced in this example.
【0024】InP層が形成されたAl0.15Ga0.85A
s活性層における表面改善効果は、図3に示した端面近
傍のエネルギー状態図を用いて次のように説明できる。
図3(a)、(b)はそれぞれInP層を形成した場合
としない場合の状態図である。InP層を形成しない場
合、Al0.15Ga0.85AsはAlを含んでいるために表
面に多くの準位ができてしまい、図3(b)に示すよう
にその準位にAlGaAs活性層から溢れ捕捉されたキ
ャリアが非発光再結合し、発熱が生じてしまう。一方、
InP層を形成した場合、図3(a)に示すようにAl
0.15Ga0.85As活性層の表面はInP層との界面とな
り、Al0.15Ga0.85AsとInPの強固な結合ができ
ているため、表面準位は殆ど生じない。このとき、In
P層は圧縮応力を受けると、バンドギャップエネルギー
が著しく大きくなり、図示のような状態となる。この場
合、InP層の表面にわずかに表面準位が残るが、In
P層がAlを含まないので表面準位の密度はきわめて小
さく、この準位にキャリアが捕捉されても、InP層が
薄いこともあってキャリアはAl0.15Ga0.85As半導
体層内にトンネリング(共鳴)効果で再注入され、発光
過程に使われて発熱には寄与しない。したがって、一種
の窓効果が生じて出力特性が向上する。Al 0.15 Ga 0.85 A with InP layer formed
The surface improvement effect in the s active layer can be explained as follows using the energy state diagram near the end face shown in FIG.
FIGS. 3A and 3B are state diagrams with and without the InP layer formed. When the InP layer is not formed, Al 0.15 Ga 0.85 As contains Al, so many levels are formed on the surface, and as shown in FIG. 3B, the level overflows from the AlGaAs active layer and is trapped. The generated carriers are non-radiatively recombined to generate heat. on the other hand,
When the InP layer is formed, as shown in FIG.
The surface of the 0.15 Ga 0.85 As active layer serves as an interface with the InP layer, and Al 0.15 Ga 0.85 As and InP are firmly bonded to each other, so that the surface level hardly occurs. At this time, In
When the P layer is subjected to compressive stress, the band gap energy is significantly increased, and the state shown in the figure is obtained. In this case, a slight surface level remains on the surface of the InP layer.
Since the P layer does not contain Al, the density of the surface level is extremely small. Even if carriers are trapped in this level, the InP layer is thin and the carriers are tunneled (resonance) in the Al 0.15 Ga 0.85 As semiconductor layer. ) It is re-injected by the effect and is used for the light emission process and does not contribute to heat generation. Therefore, a kind of window effect occurs and the output characteristics are improved.
【0025】ところで、GaAsを活性層とする半導体
レーザ装置について同様の評価を行った結果、InP層
形成によるフォトルミネッセンス強度の改善は10倍程
度であり、AlGaAsを活性層とする本発明の半導体
レーザ装置の場合の方が表面状態の改善度が大きいこと
がわかった。従って、上記したようなAlGaAs半導
体層の表面状態の大きな改善効果は、従来考えられてい
るのとは逆にAlが存在することに起因するものと推測
される。As a result of the same evaluation of the semiconductor laser device using GaAs as the active layer, the improvement of the photoluminescence intensity due to the formation of the InP layer is about 10 times, and the semiconductor laser of the present invention using AlGaAs as the active layer. It was found that the improvement of the surface condition was greater in the case of the device. Therefore, it is presumed that the large effect of improving the surface state of the AlGaAs semiconductor layer as described above is caused by the presence of Al, which is contrary to what has been conventionally considered.
