JPH05266718A - Electric apparatus using low thermal expansion polyimide - Google Patents

Electric apparatus using low thermal expansion polyimide

Info

Publication number
JPH05266718A
JPH05266718A JP1300293A JP1300293A JPH05266718A JP H05266718 A JPH05266718 A JP H05266718A JP 1300293 A JP1300293 A JP 1300293A JP 1300293 A JP1300293 A JP 1300293A JP H05266718 A JPH05266718 A JP H05266718A
Authority
JP
Japan
Prior art keywords
thermal expansion
polyimide
film
low thermal
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1300293A
Other languages
Japanese (ja)
Other versions
JP2604533B2 (en
Inventor
Toru Koyama
小山  徹
Junichi Katagiri
純一 片桐
Akio Nishikawa
昭夫 西川
Motoyo Wajima
元世 和嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5013002A priority Critical patent/JP2604533B2/en
Publication of JPH05266718A publication Critical patent/JPH05266718A/en
Application granted granted Critical
Publication of JP2604533B2 publication Critical patent/JP2604533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To prevent the cracking or separation of an insulating element even in heating cycles by using low thermal expansion polyimide of specific additional hardening polyimide for an insulating layer in an electric apparatus. CONSTITUTION:Low thermal expansion polyimide which is formed of additional hardening polyamide as shown in Formula I, II, or III (-X is as shown in Formula IV, -R<1-6> is -H meaning lower alkyl, aralkyl or aryl, -R<7> is -H meaning lower alkyl or aryl, and n is 1 through 3) with the thermal expansion coefficient of hardened material being (0.7 through 3) X10<-5>K<-1> is used for an insulating layer. In this way, deformation, cracking, separation, breakage, etc., are prevented from being generated due to thermal stress caused by the difference from the thermal expansion coefficient of ceramics or metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は付加硬化型ポリイミドか
らなる低熱膨張ポリイミドを電気絶縁層として用いた電
気装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric device using a low thermal expansion polyimide made of an addition-curable polyimide as an electric insulating layer.

【0002】[0002]

【従来の技術】有機ポリマーの熱膨張係数(線膨張係
数)は、ガラス転移温度以下の温度領域において、殆ど
のものが4×10~5K~1以上と金属や無機物(Si:
0.8×10~5K~1,Al:2×10~5K~1,Cu:1.
8×10~5K~1,Ag:2.0×10~5K~1)に比べて
はるかに大きな値を示す。そのため、これらと有機ポリ
マーとを一体化すると、熱膨張係数の差によって熱応力
が生じ、変形,クラック,剥離,破壊などが起こる。
2. Description of the Related Art Almost all organic polymers have a coefficient of thermal expansion (linear expansion coefficient) of 4 × 10 to 5 K to 1 or more in the temperature range below the glass transition temperature, and metal or inorganic substances (Si:
0.8 × 10 ~ 5 K ~ 1 , Al: 2 × 10 ~ 5 K ~ 1 , Cu: 1.
8 × 10 to 5 K to 1 , Ag: 2.0 × 10 to 5 K to 1 ), which is a much larger value. Therefore, when these are integrated with the organic polymer, thermal stress is generated due to the difference in thermal expansion coefficient, and deformation, cracks, peeling, breakage, and the like occur.

【0003】例えば、LSIやICの保護膜としてシリ
コンウエハ上にコート膜を形成すると、ウエハが反っ
て、パターニングのためのフォトリソグラフィーができ
なかったり、あるいは解像度が極めて悪くなると云った
問題や、熱応力が大きい場合、配線保護膜としてのパッ
シベーション膜を剥離したり、シリコンウエハ自体に劈
開を起こさせることもあった。そのために、特開昭60
−32827号公報等で示されるように、金属や無機物
と同等の極めて小さな熱膨張係数を有する縮重合型ポリ
イミドが提案されている。
For example, when a coating film is formed on a silicon wafer as a protection film for LSI and IC, the wafer is warped, and photolithography for patterning cannot be performed, or the resolution is extremely deteriorated. When the stress is large, the passivation film as the wiring protection film may be peeled off or the silicon wafer itself may be cleaved. Therefore, Japanese Patent Laid-Open No. Sho 60
As disclosed in Japanese Patent Laid-Open No. 32827/1992, a polycondensation type polyimide having an extremely small thermal expansion coefficient equivalent to that of a metal or an inorganic substance has been proposed.

