JPH05266909A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JPH05266909A
JPH05266909A JP4065081A JP6508192A JPH05266909A JP H05266909 A JPH05266909 A JP H05266909A JP 4065081 A JP4065081 A JP 4065081A JP 6508192 A JP6508192 A JP 6508192A JP H05266909 A JPH05266909 A JP H05266909A
Authority
JP
Japan
Prior art keywords
reformer
oxygen concentration
air
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4065081A
Other languages
Japanese (ja)
Inventor
Mamoru Fukui
守 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4065081A priority Critical patent/JPH05266909A/en
Publication of JPH05266909A publication Critical patent/JPH05266909A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell system provided with a simple detection system for oxygen concentration in the exhausted gas of a reformer, by which stable power supply is possible even at the time of rapid increase in the load. CONSTITUTION:In a fuel cell system provided with a reformer for reforming a fuel gas and a turbo compressor serving as an air source for supplying air, a zirconia oxygen concentration meter 55 is directly mounted on the reformer main body, while the discharged air of the turbo compressor 41 is used as an air for comparison for the zirconia oxygen concentration meter. Stable power supply is possible even at the time of rapid increasing of the load, and a fuel cell system provided with a simple detection system of oxygen concentration in the exhausted gas of the reformer is thus provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負荷変動に対して安定
した電力を供給可能な燃料電池システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system capable of supplying stable electric power against load fluctuations.

【0002】[0002]

【従来の技術】従来の燃料電池システムにおける燃料系
統を図2を用いて説明する。同図において、燃料として
天然ガスが燃料流量調節弁30を通して流れ、燃料リサ
イクル系統より流入する水素ガス濃度の高い燃料ガスと
共に燃料予熱器5に導かれ昇温される。この燃料予熱器
5をでた燃料ガスは脱硫塔1に導かれ天然ガス中の硫黄
分を取り除く。脱硫塔1をでた燃料ガスは蒸気分離器1
3にて発生させた蒸気を蒸気過熱器8、蒸気流量調節弁
32を介して蒸気と混合されて改質器入口予熱器6を通
して改質器2に導かれる。改質器2にて改質器バーナに
より加熱され化学反応により水素ガスを多量に含んだ燃
料ガスに改質される。このとき同時に二酸化炭素と少量
の一酸化炭素が発生する。この水素ガス、二酸化炭素と
少量の一酸化炭素を含んだ燃料ガスは、高温一酸化炭素
変成器3に導かれ有害な一酸化炭素を二酸化炭素に変成
する。
2. Description of the Related Art A fuel system in a conventional fuel cell system will be described with reference to FIG. In the figure, natural gas as a fuel flows through the fuel flow rate control valve 30, and is introduced into the fuel preheater 5 together with the fuel gas having a high hydrogen gas concentration flowing from the fuel recycle system to be heated. The fuel gas leaving the fuel preheater 5 is guided to the desulfurization tower 1 to remove the sulfur content in the natural gas. The fuel gas leaving the desulfurization tower 1 is steam separator 1
The steam generated in 3 is mixed with the steam through the steam superheater 8 and the steam flow rate control valve 32, and is introduced into the reformer 2 through the reformer inlet preheater 6. In the reformer 2, it is heated by the reformer burner and reformed into a fuel gas containing a large amount of hydrogen gas by a chemical reaction. At the same time, carbon dioxide and a small amount of carbon monoxide are generated. This fuel gas containing hydrogen gas, carbon dioxide and a small amount of carbon monoxide is introduced into the high temperature carbon monoxide shift converter 3 to transform harmful carbon monoxide into carbon dioxide.

