JPH0526670A - Three-axis reed spring type inclination measuring device - Google Patents

Three-axis reed spring type inclination measuring device

Info

Publication number
JPH0526670A
JPH0526670A JP3186689A JP18668991A JPH0526670A JP H0526670 A JPH0526670 A JP H0526670A JP 3186689 A JP3186689 A JP 3186689A JP 18668991 A JP18668991 A JP 18668991A JP H0526670 A JPH0526670 A JP H0526670A
Authority
JP
Japan
Prior art keywords
axis
lead
inclination
reed
component force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3186689A
Other languages
Japanese (ja)
Inventor
Takao Yamaguchi
隆男 山口
Hajime Nishizawa
一 西沢
Toshiki Kumakura
俊己 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3186689A priority Critical patent/JPH0526670A/en
Publication of JPH0526670A publication Critical patent/JPH0526670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To provide a fixed inclination measuring device with a simple structure. CONSTITUTION:Strip type reed springs 1, 2, 3 fixed on three rectangular axes X, Y, Z of a coordinate body at one end and having loads at the other end are fitted with the reed longitudinal direction set perpendicular to the axis and the perpendicular line of both surfaces of the reed set parallel with the axis, electronic displacement or strain measuring means measuring the deflection or strain at the tips of the springs by the gravitational component forces applied to the tip loads are provided near the reed tips or on the reed surfaces, the gravitational component forces of three axes of the coordinate body are obtained, and the inclination data of the coordinate body are calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子式傾斜測定装置に関
し、特に電子測定手段を有する固定式にて、可動部がな
いものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic tilt measuring device, and more particularly to a fixed type device having electronic measuring means and having no movable part.

【0002】[0002]

【従来の技術】従来、マイクロコンピュータ内蔵の可動
部のない電子傾斜測定装置が各種開発されていた。
2. Description of the Related Art Conventionally, various electronic tilt measuring devices having a built-in microcomputer and having no moving parts have been developed.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の電子
式傾斜計は機構の構成要素が多く、又傾斜演算方法を対
象に適応するため多様な特定計算が必要であった。
However, the conventional electronic inclinometer has many components of the mechanism, and various specific calculations are required in order to adapt to the inclination calculation method.

【0004】本発明の目的は、簡単な構成の固定式傾斜
測定装置を提供することにある。
An object of the present invention is to provide a fixed tilt measuring device having a simple structure.

【0005】[0005]

【課題を解決するための手段】本発明は、傾斜測定の基
本要素として座標体の3軸それぞれの各軸に固定端をも
ち自由端に荷重をもつ小型リードばねを各軸に直交して
且つリード表面の垂直線を各軸に平行にとりつけ重力分
力によるリード自由端の変位又はリード表面の歪みを電
子計測する方法を採用している。一般力学において図5
の(a) 及び図5の(b) に示す如くXYZ3軸座標系にお
いて任意空間ベクトルγの各軸正斜影が各軸方向余弦と
なり各軸3分力(x,y,z)が決定される。又この直
交座標系の3分力x,y,zは極座標系のγ,θ,τの
3要素に変換される。
According to the present invention, as a basic element of tilt measurement, a small reed spring having a fixed end on each of the three axes of a coordinate body and a load on the free end is orthogonal to each of the axes. The vertical line of the lead surface is attached parallel to each axis, and the method of electronically measuring the displacement of the free end of the lead or the distortion of the lead surface by gravity component force is adopted. Figure 5 in general mechanics
As shown in (a) of FIG. 5 and (b) of FIG. 5, in the XYZ three-axis coordinate system, each axis positive oblique of the arbitrary space vector γ becomes each axial cosine, and each axis three component force (x, y, z) is determined. .. Further, the three-component forces x, y, z of this orthogonal coordinate system are converted into three elements γ, θ, τ of the polar coordinate system.

【0006】本発明にては、これに対応して空間ベクト
ルに重力値をとった場合この3軸への正斜影が各軸出力
となり、それがそのまま重力の3軸分力値となる。
According to the present invention, when the gravity value is taken for the space vector corresponding to this, the positive oblique lines to the three axes become the output of each axis, and that becomes the force value of the three axes of gravity as it is.