【0004】また、MOS型LSIの高密度化,高機能
化に対応する三次元回路素子において、微細パターンを
描くため半導体素子基板表面の凹凸を平坦化するに当
り、硬化の際に水等の低分子揮発性成分が発生しないた
めに、基板表面に膨れ等が生じにくい付加重合型ポリイ
ミドの使用が提案(特開昭56−90834号公報等)
されている。
In the three-dimensional circuit element corresponding to the high density and the high function of the MOS type LSI, when the unevenness of the surface of the semiconductor element substrate is flattened to draw a fine pattern, water or the like is used at the time of hardening. Proposal of use of addition-polymerization type polyimide, which is less likely to cause swelling or the like on the substrate surface because low-molecular volatile components are not generated (JP-A-56-90834, etc.)
Has been done.

【0005】[0005]

【発明が解決しようとする課題】上記縮重合型ポリイミ
ドは、熱膨張係数は小さいが、硬化時水等の低分子揮発
性成分を発生し、LSI等の絶縁基板に塗布した場合、
表面に膨れ等が生じ易く、塗膜の平坦性が悪いと云う問
題があった。
Although the polycondensation type polyimide has a small coefficient of thermal expansion, it generates a low molecular volatile component such as water during curing, and when applied to an insulating substrate such as LSI,
There is a problem that the surface is likely to be swollen and the flatness of the coating film is poor.

【0006】また、上記付加重合型ポリイミドは、熱膨
張係数が4×10~5K~1と大きいため無機物(セラミッ
ク:0.3×10~5K~1等)や金属(アルミニウム:2
×10~5K~1,銅:1.8×10~5K~1等)との熱膨張
係数の差に基づく熱応力により変形,クラック,剥離,
破壊等が生じると云う問題があった。
Further, the above-mentioned addition polymerization type polyimide has a large thermal expansion coefficient of 4 × 10 to 5 K to 1 , so that an inorganic substance (ceramic: 0.3 × 10 to 5 K to 1, etc.) or a metal (aluminum: 2).
× 10 ~ 5 K ~ 1, copper: 1.8 × 10 ~ 5 K ~ deformed by thermal stress due to a difference in thermal expansion coefficient between 1 etc.), cracking, peeling,
There was a problem that destruction and the like would occur.

【0007】コンピュータ用を始めとする産業用積層板
は高密度化,高集積化の傾向にある。これに伴い、耐熱
性の優れた高寸法安定性,スルホール信頼性の良好な付
加重合型ポリマーの開発が要求されている。従来、特公
昭46−23250号公報等で示されるアミノビスマレ
イミド系材料や、特開昭56−29909号公報等で提
案されるエポキシ変性レジン等が使用されていた。しか
し、これら付加重合型ポリマーの熱膨張係数は4×10
~5K~1以上と大きいため、熱膨張あるいは熱収縮による
位置ずれ、あるいは低熱膨張性のセラミックスや銅等の
金属の熱膨張係数との差に基づく熱応力により変形,ク
ラック,剥離,破壊等が生じると云う問題があった。
Industrial laminated boards such as those for computers tend to have higher density and higher integration. Along with this, it is required to develop an addition polymerization type polymer having excellent heat resistance, high dimensional stability, and good through hole reliability. Conventionally, an amino bismaleimide-based material disclosed in JP-B-46-23250 and the like, an epoxy-modified resin proposed in JP-A-56-29909 and the like have been used. However, the thermal expansion coefficient of these addition-polymerization type polymers is 4 × 10.
~ 5 K ~ 1 or more, so it is misaligned due to thermal expansion or contraction, or is deformed, cracked, peeled or broken due to thermal stress based on the difference between the thermal expansion coefficient of low thermal expansion ceramics or metals such as copper. There was a problem that was caused.

【0008】本発明の目的は、上記課題を解決し得る付
加型低熱膨張ポリイミドを電気絶縁層として用いた電気
装置を提供することにある。
An object of the present invention is to provide an electric device using an addition type low thermal expansion polyimide which can solve the above problems as an electric insulating layer.

【0009】[0009]

【課題を解決するための手段】上記目的は、付加硬化型
低熱膨張ポリマを開発することにより、達成される。付
加硬化型耐熱材料は、特公昭44−20625号公報等
に示されるビスマレイミドを始め膨大な数が公知である
が、その化学構造と熱膨張率係数との関連を系統的に検
討した例は見当らない。本発明者らはこのような事情に
鑑み、付加硬化型ポリイミドについて多くの合成実験を
試み、原料成分と熱膨張係数との関係を詳細に検討し
た。その結果、特定の付加硬化型ポリイミドは熱膨張係
数が小さいことを見い出した。
The above objects are achieved by developing an addition cure type low thermal expansion polymer. An enormous number of addition-curable heat-resistant materials are known, including bismaleimide disclosed in Japanese Patent Publication No. 44-20625, etc., but an example of systematically examining the relationship between the chemical structure and the coefficient of thermal expansion is I can't find it. In view of such circumstances, the present inventors have made many synthetic experiments on addition-curable polyimides and studied in detail the relationship between the raw material components and the coefficient of thermal expansion. As a result, they have found that the specific addition-curable polyimide has a small coefficient of thermal expansion.