【0003】しかしながら、高温一酸化炭素変成器3に
てすべての一酸化炭素を二酸化炭素に変成できないた
め、水素ガス,二酸化炭素及び一酸化炭素を含んだ燃料
ガスは、低温一酸化炭素変成器入口冷却器7を通し、低
温一酸化炭素変成器4に導かれ、残りの一酸化炭素を二
酸化炭素に変成させる。一酸化炭素を二酸化炭素に変成
させた水素ガスを主とする燃料ガスは、蒸気過熱器8を
通し、燃料冷却器9に導かれ、天然ガスを改質させるた
めに燃料ガスに混合させた蒸気の残分を取り除くために
冷却される。この燃料冷却器9をでた燃料ガスの一部
は、燃料系リサイクルコンプレッサー15を介し燃料予
熱器5の入口に送られる。残りの燃料ガスは、改質ガス
流量調節弁31を介し燃料電池40に送られる。燃料電
池40にて燃料ガス中の水素を消費し電気を発生する。
燃料電池40内にて水素分をすべて消費することはなく
残分がある。
However, since all the carbon monoxide cannot be converted to carbon dioxide in the high temperature carbon monoxide shift converter 3, the fuel gas containing hydrogen gas, carbon dioxide and carbon monoxide is fed into the low temperature carbon monoxide shift converter inlet. It is introduced into the low temperature carbon monoxide shift converter 4 through the cooler 7, and the remaining carbon monoxide is transformed into carbon dioxide. A fuel gas mainly composed of hydrogen gas obtained by converting carbon monoxide into carbon dioxide is introduced into a fuel cooler 9 through a steam superheater 8 and vapor mixed with the fuel gas for reforming natural gas. Cooled to remove the residue. A part of the fuel gas leaving the fuel cooler 9 is sent to the inlet of the fuel preheater 5 via the fuel system recycle compressor 15. The remaining fuel gas is sent to the fuel cell 40 via the reformed gas flow rate control valve 31. The fuel cell 40 consumes hydrogen in the fuel gas to generate electricity.
Not all the hydrogen content is consumed in the fuel cell 40, but there is a residual content.

【0004】燃料電池40をでた燃料排ガスの一部はア
ノードリサイクルコンプレッサー16を介して燃料電池
40の入口に戻され、アノードリサイクル系統を構成す
る。残りの燃料排ガスは改質器2に戻され、改質器2の
バーナの燃料として使用され、天然ガスを水素ガスに改
質する際の熱源となる。改質器2のバーナにて燃焼した
燃料排ガスは、燃焼排ガスとして改質器バーナの燃焼用
空気を加温するための改質器バーナ空気予熱器10を介
し補助バーナ22に送られ、燃料電池40のカソード用
空気、補助バーナ22の燃焼用空気及び改質器2のバー
ナの燃焼用空気を発生させる空気源となるターボコンプ
レッサー装置41に送られる。ターボコンプレッサー装
置41は高圧コンプレッサー21及び低圧ターボコンプ
レッサー20より構成される。
A part of the fuel exhaust gas discharged from the fuel cell 40 is returned to the inlet of the fuel cell 40 via the anode recycle compressor 16 to form an anode recycle system. The remaining fuel exhaust gas is returned to the reformer 2 and used as a fuel for the burner of the reformer 2 and serves as a heat source when reforming natural gas into hydrogen gas. The fuel exhaust gas burned by the burner of the reformer 2 is sent to the auxiliary burner 22 via the reformer burner air preheater 10 for heating the combustion air of the reformer burner as combustion exhaust gas, and the fuel cell It is sent to a turbo compressor device 41 which is an air source for generating the cathode air 40, the combustion air of the auxiliary burner 22 and the combustion air of the burner of the reformer 2. The turbo compressor device 41 includes a high pressure compressor 21 and a low pressure turbo compressor 20.