【0026】このように、AlGaAs活性層の表面準
位を低減する効果は、先述したように従来の手法である
S原子膜、あるいは分子膜で表面の未結合手を終端し不
活性化することでも実現できる。実際、S膜で表面を被
覆した780nm帯VSISレーザにおいても220mW程
度の光出力が観測されている(Extended Abstractsof t
he 21st Conference on Solid State Devices and Mate
rials, Tokyo,(1989) p337〜340 参照)。しかし、In
P層を用いた場合はAlGaAsとの結合が、SとAl
GaAsとの結合に比べてはるかに強いため、長期にわ
たって表面状態を良好に保つことが出来る。それを証明
するために、InP層を表面に形成した780nm帯VS
ISレーザと、S膜を形成した同じレーザを50℃、5
0mWの条件で500時間駆動させた後、最大光出力を測
定した。前者の半導体レーザ装置では長時間駆動前と同
様に250mWまで光出力がみられたが、後者の半導体レ
ーザ装置では130mWと普通の半導体レーザ装置程度し
か観測されなかった。すなわち、InP層を形成する本
発明の方がはるかに耐久性に優れていることが証明され
た。As described above, the effect of reducing the surface state of the AlGaAs active layer is to terminate and inactivate the dangling bonds on the surface with the S atomic film or the molecular film, which is the conventional method as described above. But it can be achieved. In fact, a light output of about 220 mW has been observed even in a 780 nm band VSIS laser whose surface is coated with an S film (Extended Abstracts of t
he 21st Conference on Solid State Devices and Mate
rials, Tokyo, (1989) p337-340). However, In
When the P layer is used, the coupling with AlGaAs is S and Al.
Since it is much stronger than the bond with GaAs, the surface condition can be kept good for a long time. To prove this, 780 nm band VS with InP layer formed on the surface
The IS laser and the same laser on which the S film is formed are heated at 50 ° C for 5
After driving for 500 hours under the condition of 0 mW, the maximum light output was measured. In the former semiconductor laser device, an optical output of up to 250 mW was observed as in the case before long-time driving, but in the latter semiconductor laser device, only 130 mW was observed, which is about the level of an ordinary semiconductor laser device. That is, it was proved that the present invention in which the InP layer was formed was far more durable.
【0027】《第2実施例》本発明の第2の実施例は、
第1の実施例を示す図1のInPからなる中間層51を
20オングストロームの厚さのIn0.9Ga0.1Pからな
る中間層としたものである。この中間層の場合もAlG
aAs系に比べて格子定数が大きく、レーザ素子のAl
GaAsからなる半導体層から圧縮応力を受けると、バ
ンドギャップエネルギーが増大する。本構造を有する半
導体レーザ装置においても、第1の実施例と同様の理由
により最大260mWの光出力が得られ、通常の2倍の効
果が確認された。<Second Embodiment> The second embodiment of the present invention is as follows.
The intermediate layer 51 made of InP in FIG. 1 showing the first embodiment is an intermediate layer made of In 0.9 Ga 0.1 P having a thickness of 20 Å. In the case of this intermediate layer also AlG
The lattice constant is larger than that of the aAs system, and Al of the laser element is
When a compressive stress is applied from the semiconductor layer made of GaAs, the band gap energy increases. Also in the semiconductor laser device having this structure, a maximum optical output of 260 mW was obtained for the same reason as in the first embodiment, and it was confirmed that the effect was double that of the usual case.
【0028】《第3実施例》本発明の第3の実施例を図
4に示す。本実施例の半導体レーザ装置は、母体として
のAlGaAs系VSISレーザを成長させた後、劈開
法又はエッチングで端面を形成し、その光出射端面にM
OCVD法で厚さ0.2μmのAl0.5Ga0 .5As窓層
52、厚さ10オングストロームのInPからなる中間
層51を連続して成長させ、更にその上にスパッタリン
グにより保護膜61を形成して作製した。<< Third Embodiment >> FIG. 4 shows a third embodiment of the present invention. In the semiconductor laser device of this embodiment, after growing an AlGaAs type VSIS laser as a base, an end face is formed by the cleavage method or etching, and M is formed on the light emitting end face.
OCVD method in a thickness 0.2μm of Al 0.5 Ga 0 .5 As window layer 52, an intermediate layer 51 made of a thickness of 10 Å InP successively grown further by sputtering to form a protective film 61 is formed thereon It was made.
【0029】本半導体レーザ装置と、端面にAl0.5G
a0.5As窓層52と保護膜61のみを形成して、中間
層51を形成しない半導体レーザ装置とを比較した場
合、後者の最大光出力が340mWであったのに比べて、
前者では最大500mWの光出力が得られ、やはり大幅な
出力特性の改善がみられた。This semiconductor laser device and Al 0.5 G on the end face
When a semiconductor laser device in which only the a 0.5 As window layer 52 and the protective film 61 are formed and the intermediate layer 51 is not formed is compared, the latter maximum optical output is 340 mW,
In the former case, a maximum optical output of 500 mW was obtained, and the output characteristics were also greatly improved.