【0010】本発明で用いる付加硬化型ポリイミドは、
その硬化物の熱膨張係数が(0.7〜3)×10~5K~1
である低熱膨張ポリイミドであり、下記の一般式
〔1〕,〔2〕または〔3〕で示される。
The addition-curable polyimide used in the present invention is
The coefficient of thermal expansion of the cured product is (0.7 to 3 ) × 10 to 5 K to 1
The low thermal expansion polyimide is represented by the following general formula [1], [2] or [3].

【0011】[0011]

【化2】 [Chemical 2]

【0012】本発明に用いられる付加硬化型ポリイミド
は、ワニスとして(1)半導体用絶縁薄膜,(2)銅張
積層板,(3)フレキシブルプリント基板,(4)太陽
電池用基板,(5)高密度モジュール基板,(6)液晶
・FAXヘッド用断熱膜,(7)磁気テープ・磁気ディ
スク用基板,(8)液晶用配向膜,(9)コイルの絶縁
等に適用でき、極めて有用である。その具体例のいくつ
かを図1〜図6により説明する。
The addition curing type polyimide used in the present invention is used as a varnish for (1) insulating thin film for semiconductor, (2) copper clad laminate, (3) flexible printed circuit board, (4) solar cell substrate, and (5). It is very useful because it can be applied to high-density module substrate, (6) heat insulating film for liquid crystal / FAX head, (7) substrate for magnetic tape / magnetic disk, (8) liquid crystal alignment film, (9) coil insulation, etc. .. Some specific examples will be described with reference to FIGS.

【0013】図1はLSIの多層配線部の断面を示し、
1はシリコンウエハ、2は熱酸化膜、3はAl配線、4
は本発明の低熱膨張ポリイミド膜からなる絶縁膜、5は
無機質の保護膜である。
FIG. 1 shows a cross section of a multi-layer wiring part of an LSI.
1 is a silicon wafer, 2 is a thermal oxide film, 3 is Al wiring, 4
Is an insulating film made of the low thermal expansion polyimide film of the present invention, and 5 is an inorganic protective film.

【0014】上記低熱膨張ポリイミド膜4は平坦な配線
構造を形成できると云う有機材料の特徴を維持し、しか
も低熱膨張である。従って、例えば防湿膜として優れた
SiO2膜のような低熱膨張の無機保護膜5を低熱膨張
ポリイミド膜4の上に形成することができ、両者の熱膨
張係数の差が小さいためにクラックあるいは剥離が生ず
ることもなく、耐湿保護の効果が損われることもない。
これに比べ、従来のLSIは上記無機保護膜5を形成す
ることができず、高度な耐湿信頼性を必要とするLSI
を得ることができなかった。
The low thermal expansion polyimide film 4 maintains the characteristic of an organic material that a flat wiring structure can be formed, and has a low thermal expansion. Therefore, for example, an inorganic protective film 5 having a low thermal expansion such as a SiO 2 film which is excellent as a moisture-proof film can be formed on the polyimide film 4 having a low thermal expansion, and a crack or peeling is caused due to a small difference in thermal expansion coefficient between the two. Does not occur, and the effect of moisture resistance protection is not impaired.
On the other hand, the conventional LSI cannot form the inorganic protective film 5 and requires high moisture resistance reliability.
Couldn't get

【0015】図2は、α線遮蔽膜を有するメモリ素子の
断面図を示し、6は配線層、7はリード線を示す。α線
遮蔽膜として本発明の低熱膨張ポリイミド4を用いる
と、シリコンウエハ1や配線層6との熱膨張係数の差が
小さいため、従来のポリマーを用いた場合に問題となっ
た熱応力によるクラックや剥離が発生せず、ウエハがわ
ん曲してフォトレジストのパターニングにおける解像度
の低下等が起こらない。
FIG. 2 is a sectional view of a memory element having an α-ray shielding film, 6 is a wiring layer, and 7 is a lead wire. When the low thermal expansion polyimide 4 of the present invention is used as the α-ray shielding film, the difference in thermal expansion coefficient between the silicon wafer 1 and the wiring layer 6 is small, and thus cracks due to thermal stress which are a problem when using a conventional polymer. The peeling does not occur, and the wafer is not bent and the resolution of the patterning of the photoresist is not lowered.