【0005】他方の空気系統について説明すると、ター
ボコンプレッサー装置41にて発生させた空気は一部燃
料電池システムの差圧を、ある一定値に保つためにバイ
パス空気流量調節弁36に送られる。また、残りの一部
分を改質器2のバーナの燃焼用空気として改質器バーナ
空気流量調節弁33を介し、燃料電池40のカソード排
気と共に改質器バーナ空気予熱器10を通して改質器2
のバーナの燃料用空気として送られる。さらに、残りの
ターボコンプレッサー装置41をでた空気は空気流量調
節弁35を介し燃料電池40に送られ、燃料電池40内
にて酸素を消費し電気を発生させる。
Explaining the other air system, the air generated in the turbo compressor device 41 is sent to the bypass air flow rate control valve 36 in order to maintain the partial pressure difference of the fuel cell system at a certain constant value. Further, the remaining part is used as combustion air for the burner of the reformer 2 through the reformer burner air flow rate control valve 33 and the cathode exhaust of the fuel cell 40 and the reformer burner air preheater 10 and the reformer 2
It is sent as fuel air for the burner. Further, the air leaving the remaining turbo compressor device 41 is sent to the fuel cell 40 via the air flow rate control valve 35, and oxygen is consumed in the fuel cell 40 to generate electricity.

【0006】しかしながら、空気中の酸素がすべて消費
されることはなくいくらか残る。燃料電池40をでたカ
ソード排気はカソード排気再熱器11を通しカソード排
気冷却器12に送られ、燃料電池40内で発生した水分
を取り除き、再びカソード排気再熱器11に送られ、一
部はカソードリサイクルコンプレッサー17を介して空
気流量調節弁35の下流に戻しカソードリサイクル系統
を構成する。残りのカソード排気は低温一酸化炭素変成
器入口冷却器7を介し、先に説明した通り改質器バーナ
空気流量調節弁33の下流にてターボコンプレッサー装
置41にて発生させた空気と混合させて改質器バーナ空
気予熱器10に送られ昇温され、改質器バーナ燃焼用空
気として改質器2に送られ燃焼に用いられる。次に、改
質器の燃焼制御について説明する。
However, some of the oxygen in the air is not consumed and some remains. The cathode exhaust discharged from the fuel cell 40 is sent to the cathode exhaust cooler 12 through the cathode exhaust reheater 11, removes the water generated in the fuel cell 40, and is sent to the cathode exhaust reheater 11 again to partially Returns to the downstream of the air flow rate control valve 35 via the cathode recycle compressor 17 and constitutes a cathode recycle system. The remaining cathode exhaust gas is mixed with the air generated by the turbo compressor device 41 downstream of the reformer burner air flow rate control valve 33 as described above through the low temperature carbon monoxide shift converter inlet cooler 7. It is sent to the reformer burner air preheater 10 to be heated, and sent to the reformer 2 as reformer burner combustion air to be used for combustion. Next, the combustion control of the reformer will be described.

【0007】図3の改質器バーナ燃料制御アルゴリズム
に示すように、改質器改質管上部温度50と改質器改質
管上部温度設定値を温度PI演算器52にて演算し、流
量PI演算器53の流量設定値とし燃料電池入口流量5
1と流量PI演算し、改質ガス流量調節弁31の制御信
号として用いる。この様にして改質器改質上部温度が一
定となる様に改質ガス流量調節弁31にて燃料電池入口
の燃料流量を制御するものである。
As shown in the reformer burner fuel control algorithm of FIG. 3, the reformer reformer upper temperature 50 and the reformer reformer upper temperature set value are calculated by the temperature PI calculator 52, and the flow rate is calculated. Set the flow rate set value of the PI calculator 53 to the fuel cell inlet flow rate of 5
1 and the flow rate PI are calculated and used as a control signal for the reformed gas flow rate control valve 31. In this way, the reformed gas flow rate control valve 31 controls the fuel flow rate at the fuel cell inlet so that the reformer upper reforming temperature becomes constant.