【0007】[0007]

【作用】このように重力ベクトルの3軸分力が力学の直
交座標系の座標値算出の標準形式によることは、これら
の分力値を組合せて、この座標体の傾斜諸元の算出に当
たっても力学の公式をそのまま適用できる利点がある。
As described above, the fact that the triaxial component force of the gravity vector is based on the standard form of the coordinate value calculation of the Cartesian coordinate system of the dynamics makes it possible to combine these component force values and calculate the inclination specifications of this coordinate body. The mechanics formula can be applied as is.

【0008】すなわちこのXYZ座標体の0XY面を底
面として、直交軸をZ軸とし、鉛直線に対するZ軸の傾
斜諸元として前後傾斜、左右傾斜、最大傾斜を求めるこ
とは、いづれもZ軸を含み、床面に直交する前後面、左
右面、最大傾斜面それぞれの床面との交切線への重力分
力とZ軸重力分力との比の逆正切がそれぞれの傾斜角を
決定することになるも、この算出には特別な演算式の必
要はなく一般力学の直交座標値と極座標値との変換公式
がそのまま適用できる。
That is, the 0XY plane of this XYZ coordinate body is the bottom surface, the orthogonal axis is the Z axis, and the inclination characteristics of the Z axis with respect to the vertical line are the front and rear inclination, the left and right inclination, and the maximum inclination. Including, the front and rear surfaces orthogonal to the floor surface, the left and right surfaces, and the maximum inclined surface. The inverse normal cut of the ratio of the gravity component force to the intersection line with the floor surface and the Z-axis gravity component force determines each inclination angle. However, no special arithmetic expression is required for this calculation, and the conversion formula between the orthogonal coordinate value and the polar coordinate value of general mechanics can be applied as it is.

【0009】[0009]

【実施例】以下、本発明の一実施例を、添付図面を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0010】図1にXYZ3軸座標体の3軸にとりつけ
たリードばね型重力センサ1,2,3を示す。重力セン
サは極小型長方形、短冊型にして一例を示せば長さ6m
m、巾5mm、厚さ0.08mmの材質の洋白のリード
ばねにして大きさは上記以下のものも可能である。その
場合は長さ、巾、厚さがほぼ比例的に小型となる。この
リードばねを該当軸を含む取付台10−1,10−2,
10−3にそれぞれリード短手端面を固定し自由端には
それぞれ重さ1.0グラムの重錘m−1,m−2,m−
3をもち、リード長手方向を該当軸線に直交させ、又リ
ード表裏両面の直交線を該当軸線に平行にとりつける。
FIG. 1 shows reed spring type gravity sensors 1, 2 and 3 mounted on the three axes of an XYZ triaxial coordinate body. The gravity sensor is an ultra-small rectangle, a strip type, and if an example is shown, the length is 6 m.
It is also possible to use a nickel-white lead spring made of a material having m, a width of 5 mm, and a thickness of 0.08 mm and having the size described below. In that case, the length, width, and thickness are almost proportionally small. This lead spring is attached to the mounts 10-1, 10-2 including the corresponding shaft,
10-3 is fixed to the short side of the lead and the free ends are weights m-1, m-2 and m- of 1.0 gram each.
3, the lead longitudinal direction is orthogonal to the applicable axis, and the orthogonal lines on the front and back surfaces of the lead are attached parallel to the applicable axis.