【0016】図3は、磁気ディスクの断面を示すし、8
はスパッタリングなどで形成した磁気薄膜、9は保護膜
である。本発明の低熱膨張のポリイミド4の採用によ
り、温度変動による歪の発生,記録した信号の乱れまた
は熱応力による磁気薄膜8や保護膜にクラックを生じる
ことがない。
FIG. 3 shows a cross section of the magnetic disk.
Is a magnetic thin film formed by sputtering or the like, and 9 is a protective film. By adopting the low thermal expansion polyimide 4 of the present invention, cracks are not generated in the magnetic thin film 8 and the protective film due to distortion due to temperature fluctuation, disturbance of recorded signals or thermal stress.

【0017】図4はアルミナ基板に形成した高密度配線
基板を用いたマルチチップモジュールの一部分解斜視図
を示し、10はアルミナ基板、11はリードピン、12
はフェイスダウンボンディングで形成したLSI、13
はボンディング用半田ボール、14はディスクリートワ
イヤである。熱膨張係数が大きいポリマーを層間絶縁膜
に使用すると、厚さ10μm程度のものを20層程度重
ねたところで、熱応力により絶縁膜の内部クラック,配
線3の断線,基板10のわん曲,クラック,剥離等が起
こる。
FIG. 4 is a partially exploded perspective view of a multi-chip module using a high-density wiring substrate formed on an alumina substrate, 10 is an alumina substrate, 11 is a lead pin, and 12 is a lead pin.
Is an LSI formed by face-down bonding, 13
Is a solder ball for bonding, and 14 is a discrete wire. When a polymer having a large coefficient of thermal expansion is used for the interlayer insulating film, internal stress of the insulating film, disconnection of the wiring 3, bending of the substrate 10, cracks, Peeling etc. occurs.

【0018】絶縁層に本発明の低熱膨張ポリイミドを用
いることによって、30層以上積層しても上記のような
異常の発生がない多層配線板を得ることができる。
By using the low thermal expansion polyimide of the present invention for the insulating layer, it is possible to obtain a multilayer wiring board which does not cause the above-mentioned abnormality even when 30 or more layers are laminated.

【0019】図5はLSI搭載金属板ベースのプリント
配線板の断面図を示し、15は金属基板、16はフィル
ムキャリヤ方式で製造したLSIチップ、17は低熱膨
張ポリイミドを用いたキャリヤフィルム、18は端子で
ある。
FIG. 5 is a sectional view of a printed wiring board based on an LSI-mounted metal plate, 15 is a metal substrate, 16 is an LSI chip manufactured by a film carrier method, 17 is a carrier film using low thermal expansion polyimide, and 18 is It is a terminal.

【0020】低熱膨張ポリイミドをキャリヤフィルム1
7として用いたために高精度高密度のLSIチップ16
が得られる。また、ボンディング用半田ボール13に加
わる応力を大幅に減少できるために疲労破断が低減し
た。また、金属基板15上に形成した配線部3の絶縁膜
4に、本発明の低熱膨張ポリイミドを用いることによ
り、わん曲のないプリント配線基板が得られ、高精度高
密度実装ができる。
Low thermal expansion polyimide carrier film 1
High-precision and high-density LSI chip 16 for use as
Is obtained. Further, since the stress applied to the bonding solder ball 13 can be greatly reduced, fatigue fracture is reduced. Further, by using the low thermal expansion polyimide of the present invention for the insulating film 4 of the wiring portion 3 formed on the metal substrate 15, a printed wiring board without bending can be obtained, and high-precision high-density mounting can be performed.

【0021】図6は、リード線ボンディング方式で実装
した金属基板モジュールの断面図を示すものである。1
9がリード線ボンディング方式のLSIチップである。
FIG. 6 is a sectional view of a metal substrate module mounted by the lead wire bonding method. 1
Reference numeral 9 denotes a lead wire bonding type LSI chip.

【0022】また、無溶剤型エポキシ含浸ワニスで固着
したフィルム絶縁コイルの絶縁フィルムとして採用した
場合、銅やアルミニウム等のコイル材と絶縁フィルムと
の熱膨張係数の差が小さいために絶縁層のクラック,剥
離、及びこれらに伴う絶縁抵抗や絶縁破壊電圧の低下を
防止することができる。
When the film is used as an insulating film for a film insulating coil fixed with a solventless epoxy impregnated varnish, the difference in the coefficient of thermal expansion between the coil material such as copper or aluminum and the insulating film is small, so that cracks in the insulating layer occur. It is possible to prevent the peeling and the reduction of the insulation resistance and the dielectric breakdown voltage due to the peeling.