【0008】また、図4の改質器バーナ流量制御アルゴ
リズムに示すように、改質器燃焼排ガス酸素濃度55と
改質器燃焼排ガス酸素濃度設定値を酸素PI演算器57
にて演算し、流量PI演算器58の流量設定値とし改質
器バーナ空気流量計56と流量PI演算器58にて演算
し、改質器バーナ空気流量調節弁33の制御信号として
用いる。このように改質器燃焼排ガス酸素濃度が一定と
なる様に改質器バーナ空気流量調節弁33にて燃料電池
のカソード排ガスに混合させるターボコンプレッサー装
置41より送られる空気流量を制御する。
Further, as shown in the reformer burner flow rate control algorithm of FIG. 4, the reformer combustion exhaust gas oxygen concentration 55 and the reformer combustion exhaust gas oxygen concentration set value are set to the oxygen PI calculator 57.
Is calculated by the reformer burner air flow meter 56 and the flow PI calculator 58 as a flow set value of the flow PI calculator 58, and is used as a control signal of the reformer burner air flow control valve 33. In this way, the reformer burner air flow rate control valve 33 controls the flow rate of air sent from the turbo compressor device 41 to be mixed with the cathode exhaust gas of the fuel cell so that the oxygen concentration of the reformer combustion exhaust gas becomes constant.

【0009】[0009]

【発明が解決しようとする課題】ところで、従来の燃料
電池システムにおいて、改質器燃焼排ガス酸素濃度検出
器55には高速反応を要求されており、また、改質器燃
焼排ガス酸素濃度を正確に測定するためにウエットサン
プリング方式(排気ガス中の水蒸気分を含んだ濃度分
析)が要求されている。これを満足するために図5に示
す様な構成で改質器燃焼排ガス酸素濃度検出を行ってい
る。すなわち、改質器2よりサンプルガスを取り出し酸
素濃度計用自動止め弁70を介し酸素濃度計に適したサ
ンプル圧力まで減圧する酸素濃度計用減圧弁71にてサ
ンプル圧力を減圧し、さらに、酸素濃度計に適したサン
プル量を流すために設けられた酸素濃度計用流量調節用
弁72を通し酸素濃度計55に導かれる。ここで、酸素
濃度計検出配管加温ヒータ74はサンプルガスの温度が
サンプルガスの露点以下とならない様に加温している。
また、ドレンセパレータ73は万一ドレンが発生した場
合、検出配管にドレンが溜まらないようにドレンを系外
に排出させるためのものである。
By the way, in the conventional fuel cell system, the reformer combustion exhaust gas oxygen concentration detector 55 is required to have a high-speed reaction, and the reformer combustion exhaust gas oxygen concentration is accurately measured. Wet sampling method (concentration analysis including water vapor content in exhaust gas) is required for measurement. In order to satisfy this, the reformer combustion exhaust gas oxygen concentration is detected with the configuration shown in FIG. That is, the sample gas is taken out from the reformer 2 and the sample pressure is reduced by the oxygen concentration meter pressure-reducing valve 71 that reduces the pressure to a sample pressure suitable for the oxygen concentration meter through the oxygen concentration meter automatic stop valve 70. It is led to the oxygen concentration meter 55 through an oxygen concentration meter flow rate control valve 72 provided for flowing a sample amount suitable for the concentration meter. Here, the oxygen concentration meter detection pipe heating heater 74 is heating so that the temperature of the sample gas does not fall below the dew point of the sample gas.
Further, the drain separator 73 is for discharging the drain out of the system so that the drain does not collect in the detection pipe in the event that drain occurs.

【0010】一方、酸素濃度計用比較空気減圧弁75は
改質器燃焼排ガス酸素濃度計55にジルコニア式の酸素
濃度検出器を用いるために比較用空気が必要となるの
で、この比較空気の供給と減圧を行うものである。
On the other hand, since the comparative air pressure reducing valve 75 for the oxygen concentration meter uses the zirconia type oxygen concentration detector for the reformer combustion exhaust gas oxygen concentration meter 55, the comparative air is required. And to reduce the pressure.