【0011】この場合各軸リードばねの荷重m−1,m
−2,m−3に動作する重力分力によりリードばね自由
端は該当線に平行に分力の方向に応じて正負変位し、又
リードばね両表面に正負歪みを発生する。この変位は最
大0.2ミリ程度とされる。尚、各軸分力は重力ベクト
ル(Wベクトル)の正斜影であり、この値をW1
2 ,W3 とし、これによる各軸リードばねの変位をδ
1 ,δ2 ,δ3 、歪みをS 1 ,S2 ,S3 とすれば、変
位は微小のため各分力に比例するので、δ1 ∝W1 ,δ
2 ∝W2 ,δ3 ∝W3 となり又同様に、S1 ∝W1 ,S
2 ∝W2 ,S3∝W 3 となる。すなわち各軸リードばね
の変位又は歪みはそれぞれ各軸の重力分力を表してい
る。尚、簡単のため重力値を1にとれば各軸重力分力は
重力ベクトルの方向余弦値を示すので、各軸リードばね
の変位又は歪みは重力ベクトルの各軸方向余弦に対応す
ることとなる。
In this case, the loads m-1 and m of the respective lead springs
-Lead spring can be freely moved by gravity component acting in -2 and m-3.
The end is displaced positive and negative depending on the direction of the component force parallel to the relevant line, and
Positive and negative strain is generated on both surfaces of the lead spring. This displacement is maximum
It is about 0.2 mm. The force of each axis is gravity vector.
(W vector) is an orthographic shadow, and this value is W1
W 2, W3And the resulting displacement of each lead spring is δ
1, Δ2, Δ3, Distortion S 1, S2, S3If so,
Since the position is minute, it is proportional to each component force, so δ1∝W1, Δ
2∝W2, Δ3∝W3In the same way, S1∝W1, S
2∝W2, S3∝W 3Becomes That is, each axis lead spring
The displacement or strain of represents the gravity component of each axis.
It For the sake of simplicity, if the gravity value is set to 1, the gravity component of each axis will be
Since the direction cosine value of the gravity vector is shown, each axis lead spring
The displacement or strain of corresponds to each axial cosine of the gravity vector
The Rukoto.

【0012】尚上記の3軸リードばねを3軸各該当軸に
取付けるにあたり各軸リードともリードの長手軸の方向
は該当軸の周囲との方向であっても差はないが、一般的
には図1に示す如くX軸及びY軸リードは0X線0Y線
の下方に、即ちいづれも長手軸の方向を−Z軸に平行に
とりつける。またZ軸リードは長手軸を0X又は0Y線
に平行にとりつける。図示の場合にはZ軸リードをX軸
に平行にとりつけている。
When the above-mentioned triaxial lead spring is attached to each of the triaxial corresponding shafts, there is no difference in the direction of the longitudinal axis of the lead from each axial lead, even if it is the direction of the circumference of the applicable shaft. As shown in FIG. 1, the X-axis and Y-axis leads are attached below the 0X line and 0Y line, that is, the longitudinal axis direction is parallel to the -Z axis. The Z-axis lead is attached with the longitudinal axis parallel to the 0X or 0Y line. In the case shown, the Z-axis lead is attached parallel to the X-axis.

【0013】図2は重力分力センサの変位計測手段の例
を示す。図2の分力変位計測手段は図1のXYZ3軸の
リードばねのいづれにも同一構成であり図1において各
軸リードばねに近接してP1 ,P2 ,P3 として示され
ている。図2のものはX軸リードばねに対応するP1
示している。従って図2において1のリードばねは厚み
方向に直交した断面図であり従ってX−X軸はリードば
ねの長手軸に直交し、且ばねのリード表面の垂直線はX
−X線に平行である。従って重力分力による荷重の動き
はX−X線に平行となる。
FIG. 2 shows an example of displacement measuring means of the gravity component force sensor. The component force displacement measuring means of FIG. 2 has the same structure as that of the XYZ triaxial lead springs of FIG. 1, and is shown as P 1 , P 2 and P 3 in FIG. 2 shows P 1 corresponding to the X-axis lead spring. Therefore, in FIG. 2, the lead spring 1 is a cross-sectional view orthogonal to the thickness direction. Therefore, the XX axis is orthogonal to the longitudinal axis of the lead spring, and the vertical line on the lead surface of the spring is X.
-Parallel to the X-ray. Therefore, the movement of the load due to the gravity component force is parallel to the XX line.

【0014】コイルL1 及びL2 は高周波電源OSCを
持つブリッジ回路の隣接する1対のインダクタンスアー
ムを構成する。コイルL1 及びL2 はリードばねの重り
m−1の表面を左右より小間隔を隔てて対向している。
この2個のインダクタンスに対向するブリッジアームに
電源OSCから見て単方向性をもつ、2組の整流器D 1
及びD2 が接続されている。このような構成において、
リードばねの先端にX−X方向の重力分力を受けて、変
位すると、各コイルL1 及びL2 と重錘m−1の真鍮金
属面との間の間隔が変化し、コイルL1 及びL2 のイン
ダクタンスの差を生じ、出力端子31,32に出力を発
生する。
Coil L1And L2Is the high frequency power supply OSC
A pair of adjacent inductors in the bridge circuit
Composing the system. Coil L1And L2Is the weight of the reed spring
The surfaces of m-1 are opposed to each other with a small distance from the left and right.
On the bridge arm facing these two inductances
Two sets of rectifiers D, which are unidirectional when viewed from the power supply OSC 1
And D2Are connected. In such a configuration,
The tip of the reed spring receives a gravitational force component in the XX direction,
When placed, each coil L1And L2And brass weight of weight m-1
The distance to the metal surface changes and the coil L1And L2Inn of
A difference in dactance is generated, and output is output to output terminals 31 and 32.
To live.