【0023】アモルファスシリコンを用いた太陽電池の
基板として、本発明の低熱膨張ポリイミドの薄膜をコー
トしたステンレス等の金属箔を使用すると、従来のポリ
イミドを用いた場合に比べ、アモルファスシリコン薄膜
のクラックの発生が著しく減少できる。
When a metal foil such as stainless steel coated with a thin film of the low thermal expansion polyimide of the present invention is used as a substrate of a solar cell using amorphous silicon, cracks in the amorphous silicon thin film are reduced as compared with the case of using conventional polyimide. Occurrence can be significantly reduced.

【0024】フレキシブルプリント板用フィルムとして
本発明の低熱膨張ポリイミドを用いた場合、金属配線材
との線膨張係数が小さいため、従来のポリイミドを用い
たときのようにフレキシブルプリント板がカールするよ
うなことが全くなく、平坦なフレキシブルプリント基板
が得られる。また、金属箔上に直接ワニスを塗布すると
云う方法で製造することができるので、従来のような接
着剤で金属箔と予め作製したフィルムを貼合せる方法に
比べて製造工程が半減し、かつ、低温硬化性接着剤によ
る耐熱性の低下を防ぐことができる。このフレキシブル
プリント基板は、熱膨張係数が小さいため、多層配線基
板として使用した場合に層間の位置ずれが極めて小さ
く、高密度実装が可能となる。
When the low thermal expansion polyimide of the present invention is used as a film for a flexible printed board, since the coefficient of linear expansion with the metal wiring material is small, the flexible printed board is curled as in the case of using conventional polyimide. And a flat flexible printed circuit board can be obtained. Further, since it can be produced by a method of directly applying a varnish on the metal foil, the production process is halved as compared with the conventional method of laminating a metal foil and a film produced in advance with an adhesive, and It is possible to prevent deterioration of heat resistance due to the low temperature curable adhesive. Since this flexible printed board has a small coefficient of thermal expansion, when it is used as a multilayer wiring board, the positional displacement between layers is extremely small, and high-density mounting is possible.

【0025】また、半導体装置等のモールド材料として
使用した場合、チップにクラックが発生したり変形する
等の問題が起こらない。
When used as a molding material for a semiconductor device or the like, the problem of cracking or deformation of the chip does not occur.

【0026】[0026]

【作用】本発明が用いた付加硬化型ポリイミドは銅やア
ルミニウム等の金属やセラミックあるいはガラス等の無
機物と同等の極めて小さな熱膨張係数を有しているた
め、一体化した場合熱膨張係数の差に基づく熱応力が極
めて小さく、従って、変形,クラック,剥離,破壊等が
起らない。また、揮発性成分を生じない付加硬化型であ
るため膨れ等の発生が無く厚膜化が可能である。
The addition-curable polyimide used in the present invention has an extremely small coefficient of thermal expansion equivalent to that of metals such as copper and aluminum, and inorganic materials such as ceramics and glass. The thermal stress due to is extremely small, and therefore deformation, cracks, peeling, breakage, etc. do not occur. In addition, since it is an addition-curing type that does not generate volatile components, it is possible to form a thick film without causing swelling or the like.

【0027】なお、本発明が用いた付加硬化型ポリイミ
ドが低熱膨張性を示すのは、恐らくパッキングが他のポ
リイミドより大きいためと推定される。
The reason why the addition-curable polyimide used in the present invention exhibits low thermal expansion is probably because the packing is larger than that of other polyimides.

【0028】[0028]

【実施例】次に実施例により本発明を具体的に説明す
る。
EXAMPLES Next, the present invention will be described in detail with reference to Examples.