【0011】ところで、例えば急激な負荷変化があった
場合、改質器酸素濃度計55の出力はすぐに変化せず改
質器酸素濃度検出装置を構成する検出配管内のサンプル
が入れ変わる迄時間遅れとなる。さらに、改質器酸素濃
度計55自体の応答遅れも加わり、さらに遅れることと
なるが、この遅れ時間は、一般に圧力制御を行う場合の
制御要素として用いる圧力検出器と比べると約30〜7
0倍位い遅いものであり、燃料電池システムの負荷変化
率を制限するものとなる。そうすると、燃料電池システ
ムの特長である急速な負荷変動に対して安定な電力供給
が可能であるというメリットが失われることとなる。ま
た、ウエットサンプリング方式とするために検出器に加
温ヒータを設置しなければならないため検出装置を複雑
にしている。
By the way, for example, when there is a sudden load change, the output of the reformer oxygen concentration meter 55 does not change immediately and it takes time until the sample in the detection pipe constituting the reformer oxygen concentration detection device is replaced. Be late. Furthermore, a response delay of the reformer oximeter 55 itself is added, which causes a further delay, but this delay time is about 30 to 7 compared with a pressure detector generally used as a control element when performing pressure control.
It is about 0 times slower and limits the load change rate of the fuel cell system. Then, the advantage of the fuel cell system, that is, it is possible to stably supply electric power against a rapid load change, is lost. Further, since the wet sampling method is used, it is necessary to install a heating heater in the detector, which complicates the detector.

【0012】本発明は、上記事情に鑑みてなされたもの
で、その目的は、急激な負荷上昇に対しても安定な電力
供給が可能となり、さらにシンプルな改質器排ガス酸素
濃度検出システムを有する燃料電池システムを提供する
ことにある。
The present invention has been made in view of the above circumstances, and an object thereof is to enable stable power supply even with a sudden load increase, and to have a simple reformer exhaust gas oxygen concentration detection system. It is to provide a fuel cell system.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、燃料ガスを改質する改質器と空気を発生
させる空気源となるターボコンプレッサーを備えた燃料
電池システムにおいて、前記改質器本体に直接ジルコニ
ア式酸素濃度計を取り付けるとともにこのジルコニア酸
素濃度計用の比較空気として前記ターボコンプレッサー
の吐出空気を用いることを特徴とする。
To achieve the above object, the present invention provides a fuel cell system comprising a reformer for reforming a fuel gas and a turbo compressor as an air source for generating air. A zirconia oximeter is directly attached to the reformer main body, and the discharge air of the turbo compressor is used as reference air for the zirconia oximeter.

【0014】[0014]

【作用】本発明によると、改質器本体に直接酸素濃度計
を取り付け、また酸素濃度計の比較用空気をターボコン
プレッサー吐出空気を用いることにより、急激な負荷上
昇に対しても安定な電力供給が可能となり、さらにシン
プルな改質器排ガス酸素濃度検出システムを有する燃料
電池システムを提供することができる。
According to the present invention, the oxygen concentration meter is directly attached to the reformer main body, and the air for comparison of the oxygen concentration meter is the air discharged from the turbo compressor, so that stable power supply can be achieved even when the load is suddenly increased. Therefore, a fuel cell system having a simple reformer exhaust gas oxygen concentration detection system can be provided.

【0015】[0015]

【実施例】本発明の実施例を図について説明する。図1
は本発明の一実施例の構成図である。同図に示すよう
に、本発明の燃料電池システムは、改質器2に直接改質
器燃焼排ガス酸素濃度計55を設置し、ターボコンプレ
ッサー装置41の出口配管より改質器燃焼排ガス酸素濃
度計用比較空気を改質器燃焼排ガス酸素濃度計55に供
給するラインを設け、改質器燃焼排ガス酸素濃度計用流
量調節用弁80を設けている。
Embodiments of the present invention will be described with reference to the drawings. Figure 1
FIG. 1 is a configuration diagram of an embodiment of the present invention. As shown in the figure, in the fuel cell system of the present invention, the reformer combustion exhaust gas oxygen concentration meter 55 is directly installed in the reformer 2, and the reformer combustion exhaust gas oxygen concentration meter is installed from the outlet pipe of the turbo compressor device 41. A line for supplying the reference comparative air to the reformer combustion exhaust gas oxygen concentration meter 55 is provided, and a flow control valve 80 for the reformer combustion exhaust gas oxygen concentration meter is provided.