【0015】上記リードばねの変位計測手段はリードば
ねの歪み計測手段に代えることが出来る。図3において
はZ軸リードばねの表面上下にストレーンゲージR1
2 を接合している。X軸及びZ軸リードばねにも同様
にストレーンゲージが接合されている。図3におけるゲ
ージR1 ,R2 は図4に示す如きブリッジ回路により歪
みが計測される。この場合R1 ,R2 は電源よりみて順
方向に配置されたブリッジアームの相隣る2抵抗とな
り、R1 とR2 との中点と、R1 ,R2 に対向するアー
ムの2抵抗の中点とがブリッジ出力端子41,42とな
る。このような回路においてリードばねの表面表裏の一
方は伸延、他方は圧縮により正負同大の歪みを発生し歪
みはR1 とR2 の代数差の関数として発生するため出力
端子41,42よりは2倍の出力を発生し歪み計測感度
が増進される。一方R1 とR2 の温度誤差は同符号のた
め補償される効果がある。
The lead spring displacement measuring means can be replaced with a lead spring strain measuring means. In FIG. 3, a strain gauge R 1 , above and below the surface of the Z-axis reed spring,
Joining R 2 . A strain gauge is similarly joined to the X-axis and Z-axis lead springs. The strains of the gauges R 1 and R 2 in FIG. 3 are measured by the bridge circuit as shown in FIG. In this case R 1, R 2 becomes two neighboring resistance bridge arms which are arranged in the forward direction as viewed from the power source, the midpoint of R 1 and R 2, second resistor arms facing the R 1, R 2 The middle point is the bridge output terminals 41 and 42. While the distraction surface sides of the lead spring in such a circuit, the other strain to cause distortion of the positive and negative university by compression from the output terminals 41 for generating as a function of the algebraic difference between R 1 and R 2 The double output is generated and the strain measurement sensitivity is improved. On the other hand, the temperature error between R 1 and R 2 has the same sign, and therefore has the effect of being compensated.

【0016】上述においてリードばね変位計測手段には
高周波可変インダクタンスブリッジ型変位計を用い、又
リードばね歪み計測手段にはストレーンゲージ型歪み計
を用いたが、前者には光電型やコンデンサー型の変位計
に代えることが出来、後者には弾性シリコン基板にスト
レージ抵抗素子を蒸着した固体半導体型式の歪み測定手
段に代えることも出来る。
In the above description, a high frequency variable inductance bridge type displacement gauge is used as the lead spring displacement measuring means and a strain gauge type strain gauge is used as the lead spring strain measuring means. In the former, photoelectric type or condenser type displacement is used. Alternatively, the latter may be replaced by a solid semiconductor type strain measuring means in which a storage resistance element is vapor-deposited on an elastic silicon substrate.

【0017】上述の如く3軸リードばね型重力センサに
て座標体のXYZ3軸の重力ベクトルの分力が計測でき
る。これは一般力学のXYZ座標系における空間ベクト
ルの各軸正斜影及び分力値との関係と同一である。
As described above, the component force of the XYZ triaxial gravity vector of the coordinate body can be measured by the triaxial reed spring type gravity sensor. This is the same as the relationship between the space vector in the XYZ coordinate system of general mechanics, the positive oblique shadows of each axis, and the component force values.

【0018】又これらのXYZ3軸の重力分力を組合せ
て鉛直線に対するXYZ座標系X傾斜諸元の算出が出来
る。
Further, by combining these gravitational force components of the three axes of XYZ, it is possible to calculate the X inclination specifications of the XYZ coordinate system with respect to the vertical line.