【0029】〔実施例1〜6および比較例1,2〕温度
計,撹拌装置,還流冷却器及び窒素吹入口を有する4つ
口フラスコに、表1に示す量のジアミンにN−メチル−
2−ピロリドン(NMP)300gを加え、窒素気流下
で撹拌溶解した。次いで、無水マレイン酸を添加し、室
温付近で約1時間撹拌した。その後、無水酢酸300
g,酢酸カリウム20gを添加し、よく撹拌して脱水閉
環させた。脱水閉環が進行しにくい場合には必要に応じ
加熱した。次いで反応液を水に投入し、生じたビスマレ
イミドの沈殿を濾過,減圧乾燥した。
Examples 1 to 6 and Comparative Examples 1 and 2 A four-necked flask equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen inlet was used.
300 g of 2-pyrrolidone (NMP) was added and dissolved with stirring under a nitrogen stream. Next, maleic anhydride was added, and the mixture was stirred at about room temperature for about 1 hour. Then, acetic anhydride 300
g and 20 g of potassium acetate were added, and the mixture was stirred well to effect dehydration and ring closure. When the dehydration ring closure is difficult to proceed, heating was performed as necessary. Then, the reaction solution was poured into water, and the formed bismaleimide precipitate was filtered and dried under reduced pressure.

【0030】得られたビスマレイミドを、230℃/1
0分→250℃/30分→270℃/30分→300℃
/30分加熱硬化した。得られた樹脂板を350℃に加
熱し、除冷して残留歪を解除したのち、熱機械試験機
(TMA)を用い、5℃/分の条件で寸法変化を測定し
た。線膨張係数は、ガラス転移点以下の寸法変化量から
求めた。なお、いずれもガラス転移温度は350℃以上
であった。
The obtained bismaleimide was treated at 230 ° C./1
0 minutes → 250 ° C./30 minutes → 270 ° C./30 minutes → 300 ° C.
/ 30 minutes heat curing. The obtained resin plate was heated to 350 ° C. and was cooled to release the residual strain, and then the dimensional change was measured using a thermomechanical tester (TMA) under the condition of 5 ° C./min. The linear expansion coefficient was obtained from the amount of dimensional change below the glass transition point. The glass transition temperature was 350 ° C. or higher in all cases.

【0031】[0031]

【表1】 [Table 1]

【0032】〔実施例7および比較例3〕実施例1で得
たビスマレイミドをそれぞれN,N−ジメチルホルムア
ミドに溶解して固形分50重量%のワニスとした。この
ワニスをアミノシラン処理ガラスクロス(日東紡績社製
0.1mm厚)に含浸し、130〜140℃に30〜6
0分間加熱,乾燥して樹脂含量40〜50重量%のプリ
プレグを作製した。これを5枚重ね、更に、両側に厚さ
35μmの銅箔を重ね、180℃,圧力50kg/cm
2,90分、更に、220℃/180分の条件で加圧成
形を行い積層板を得た。特性を評価した結果を表2に示
す。なお、比較例として、アミノビスマレイミド系樹脂
で作製した積層板の特性を併せて示す。
Example 7 and Comparative Example 3 Each of the bismaleimides obtained in Example 1 was dissolved in N, N-dimethylformamide to prepare a varnish having a solid content of 50% by weight. Aminosilane-treated glass cloth (0.1 mm thick manufactured by Nitto Boseki Co., Ltd.) was impregnated with this varnish and the temperature was adjusted to 130 to 140 ° C. for 30 to 6 mm.
It was heated and dried for 0 minutes to prepare a prepreg having a resin content of 40 to 50% by weight. Five pieces of this are piled up, and a copper foil with a thickness of 35 μm is piled up on both sides, 180 ° C., pressure 50 kg / cm.
2 , 90 minutes, and further pressure-molded under the condition of 220 ° C./180 minutes to obtain a laminated plate. The results of evaluating the characteristics are shown in Table 2. In addition, as a comparative example, the characteristics of a laminated plate made of an amino bismaleimide resin are also shown.

【0033】[0033]

【表2】 [Table 2]

【0034】〔実施例8〕実施例1,4のマレイミドの
NMP溶液(50重量%)を用いて、高さ0.9μm×
幅5μmのアルミパターンを有するシリコンウエハ上に
スピンコーターにより回転塗布した。これを100℃/
1時間→220℃/1時間→350℃/1時間の熱処理
を行って膜厚2.6μmの硬化膜を形成した。この膜表
面の高低差は±0.1μmであった。
Example 8 Using the maleimide NMP solution (50% by weight) of Examples 1 and 4, the height was 0.9 μm ×
A silicon wafer having an aluminum pattern with a width of 5 μm was spin coated with a spin coater. 100 ° C /
Heat treatment was performed for 1 hour → 220 ° C./1 hour → 350 ° C./1 hour to form a cured film having a film thickness of 2.6 μm. The height difference on the surface of the film was ± 0.1 μm.