【0016】改質器燃焼排ガス酸素濃度計55としては
ジルコニア式酸素濃度計を用いている。このジルコニア
式酸素濃度計の原理を説明すると、固体電解質(ジルコ
ニア磁器)は、高温で酸素イオンに対する導電性を示
し、ジルコニア素子の内外面に白金系の電極を付けて加
熱し、素子内外に酸素分圧の異なるガスを接触させると
酸素濃淡電池作用を起す。すなわち、ジルコニア素子の
内外の酸素分圧の比により酸素濃度を測定するものであ
る。したがって、サンプルガスと比較空気の圧力が同等
でなければ正確な測定ができない。
As the reformer combustion exhaust gas oxygen concentration meter 55, a zirconia type oxygen concentration meter is used. Explaining the principle of this zirconia oximeter, a solid electrolyte (zirconia porcelain) exhibits conductivity with respect to oxygen ions at high temperature, and a platinum-based electrode is attached to the inner and outer surfaces of the zirconia element to heat it, and oxygen Contacting gases with different partial pressures causes the oxygen concentration cell action. That is, the oxygen concentration is measured by the ratio of the oxygen partial pressures inside and outside the zirconia element. Therefore, accurate measurement cannot be performed unless the pressures of the sample gas and the comparative air are equal.

【0017】本実施例の燃料電池システムでは、この比
較空気をターボコンプレッサー装置41の出口空気を使
用することにより、サンプルガスである改質器燃焼排ガ
スの圧力と同等の比較空気が得られる。また、ジルコニ
ア式酸素濃度計である改質器酸素濃度計55を直接改質
器2に取り付けることによりサンプルガスの減圧、流量
及び温度調整する装置を省略することができ、したがっ
て構成もシンプルとなる。さらに検出遅れについても、
改質器2に直接、改質器排ガス酸素濃度計55を設置し
ているので、検出遅れなく検出することが可能な改質器
酸素濃度検出システムとなる。
In the fuel cell system of this embodiment, by using the outlet air of the turbo-compressor device 41 as the reference air, the reference air equivalent to the pressure of the reformer combustion exhaust gas as the sample gas can be obtained. Further, by directly attaching the reformer oxygen concentration meter 55, which is a zirconia-type oxygen concentration meter, to the reformer 2, it is possible to omit a device for adjusting the pressure of the sample gas, the flow rate, and the temperature, and therefore the configuration is simple. .. Regarding the detection delay,
Since the reformer exhaust gas oxygen concentration meter 55 is installed directly in the reformer 2, the reformer oxygen concentration detection system can be detected without delay in detection.