【0030】上記改善理由は、前同様にエネルギー状態
図を用いて以下のように説明することが出来る。図5
(a)は本実施例の半導体レーザ装置における表面近傍
のエネルギー状態を示し、同図(b)は中間層を省略し
た半導体レーザ装置について表したものである。中間層
を省略した半導体レーザ装置の場合、図5(b)に示す
ようにAl0.5Ga0.5As窓層52によって、端面近傍
での光吸収、並びにキャリアの拡散が防止されるもの
の、表面を流れる微小なリーク電流101がAl0. 5G
a0.5As窓層52の表面に形成された表面準位に捕捉
され、非発光過程を経てわずかにではあるが発熱につな
がってしまう。これに対し、本実施例の場合は、中間層
51の存在でAl0.5Ga0.5As窓層52の表面準位は
なくなっており、代わりに中間層51表面にわずかに表
面準位が形成されるだけである。この準位に捕捉された
微小リーク電流によるキャリアはトンネリング(共鳴)
効果でレーザ素子のAlGaAs活性層へ再注入されて
発光に使われるので、発熱につながることはない。従っ
て上述のような最大光出力の上昇といった効果が得られ
る。The reason for the above improvement can be explained as follows using the energy phase diagram as before. Figure 5
(A) shows the energy state in the vicinity of the surface of the semiconductor laser device of this embodiment, and (b) shows the semiconductor laser device in which the intermediate layer is omitted. In the case of a semiconductor laser device in which the intermediate layer is omitted, as shown in FIG. 5B, the Al 0.5 Ga 0.5 As window layer 52 prevents light absorption near the end face and carrier diffusion, but flows on the surface. small leakage current 101 Al 0. 5 G
The light is trapped by the surface level formed on the surface of the a 0.5 As window layer 52, and the heat is slightly generated through the non-light emitting process. On the other hand, in the case of the present embodiment, the presence of the intermediate layer 51 eliminates the surface level of the Al 0.5 Ga 0.5 As window layer 52, and instead a slight surface level is formed on the surface of the intermediate layer 51. Only. The carriers due to the minute leak current trapped in this level are tunneling (resonance).
As a result, it is re-injected into the AlGaAs active layer of the laser element and used for light emission, so that it does not generate heat. Therefore, the effect of increasing the maximum light output as described above can be obtained.
【0031】本実施例の半導体レーザ装置は長期的な信
頼性の点でも優れた特性が得られるすなわち、中間層を
形成せず、Al0.5Ga0.5As窓層だけを形成した半導
体レーザ装置が60℃、70mWの駆動条件下で1000
時間経過後、1%の故障率を示したのに対して、本実施
例の半導体レーザ装置の故障率は、同条件下で0.1%
であった。The semiconductor laser device of this embodiment has excellent characteristics in terms of long-term reliability. That is, 60 semiconductor laser devices have an Al 0.5 Ga 0.5 As window layer without an intermediate layer. 1000 ° C under the driving condition of 70mW
After a lapse of time, the failure rate of 1% was shown, whereas the failure rate of the semiconductor laser device of this example was 0.1% under the same conditions.
Met.
【0032】なお、上記の第1、2、3の実施例では、
AlGaAs系レーザ素子の光出射端面上に形成する中
間層はInP又はIn0.9Ga0.1Pで形成したが、中間
層の材料には、AlGaAs活性層より格子定数が大き
いもの、即ち、圧縮応力を受けてバンドギャップエネル
ギーがAlGaAs活性層より大きくなる材料であれば
よい。具体的には材料がInxGa1-xPの場合は、x>
0.49のものでよい。また中間層はInP又はInG
aPを主成分とし、それ以外の元素を若干含んでもよ
い。中間層の厚さについては、上記例では10〜20オ
ングストロームと非常に薄かったが、歪みのために中間
層の結晶に転位が発生せず表面準位を形成しない範囲の
厚さであればよい。また適用されるレーザ素子はVSI
Sレーザに限られるものではなく、いかなる構造のもの
であってもよい。In the above first, second and third embodiments,
The intermediate layer formed on the light emitting end face of the AlGaAs laser device was made of InP or In 0.9 Ga 0.1 P, but the material of the intermediate layer has a lattice constant larger than that of the AlGaAs active layer, that is, is subjected to compressive stress. Any material having a bandgap energy larger than that of the AlGaAs active layer may be used. Specifically, when the material is In x Ga 1 -x P, x>
It may be 0.49. The intermediate layer is InP or InG
The main component may be aP, and some other elements may be included. The thickness of the intermediate layer was as thin as 10 to 20 angstroms in the above example, but the thickness may be within a range in which dislocation does not occur in the crystal of the intermediate layer due to strain and a surface level is not formed. .. Also, the applicable laser element is VSI
The structure is not limited to the S laser and may have any structure.