【0019】即ちこの場合は図6に示す如く0−XY面
を床面とし0Z軸を直交軸とする0−XYZ座標系にお
いてZ軸を含み床面に直交する前後面、左右面、最大傾
斜面への各面への鉛直線の投影が各面内にてZ軸となす
角が鉛直線に対するZ軸の各面内における傾斜となる
が、これは各面の床面との交切線となる前後軸、左右
軸、最大傾斜線への重力分力とZ軸分力比の逆正接とな
る。
That is, in this case, as shown in FIG. 6, in the 0-XYZ coordinate system in which the 0-XY plane is the floor surface and the 0Z axis is the orthogonal axis, the front and rear surfaces, the left and right surfaces, and the maximum inclination that include the Z axis and are orthogonal to the floor surface. The angle formed by the projection of the vertical line on each surface to the Z axis in each surface is the inclination of the Z axis with respect to the vertical line in each surface, and this is the intersection line with the floor surface of each surface. Is the arctangent of the gravity component force and the Z-axis component force ratio to the front-back axis, the left-right axis, and the maximum inclination line.

【0020】又この前後傾斜、左右傾斜、最大傾斜の算
出には特別な演算を要せず一般力学の直角座標値より極
座標系への変換の公式がそのまま適用できる。
No special calculation is required for the calculation of the front-back inclination, the left-right inclination, and the maximum inclination, and the formula for converting the rectangular coordinate value of general mechanics into a polar coordinate system can be applied as it is.

【0021】このことを示すために次の一般力学文献 一般力学 プランク著、寺沢寛一訳 直角座標系P3
0〜31 基礎の物理1力学 川口光年著 球座標系P25 より図面及び諸公式を次に抄録する。
In order to show this, the following general mechanics literature General mechanics Translated by Planck, translated by Hirokazu Terasawa Cartesian coordinate system P3
0-31 Basic physics 1 Mechanics Kawaguchi, Mitsutoshi Drawings and various formulas are abstracted from the spherical coordinate system P25.

【0022】まず、の文献より抄録すると図5のaは
直交座標系0−XYZにおいて空間点Pの座標値をOP
を対角線とする直角六面体の三辺x,y,zにて表わ
す。OPベクトルの各辺となす方向余弦値をξ,η,
ζ,OP=γとして
First, when abstracted from the above document, FIG. 5A shows that the coordinate value of the space point P is OP in the Cartesian coordinate system 0-XYZ.
It is represented by the three sides x, y, z of a right-angled hexahedron whose diagonal line is. Let ξ, η, and the direction cosine value of each side of the OP vector
Let ζ and OP = γ

【0023】[0023]

【数1】γ2 =x2 +y2 +z2 [Formula 1] γ 2 = x 2 + y 2 + z 2

【0024】[0024]

【数2】x=γcoξ ,y=γwoη,z=γcos
ζ
## EQU2 ## x = γcoξ, y = γwoη, z = γcos
ζ

【0025】[0025]

【数3】cos2 ξ+cos2 η+cos2 ζ=1## EQU3 ## cos 2 ξ + cos 2 η + cos 2 ζ = 1

【0026】またの文献より抄録すると、図5のbは
球座標系にてP点(x,y,z)からxy面に下した垂
線の交点をB点としOP=γ,OPベクトルとZ軸のな
す角θ、OPベクトルとX軸のなす角をψとする。直交
座標系(x,y,z)と球座標系(γ,θ,ψ)との関
係は、
Further, when abstracted from the literature, in FIG. 5B, in the spherical coordinate system, the intersection point of the perpendiculars from the point P (x, y, z) to the xy plane is point B, and OP = γ, OP vector and Z The angle formed by the axis is θ, and the angle formed by the OP vector and the X axis is ψ. The relationship between the Cartesian coordinate system (x, y, z) and the spherical coordinate system (γ, θ, ψ) is

【0027】[0027]

【数4】x=γsinθcosψX = γ sin θ cos ψ

【0028】[0028]

【数5】y=γsinθsinψ## EQU5 ## y = γ sin θ sin ψ

【0029】[0029]

【数6】z=γcosθ## EQU6 ## z = γ cos θ

【0030】[0030]

【数7】γ2 =x2 +y2 +z2 (7) γ 2 = x 2 + y 2 + z 2

【0031】[0031]

【数8】tanψ=y/xTan ψ = y / x

【0032】[0032]

【数9】 [Equation 9]

【0033】となる。本実施例の説明に立ち返り、図5
の(a)(b)、並にこれを本例に適用した図6に於いて、重
力ベクトルをWベクトルとして
It becomes Returning to the description of this embodiment, FIG.
In (a) and (b) of Fig. 6 and Fig. 6 in which this is applied to this example, the gravity vector is taken as the W vector.