【0035】また、上記シリコンウエハを350℃⇔1
50℃のヒートサイクルを実施し耐クラック性試験を行
ったところ、実施例4のマレイミドを用いたものは10
0サイクル終了後に、また、実施例1のマレイミドを用
いたものに、80サイクル終了後に一部クラックが生じ
た。
Further, the silicon wafer is heated to 350 ° C. ⇔ 1
When a heat resistance cycle at 50 ° C. was carried out and a crack resistance test was conducted, it was found that 10 using the maleimide of Example 4
Some cracks were generated after the completion of 0 cycle and in the case of using the maleimide of Example 1 after the completion of 80 cycles.

【0036】[0036]

【発明の効果】本発明の電気装置は、絶縁層として用い
た低熱膨張ポリイミドが揮発成分のない付加反応で硬化
し、硬化後の線膨張係数が(0.7〜3)×10~5K~1
と低熱膨張性であるため、ヒートサイクルをかけられて
も絶縁層等にクラックや剥離等が生じない。
In the electric device of the present invention, the low thermal expansion polyimide used as the insulating layer is cured by an addition reaction without a volatile component, and the linear expansion coefficient after curing is (0.7 to 3 ) × 10 to 5 K. ~ 1
Since it has a low thermal expansion property, cracks or peeling will not occur in the insulating layer or the like even when subjected to a heat cycle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例を示す多層配線構造を有するLS
Iの断面図である。
FIG. 1 is an LS having a multilayer wiring structure showing an example of the present invention.
It is sectional drawing of I.

【図2】本発明の一例を示すα線遮蔽膜を有するメモリ
素子の断面図である。
FIG. 2 is a cross-sectional view of a memory device having an α-ray shielding film showing an example of the present invention.

【図3】本発明の一例を示す磁気ディスクの断面図であ
る。
FIG. 3 is a cross-sectional view of a magnetic disk showing an example of the present invention.

【図4】本発明の一例を示すアルミナ基板上に高密度多
層配線を形成したLSI搭載マルチチップモジュールの
一部断面斜視図である。
FIG. 4 is a partial cross-sectional perspective view of an LSI-mounted multichip module in which high-density multilayer wiring is formed on an alumina substrate showing an example of the present invention.

【図5】本発明の一例を示すフィルムキャリヤ方式のL
SIを搭載した金属板ベースのプリント基板の断面図で
ある。
FIG. 5 is a film carrier type L showing an example of the present invention.
FIG. 6 is a cross-sectional view of a metal plate-based printed board on which SI is mounted.

【図6】本発明の一例を示すリード線ボンディング方式
のLSIを搭載した金属板ベースのプリント基板の断面
図である。
FIG. 6 is a cross-sectional view of a metal plate-based printed circuit board on which a lead wire bonding type LSI according to an example of the present invention is mounted.

【符号の説明】[Explanation of symbols]

1…シリコンウエハ、2…熱酸化膜、3…アルミニウム
配線、4…低熱膨張ポリイミド、5…無機質保護膜、6
…配線層、7…リード線、8…磁性薄膜、9…保護膜、
10…アルミナ基板、11…リードピン、12…LSI
チップ、13…半田ポール、15…金属基板、16…フ
ィルムキャリア方式のLSI、17…キャリヤフィル
ム、18…端子、19…リード線ボンディング方式のL
SI。
1 ... Silicon wafer, 2 ... Thermal oxide film, 3 ... Aluminum wiring, 4 ... Low thermal expansion polyimide, 5 ... Inorganic protective film, 6
... wiring layer, 7 ... lead wire, 8 ... magnetic thin film, 9 ... protective film,
10 ... Alumina substrate, 11 ... Lead pin, 12 ... LSI
Chip, 13 ... Solder pole, 15 ... Metal substrate, 16 ... Film carrier type LSI, 17 ... Carrier film, 18 ... Terminal, 19 ... Lead wire bonding type L
SI.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和嶋 元世 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motoyo Wajima 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hiritsu Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電気装置の絶縁層が一般式〔1〕,
〔2〕または〔3〕で示される付加硬化型ポリイミドで
あることを特徴とする低熱膨張ポリイミドを用いた電気
装置。 【化1】
1. An insulating layer of an electric device is represented by the general formula [1],
An electric device using a low thermal expansion polyimide, which is an addition-curable polyimide represented by [2] or [3]. [Chemical 1]
JP5013002A 1993-01-29 1993-01-29 Semiconductor device using low thermal expansion polyimide Expired - Lifetime JP2604533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5013002A JP2604533B2 (en) 1993-01-29 1993-01-29 Semiconductor device using low thermal expansion polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5013002A JP2604533B2 (en) 1993-01-29 1993-01-29 Semiconductor device using low thermal expansion polyimide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61023828A Division JPS62184025A (en) 1986-02-07 1986-02-07 Low thermal expansion polyimide and electrical device using same