【0018】本実施例は以上のように構成されているの
で、急激な負荷変化があった場合、改質器排ガス酸素濃
度計55の出力は、改質器2に直接、改質器排ガス酸素
濃度計55が取り付けられているためにすぐ変化し始め
ることとなり、燃料電池システムの負荷変化率を制限す
るものとはなりえない。これによって燃料電池システム
の特長である急速な負荷変動に対し安定な電力供給が可
能となる。さらに改質器2に改質器排ガス酸素濃度計5
5を直接取り付けているため改質器排ガス酸素濃度を検
出する構成もシンプルとなる。
Since this embodiment is constructed as described above, the output of the reformer exhaust gas oxygen concentration meter 55 is directly output to the reformer 2 when the load changes suddenly. Since the densitometer 55 is attached, the densitometer 55 starts to change immediately, and cannot limit the load change rate of the fuel cell system. As a result, stable power supply can be achieved even with rapid load changes, which is a feature of fuel cell systems. Further, the reformer 2 has a reformer exhaust gas oxygen concentration meter 5
Since 5 is directly attached, the structure for detecting the oxygen concentration of the reformer exhaust gas becomes simple.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
改質器に直接、改質器排ガス酸素濃度計を取り付け、さ
らにターボコンプレッサー装置より改質器排ガス酸素濃
度計の比較空気を供給することにより、急速な負荷変化
に対しても安定した電力の供給が可能で、かつシンプル
な改質器排ガス酸素濃度検出システムを有する燃料電池
システムを提供することができる。
As described above, according to the present invention,
By attaching the reformer exhaust gas oxygen concentration meter directly to the reformer and supplying the reference air of the reformer exhaust gas oxygen concentration meter from the turbo compressor device, stable power supply even with rapid load changes It is possible to provide a fuel cell system having a simple reformer exhaust gas oxygen concentration detection system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】従来の燃料電池システムの系統構成図。FIG. 2 is a system configuration diagram of a conventional fuel cell system.

【図3】図2の改質器バーナ燃料制御アルゴリズムを示
す図。
FIG. 3 is a diagram showing a reformer burner fuel control algorithm of FIG. 2.

【図4】図2の改質器バーナ流量制御アルゴリズムを示
す図。
FIG. 4 is a diagram showing a reformer burner flow rate control algorithm of FIG. 2;

【図5】図2の改質器燃焼排ガス酸素濃度検出システム
の構成図。
5 is a block diagram of the reformer combustion exhaust gas oxygen concentration detection system of FIG.

【符号の説明】 1…脱硫塔、2…改質器、3…高温一酸化炭素変成器、
4…低温一酸化炭素変成器、5…燃料予熱器、6…改質
器入口予熱器、7…低温一酸化炭素変成器入口冷却器、
8…蒸気過熱器、9…燃料冷却器、10…改質器バーナ
空気予熱器、11…カソード排気再熱器、12…カソー
ド排気冷却器、13…蒸気分離器、15…燃料系リサイ
クルコンプレッサー、16…アノードリサイクルコンプ
レッサー、17…カソードリサイクルコンプレッサー、
18…電池冷却水ポンプ、20…低圧ターボコンプレッ
サー、21…高圧ターボコンプレッサー、22…補助バ
ーナ、30…燃料流量調節弁、31…改質ガス流量調節
弁、32…蒸気流量調節弁、33…改質器バーナ空気流
量調節弁、34…カソード排気ガス改質器バイパス遮断
弁、35…空気流量調節弁、36…バイパス流量調節
弁、40…燃料電池、41…ターボコンプレッサー装
置、55…改質器燃焼排ガス酸素濃度計、56…改質器
バーナ空気流量計。
[Explanation of symbols] 1 ... desulfurization tower, 2 ... reformer, 3 ... high temperature carbon monoxide shift converter,
4 ... Low temperature carbon monoxide shift converter, 5 ... Fuel preheater, 6 ... Reformer inlet preheater, 7 ... Low temperature carbon monoxide shift inlet cooler,
8 ... Steam superheater, 9 ... Fuel cooler, 10 ... Reformer burner air preheater, 11 ... Cathode exhaust reheater, 12 ... Cathode exhaust cooler, 13 ... Steam separator, 15 ... Fuel system recycle compressor, 16 ... Anode recycling compressor, 17 ... Cathode recycling compressor,
18 ... Battery cooling water pump, 20 ... Low pressure turbo compressor, 21 ... High pressure turbo compressor, 22 ... Auxiliary burner, 30 ... Fuel flow rate control valve, 31 ... Reformed gas flow rate control valve, 32 ... Steam flow rate control valve, 33 ... Modified Pneumatic burner Air flow control valve, 34 ... Cathode exhaust gas reformer bypass cutoff valve, 35 ... Air flow control valve, 36 ... Bypass flow control valve, 40 ... Fuel cell, 41 ... Turbo compressor device, 55 ... Reformer Combustion exhaust gas oxygen concentration meter, 56 ... Reformer burner air flow meter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガスを改質する改質器と空気を発生
させる空気源となるターボコンプレッサーを備えた燃料
電池システムにおいて、前記改質器本体に直接ジルコニ
ア式酸素濃度計を取り付けるとともにこのジルコニア酸
素濃度計用の比較空気として前記ターボコンプレッサー
の吐出空気を用いることを特徴とする燃料電池システ
ム。
1. A fuel cell system comprising a reformer for reforming fuel gas and a turbo compressor as an air source for generating air, wherein a zirconia-type oxygen concentration meter is directly attached to the reformer main body. A fuel cell system, wherein discharge air of the turbo compressor is used as comparative air for an oximeter.
JP4065081A 1992-03-23 1992-03-23 Fuel cell system Pending JPH05266909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4065081A JPH05266909A (en) 1992-03-23 1992-03-23 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4065081A JPH05266909A (en) 1992-03-23 1992-03-23 Fuel cell system