【0034】[0034]

【数10】W=γ(10) W = γ

【0035】とし、リード型重力センサ出力値をW1
2 ,W3 とすれば,〔数2〕式より
Let the output value of the lead type gravity sensor be W 1 ,
Assuming W 2 and W 3 ,

【0036】[0036]

【数11】W1 =x[Equation 11] W 1 = x

【0037】[0037]

【数12】W2 =y[Equation 12] W 2 = y

【0038】[0038]

【数13】W3 =z[Equation 13] W 3 = z

【0039】従って〔数1〕式よりTherefore, according to the formula [1],

【0040】[0040]

【数14】W1 2 +W2 2 +W3 2 =W2 [Equation 14] W 1 2 + W 2 2 + W 3 2 = W 2

【0041】又重力値を一定としてW=1とおけばその
ときのW1 ,W2 ,W3 を(W1 0 ,(W2 0
(W3 0 として〔数2〕式より、
If the gravity value is constant and W = 1, then W 1 , W 2 , and W 3 at that time are (W 1 ) 0 , (W 2 ) 0 ,
As (W 3 ) 0 , from the equation (2),

【0042】[0042]

【数15】(W10 =cosξ(15) (W 1 ) 0 = cos ξ

【0043】[0043]

【数16】(w20 =cosη## EQU16 ## (w 2 ) 0 = cos η

【0044】[0044]

【数17】(W30 =cosζ## EQU17 ## (W 3 ) 0 = cos ζ

【0045】従って、この場合は〔数3〕式よりTherefore, in this case, from the formula [3],

【0046】[0046]

【数18】(W1 0 2+(W2 0 2+(W3 0 2=1[Equation 18] (W 1 ) 0 2 + (W 2 ) 0 2 + (W 3 ) 0 2 = 1

【0047】となる。It becomes

【0048】又前後傾斜は0XZ面においてZ軸分力W
3 を底辺としX軸分力W1 を立辺にした直角三角形のX
軸分力対角であり、これをPとすれば
Further, the front-back inclination is the Z-axis component force W on the 0XZ plane.
X of a right triangle whose base is 3 and X-axis component force W 1 is a vertical side
It is the axial force diagonal, and if this is P

【0049】[0049]

【数19】P=tan-1(W1 /W3 [Formula 19] P = tan −1 (W 1 / W 3 ).

【0050】同様に左右傾角は0YZ面内においてZ軸
分力W3 を底辺にY軸分力W2 を立辺にした直角三角形
のY軸分力対角であり、これをRとすれば、
Similarly, the left-right tilt angle is the Y-axis component force diagonal of a right triangle having the Z-axis component force W 3 as the base and the Y-axis component force W 2 as the vertical side in the 0YZ plane. ,

【0051】[0051]

【数20】R=tan-1(W1 /W3 [Equation 20] R = tan −1 (W 1 / W 3 ).

【0052】となる。又最大傾斜角をMとすればこれは
図6においては0BP面内にてZ軸分力W3 を底辺に0
P線の分力0Bを立辺にした垂直三角形0BPのBPと
0Pベクトルとの挟角であり、これをMとする。以上は
図5の(a) の直角座標系図によったがこれを図5の(b)
の球座標系により示せば、
It becomes The 0 maximum inclination angle M Tosureba which the bottom of the Z-axis force component W 3 at 0BP plane in FIG. 6
It is the included angle between the BP and the 0P vector of a vertical triangle 0BP having the component force 0B of the P line as the vertical side, and this is M. The above is based on the Cartesian coordinate system diagram of FIG. 5 (a).
The spherical coordinate system of

【0053】[0053]

【数21】M=θ(21) M = θ

【0054】となる。従って式〔数9〕よりIt becomes Therefore, from the formula [Equation 9]

【0055】[0055]

【数22】 [Equation 22]

【0056】となる。又最大傾斜の方向をσにて示せば
σ=ψとなりこれは式〔数8〕により
It becomes Also, if the direction of maximum inclination is denoted by σ, then σ = ψ, which is given by the formula [Equation 8].