Publications (2)

Publication Number Publication Date
JPH05266718A true JPH05266718A (en) 1993-10-15
JP2604533B2 JP2604533B2 (en) 1997-04-30

Family

ID=11820981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5013002A Expired - Lifetime JP2604533B2 (en) 1993-01-29 1993-01-29 Semiconductor device using low thermal expansion polyimide

Country Status (1)

Country Link
JP (1) JP2604533B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU662676B2 (en) * 1993-03-26 1995-09-07 Ngk Insulators, Ltd. Electrically insulating material to be used in composite insulators, a process for the production of composite insulators by using such an electrically insulating material for housings thereof, and composite insulators using such an electrically insulating material as housings thereof
JP2007048923A (en) * 2005-08-10 2007-02-22 Shin Etsu Handotai Co Ltd Wafer crack evaluating apparatus and method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498573A (en) * 1972-05-16 1974-01-25
JPS52125161A (en) * 1976-04-09 1977-10-20 Ciba Geigy Ag Preparation of maleimide
JPS52141900A (en) * 1976-05-20 1977-11-26 Mitsubishi Electric Corp Preparation of heat-resistant polymer
JPS5353648A (en) * 1976-05-05 1978-05-16 Du Pont Preparation method of maleimide and dimaleimide
JPS5847006A (en) * 1981-09-16 1983-03-18 Mitsubishi Gas Chem Co Inc Curable resin composition
JPS59199721A (en) * 1983-04-27 1984-11-12 Hitachi Ltd Resin composition for heat-resistant molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498573A (en) * 1972-05-16 1974-01-25
JPS52125161A (en) * 1976-04-09 1977-10-20 Ciba Geigy Ag Preparation of maleimide
JPS5353648A (en) * 1976-05-05 1978-05-16 Du Pont Preparation method of maleimide and dimaleimide
JPS52141900A (en) * 1976-05-20 1977-11-26 Mitsubishi Electric Corp Preparation of heat-resistant polymer
JPS5847006A (en) * 1981-09-16 1983-03-18 Mitsubishi Gas Chem Co Inc Curable resin composition
JPS59199721A (en) * 1983-04-27 1984-11-12 Hitachi Ltd Resin composition for heat-resistant molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU662676B2 (en) * 1993-03-26 1995-09-07 Ngk Insulators, Ltd. Electrically insulating material to be used in composite insulators, a process for the production of composite insulators by using such an electrically insulating material for housings thereof, and composite insulators using such an electrically insulating material as housings thereof
JP2007048923A (en) * 2005-08-10 2007-02-22 Shin Etsu Handotai Co Ltd Wafer crack evaluating apparatus and method therefor

Also Published As

Publication number Publication date
JP2604533B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
EP0133533B1 (en) Low thermal expansion resin material for a wiring insulating film.
US5570506A (en) Method for forming multilayer wiring construction
JP2993453B2 (en) Base material for automated tape bonding tape
JPS60250031A (en) Low-thermal expansion resin material
US5133989A (en) Process for producing metal-polyimide composite article
JPS6032827A (en) Resin composition having low thermal expansion coefficient
US5120573A (en) Process for producing metal/polyimide composite article
JPS62184025A (en) Low thermal expansion polyimide and electrical device using same
EP0389195A2 (en) A process of forming a patterned polyimide film and articles including such a film
JPH05266718A (en) Electric apparatus using low thermal expansion polyimide
JPH0245998A (en) Thin film multilayer wiring substrate
JPS61181829A (en) Low-thermal expansion resin material
EP0552984A2 (en) Methods of making thin-film wiring boards, thin-film wiring boards made thereby, and adhesive materials
JPS63264632A (en) Low-thermal expansion resin
JPS6044338A (en) Composite molding
JPH02251584A (en) Heterocyclic ring-containing polyimide composite
JP3986949B2 (en) Flexible metal laminate for flexible printed circuit board
KR100241958B1 (en) Method for production of thin film multilayer wiring board
EP0491308B1 (en) Tetrapolyimide film containing oxydiphthalic dianhydride
JP2841966B2 (en) Multilayer wiring board and method of manufacturing the same
JPS63221629A (en) Electronic device
JPS6186256A (en) Composite molded shape
JPS61181828A (en) Low-thermal expansion resin material
JP4067388B2 (en) Adhesive base material for fixing lead frame with heat sink
JPH06244552A (en) Thin film multilayered wiring board and its manufacture