Publications (1)

Publication Number Publication Date
JPH05266909A true JPH05266909A (en) 1993-10-15

Family

ID=13276642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4065081A Pending JPH05266909A (en) 1992-03-23 1992-03-23 Fuel cell system

Country Status (1)

Country Link
JP (1) JPH05266909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044844A1 (en) * 1996-05-22 1997-11-27 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Process for operating a fuel cell arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044844A1 (en) * 1996-05-22 1997-11-27 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Process for operating a fuel cell arrangement

Similar Documents

Publication Publication Date Title
JP3870455B2 (en) Carbon monoxide concentration reducing device and method, and fuel cell power generator
US8333125B2 (en) Environmentally friendly, energy-economic system for testing fuel cell stacks
US6884533B2 (en) Utilization based power plant control system
US7537848B1 (en) Method for model based exhaust mixing control in a fuel cell application
KR20130065607A (en) Fuel cell system and method for operating the same
JPWO2005018035A1 (en) FUEL CELL POWER GENERATION SYSTEM, METHOD FOR DETECTING DEGRADATION OF THE REFORMER, AND FUEL CELL POWER GENERATION METHOD
JPH0789493B2 (en) Fuel system controller for fuel cell power plant
JP2006516354A (en) Operation method of fuel cell
JPH07296834A (en) Fuel cell power plant and operating method for reformer of plant
JP4296741B2 (en) Cogeneration system
US20120009492A1 (en) Fuel cell system, control method for the fuel cell system, and state detection method for fuel cell
JPH05266909A (en) Fuel cell system
EP2842191B1 (en) Method and arrangement for determining enthalpy change of a fuel cell system
JPH11126629A (en) Fuel cell power generating device
JP7116651B2 (en) Solid oxide fuel cell system
CA2662376A1 (en) Method for determining a state of a reformer in a fuel cell system
JPS6329460A (en) Reformer temperature control device for fuel cell power generation system
JP4476581B2 (en) FUEL CELL POWER GENERATION SYSTEM, CONTROL METHOD FOR THE FUEL CELL POWER GENERATION SYSTEM, CONTROL PROGRAM FOR IMPLEMENTING THE CONTROL METHOD, AND RECORDING MEDIUM CONTAINING THE CONTROL PROGRAM
KR101295237B1 (en) Fuel cell system
JP7409971B2 (en) Solid oxide fuel cell system
JP2003192309A (en) Controller of fuel reforming apparatus in fuel cell system
CN114188562B (en) Pile exhaust gas recirculation SOFC system
JP7422007B2 (en) Solid oxide fuel cell system
US11309562B2 (en) Method for operating a fuel cell device
US20230238555A1 (en) Sensor and method for monitoring gas quality in fuel cell system