【0057】[0057]

【数23】σ=tan-1(W2 /W1 (23) σ = tan −1 (W 2 / W 1 )

【0058】が求められる。又前方傾斜P、左右傾斜R
と最大傾斜Mとの間には〔数4〕式及び〔数5〕式によ
Is required. In addition, forward tilt P, left and right tilt
Between the maximum slope M and the maximum slope M

【0059】[0059]

【数24】tanP=tanM×cosσTanP = tanM × cosσ

【0060】[0060]

【数25】tanR=tanM×sinσ(25) tanR = tanM × sin σ

【0061】従ってTherefore,

【0062】[0062]

【数26】P=tan-1(tanM×cosσ)(26) P = tan −1 (tanM × cosσ)

【0063】[0063]

【数27】R=tan-1(tanM×cosσ)R = tan −1 (tan M × cos σ)

【0064】コンピュータによる傾斜諸元演算の場合は
上記諸元の中より前後傾斜P、左右傾斜R、最大傾斜
M、最大傾斜方向σの4元を演算表示するのが一般であ
る。
In the case of computing the tilt specifications by a computer, it is general to calculate and display four elements of the front-back tilt P, the left-right tilt R, the maximum tilt M, and the maximum tilt direction σ from the above-mentioned specifications.

【0065】本実施例におけるコンピュータにより上記
の関係式による傾斜諸元算出のフローチャートを図7及
び図8に示す。図7は前後及び左右傾斜がいづれも±4
5°以下の場合である。この時は同図に示す如く直ちに
前後傾斜P、左右傾斜Rを〔数19〕式及び〔数20〕
式により算出する。又前後左右傾斜±45°以下の場合
には傾斜測定としてはP、R値算出のみにて一般に充分
である。従って最大傾斜M及びその方向の算出はP、R
の算出後の必要に応じて行う。この算出は〔数22〕式
及び〔数23〕式による。これらの結果をP,R又必要
に応じてM,σを付加して表示する。
7 and 8 are flowcharts of the calculation of the inclination specifications by the above-mentioned relational expression by the computer in this embodiment. Fig. 7 shows ± 4 both forward and backward and left and right
This is the case of 5 ° or less. At this time, the front and rear inclination P and the left and right inclination R are immediately calculated as shown in FIG.
Calculate by formula. Further, in the case where the front-rear and left-right inclination is ± 45 ° or less, it is generally sufficient to calculate the P and R values as the inclination measurement. Therefore, the maximum tilt M and its direction are calculated by P, R
After the calculation of, it is performed as necessary. This calculation is based on [Equation 22] and [Equation 23]. These results are displayed by adding P and R, and if necessary, M and σ.

【0066】次に前後及び左右の傾斜が±45°以上±
360°に至る反転、横転、宙返りを含む全範囲の時は
図8のフローチャートで示すがこの場合は運動範囲が広
く、運動の変化も激しいため、最初に〔数22〕式及び
〔数23〕式によって最大傾斜M及びその方向σを算出
し、続いて〔数26〕式及び〔数27〕式によって前後
傾斜P及び左右傾斜Rを算出する。これは〔数22〕式
の最大傾斜算出並びに〔数23〕式によりその方向算出
にはいづれも正余弦の比の逆正切演算の形式をとるため
に入力W1 ,W2 ,W3 の出力の誤差が自動的に消去さ
れ計測の精度が向上する。従ってM,σより算出された
P,R値はW1 ,W2 ,W3 そのままで算出される〔数
19〕式,〔数20〕式より精度の向上が確保できるか
らである。表示はP,R,M,σ四元素系となる。
Next, the front and rear and left and right inclinations are ± 45 ° or more ±
The flow chart of FIG. 8 shows the entire range including reversal, rollover, and somersault up to 360 °. In this case, since the range of motion is wide and the change in motion is severe, first, [Formula 22] and [Formula 23] are given. The maximum inclination M and its direction σ are calculated by the equations, and then the front-rear inclination P and the left-right inclination R are calculated by the equations [26] and [27]. This is because the output of inputs W 1 , W 2 and W 3 is used in order to calculate the maximum slope of [Equation 22] and the calculation of the direction thereof by [Equation 23], in order to take the form of an inverse normal division operation of the ratio of the cosine. The error of is automatically deleted and the measurement accuracy is improved. Therefore, the P and R values calculated from M and σ can be improved in accuracy by the formulas [19] and [20], which are calculated as they are W 1 , W 2 and W 3 . The display is a P, R, M, σ four-element system.