【0033】[0033]
【発明の効果】以上の説明から明らかなように、本発明
の半導体レーザ装置は、その光出射端面上にInP又は
InGaPを含む材料からなる中間層が形成されいるの
で、発熱にはつながらないため光出射端面の破壊が起こ
りにくくなり、最大光出力を向上できる。更に窓層を設
けた場合には、より効果を増大できる。InGaPから
なる中間層の場合には、Inの構成比率をInとGaと
の全体に対して49%より大きくすると、中間層の格子
定数をAlGaAsからなる半導体層より大きくでき
る。中間層はAlGaAs系に対して格子不整合系では
あるものの、転位が生じる臨界層厚よりも薄く形成する
場合は、結晶性に悪影響が及ばないようにできる。As is apparent from the above description, since the semiconductor laser device of the present invention has the intermediate layer made of the material containing InP or InGaP on the light emitting end face thereof, it does not lead to the generation of heat. The emission end face is less likely to be destroyed, and the maximum light output can be improved. Further, when the window layer is provided, the effect can be further enhanced. In the case of the InGaP intermediate layer, the lattice constant of the intermediate layer can be made larger than that of the semiconductor layer made of AlGaAs if the In composition ratio is larger than 49% with respect to the total of In and Ga. Although the intermediate layer is a lattice-mismatched system with respect to the AlGaAs system, when it is formed thinner than the critical layer thickness at which dislocations occur, the crystallinity can be prevented from being adversely affected.
【図1】第1の実施例の半導体レーザ装置における端面
近傍を示す斜視図である。FIG. 1 is a perspective view showing the vicinity of an end face of a semiconductor laser device according to a first embodiment.
【図2】第1の実施例の半導体レーザ装置における電流
と光出力との間の関係を、従来例の関係と併せて示した
図である。FIG. 2 is a diagram showing the relationship between the current and the light output in the semiconductor laser device of the first embodiment together with the relationship of the conventional example.
【図3】(a)は第1の実施例の半導体レーザ装置の出
射端面近傍のエネルギー状態図であり、(b)は従来の
半導体レーザ装置の出射端面近傍のエネルギー状態図で
ある。FIG. 3A is an energy state diagram near the emission end surface of the semiconductor laser device of the first embodiment, and FIG. 3B is an energy state diagram near the emission end surface of the conventional semiconductor laser device.
【図4】第3の実施例の半導体レーザ装置における端面
近傍を示す斜視図である。FIG. 4 is a perspective view showing the vicinity of an end face of a semiconductor laser device according to a third embodiment.
【図5】(a)は第3の実施例の半導体レーザ装置の出
射端面近傍のエネルギー状態図であり、(b)は従来の
半導体レーザ装置の出射端面近傍のエネルギー状態図で
ある。5A is an energy state diagram in the vicinity of an emission end face of a semiconductor laser device of a third embodiment, and FIG. 5B is an energy state diagram in the vicinity of an emission end face of a conventional semiconductor laser device.
11 pーGaAs基板 12 p-AlGaAsクラッド層 13 p-AlGaAs活性層 14 n-AlGaAsクラッド層 15 nーGaAsキャップ層 21 nーGaAs電流狭窄層 31、32 電極 51 InP又はInGaPからなる層 52 AlGaAs窓層 61 保護膜 101 表面を流れる微少リーク電流 11 p-GaAs substrate 12 p-AlGaAs clad layer 13 p-AlGaAs active layer 14 n-AlGaAs clad layer 15 n-GaAs cap layer 21 n-GaAs current constriction layer 31, 32 electrode 51 InP or InGaP layer 52 AlGaAs window Layer 61 Protective film 101 Minute leak current flowing on the surface
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹岡 忠士 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 渡辺 昌規 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 山本 修 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 中津 弘志 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Takeoka 22-22 Nagaike-cho, Abeno-ku, Osaka City, Osaka Prefecture Sharp Corporation (72) Masanori Watanabe 22-22 Nagaike-cho, Abeno-ku, Osaka City, Osaka Prefecture Co., Ltd. (72) Inventor Osamu Yamamoto 22-22 Nagaike-cho, Abeno-ku, Osaka City, Osaka Prefecture Sharp Corporation (72) Hiroshi Nakatsu 22-22, Nagaike-cho, Abeno-ku, Osaka City, Osaka Prefecture Osaka Prefecture
Claims (4)
の層がAlGaAs活性層からなる半導体レーザ装置に
おいて、 該レーザ素子の光出射端面にInP又はInGaPを含
む材料からなる層が形成されている半導体レーザ装置。1. A semiconductor laser device in which one layer of a laser element formed by laminating a plurality of layers is an AlGaAs active layer, wherein a layer made of a material containing InP or InGaP is formed on a light emitting end face of the laser element. Semiconductor laser device.
との間にAl混晶比が前記AlGaAs活性層よりも高
いAlGaAsからなる窓層が形成されている請求項1
記載の半導体レーザ装置。2. A window layer made of AlGaAs having a higher Al mixed crystal ratio than the AlGaAs active layer is formed between the light emitting end face and a layer formed on the end face.
The described semiconductor laser device.
aPを含んだ材料で形成され、そのInGaPにおける
Inの構成比率がIII族元素であるInとGaとの全体
に対して49%よりも大きい請求項1又は2記載の半導
体レーザ装置。3. The layer formed on the light emitting end face is InG
3. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is formed of a material containing aP, and the composition ratio of In in InGaP is greater than 49% with respect to the total of group III elements In and Ga.
が、該層に転位が生じる臨界層厚よりも薄い請求項1、
2又は3記載の半導体レーザ装置。4. The thickness of the layer formed on the light emitting end face is thinner than a critical layer thickness at which dislocation occurs in the layer.
2. The semiconductor laser device according to 2 or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4064183A JP2828235B2 (en) | 1992-03-19 | 1992-03-19 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4064183A JP2828235B2 (en) | 1992-03-19 | 1992-03-19 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05267776A true JPH05267776A (en) | 1993-10-15 |
JP2828235B2 JP2828235B2 (en) | 1998-11-25 |
Family
ID=13250692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4064183A Expired - Fee Related JP2828235B2 (en) | 1992-03-19 | 1992-03-19 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2828235B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10112566A (en) * | 1996-10-07 | 1998-04-28 | Furukawa Electric Co Ltd:The | Semiconductor laser |
JPH11121877A (en) * | 1997-08-13 | 1999-04-30 | Mitsubishi Chemical Corp | Compd. semiconductor light emitting device |
-
1992
- 1992-03-19 JP JP4064183A patent/JP2828235B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10112566A (en) * | 1996-10-07 | 1998-04-28 | Furukawa Electric Co Ltd:The | Semiconductor laser |
JPH11121877A (en) * | 1997-08-13 | 1999-04-30 | Mitsubishi Chemical Corp | Compd. semiconductor light emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP2828235B2 (en) | 1998-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6121634A (en) | Nitride semiconductor light emitting device and its manufacturing method | |
JP3129779B2 (en) | Semiconductor laser device | |
JP4288030B2 (en) | Semiconductor structure using group III nitride quaternary material system | |
JPH0632340B2 (en) | Semiconductor light emitting element | |
US5933442A (en) | Semiconductor laser | |
US4815082A (en) | Semiconductor laser device | |
JPH07202340A (en) | Visible-light semiconductor laser | |
JP2828235B2 (en) | Semiconductor laser device | |
US20100238963A1 (en) | Gallium nitride based semiconductor laser device | |
JP2000077795A (en) | Semiconductor laser device | |
JPH07235723A (en) | Semiconductor laser element | |
JPH1022586A (en) | Semiconductor light emitting device | |
JP4249920B2 (en) | End face window type semiconductor laser device and manufacturing method thereof | |
JPS6237828B2 (en) | ||
JPH09148682A (en) | Semiconductor optical device | |
JP3193087B2 (en) | AlGaInP semiconductor light emitting device | |
JPH10223978A (en) | Semiconductor laser and its manufacture | |
JPH0467353B2 (en) | ||
JP3699753B2 (en) | Semiconductor laser device | |
JP3138503B2 (en) | Semiconductor laser device | |
JP2630929B2 (en) | Semiconductor laser | |
JP3147399B2 (en) | Semiconductor laser | |
JP5315821B2 (en) | Semiconductor light emitting device | |
JP2001257423A (en) | Semiconductor laser | |
JP3602019B2 (en) | Method for manufacturing semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980903 |
|
LAPS | Cancellation because of no payment of annual fees |