【0067】[0067]

【発明の効果】本発明の3軸リード型重力センサは簡易
な構成にして、重力の3軸分力値を正確に且高レスポン
スにて測定出来る。又これを用いて傾斜諸元の算出は力
学の公式をそのまま用いることにより高精度の算定がで
きる。
The 3-axis lead type gravity sensor of the present invention has a simple structure and can accurately measure the 3-axis component force value of gravity with high response. In addition, using this, the inclination specifications can be calculated with high accuracy by using the mechanics formula as it is.

【図面の簡単な説明】[Brief description of drawings]

【図1】3軸重力センサの例を示す斜視図である。FIG. 1 is a perspective view showing an example of a triaxial gravity sensor.

【図2】重力センサの変位計測手段の例を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing an example of displacement measuring means of a gravity sensor.

【図3】重力センサの歪み計測手段を具備する例を示す
斜視図である。
FIG. 3 is a perspective view showing an example including a strain measuring unit of a gravity sensor.

【図4】歪み計測手段の回路を示す説明図である。FIG. 4 is an explanatory diagram showing a circuit of a distortion measuring unit.

【図5】図5の(a) は直交3軸座標系の座標値x,y,
z表示を示す説明図で、図5の(b) は球座標系の3要素
γ,θ,ψ表示を示す説明図である。
FIG. 5 (a) shows coordinate values x, y, in a Cartesian three-axis coordinate system.
FIG. 5B is an explanatory view showing z display, and FIG. 5B is an explanatory view showing display of three elements γ, θ, ψ of the spherical coordinate system.

【図6】本発明における重力分力及び傾斜諸元表示の説
明図である。
FIG. 6 is an explanatory view of gravity component force and inclination specification display in the present invention.

【図7】傾斜角正負45°以下の場合の傾斜諸元算出の
フローチャートである。
FIG. 7 is a flowchart for calculating the tilt specifications when the tilt angle is 45 ° or less.

【図8】傾斜角全範囲の場合の傾斜諸元算出フローチャ
ートである。
FIG. 8 is a tilt specification calculation flowchart in the case of the entire tilt angle range.

【符号の説明】[Explanation of symbols]

0−XYZ 3軸座標軸 0ζ 重力線 W 重力ベクトル W1 ,W2 ,W3 重力分力 1,2,3 リードばね m−1,m−2,m−3 重錘 10−1,10−2,10−3 取付座 P1 ,P2 ,P3 変位計測手段 L1 ,L2 コイル D1 ,D2 ダイオード OSC 電源 31,32 出力端子 R1 ,R2 歪みゲージ 41,42 出力端子 P 前後傾斜 R 左右傾斜 M 最大傾斜 σ 最大傾斜方向0-XYZ 3-axis coordinate axis 0ζ Gravity line W Gravity vector W 1 , W 2 , W 3 Gravity component force 1,2,3 Reed spring m-1, m-2, m-3 Weights 10-1, 10-2 , 10-3 Mounting seat P 1 , P 2 , P 3 Displacement measuring means L 1 , L 2 coil D 1 , D 2 diode OSC power supply 31, 32 Output terminal R 1 , R 2 Strain gauge 41, 42 Output terminal P Before and after Inclination R Left-right inclination M Maximum inclination σ Maximum inclination direction

Claims (1)

【特許請求の範囲】 【請求項1】 座標体の直交3軸のそれぞれに、該当軸
線上に一端を固定し、他端に荷重をもつ短冊型のリード
ばねを、リード長手方向を該当軸線に直交に、且つリー
ド両表面の直交線を該当軸線に平行にとりつけ、先端荷
重に動作する重力分力によるばね先端の撓み又は歪みを
リード先端近傍又はリード表面に電子変位又は歪み計測
手段を具備することにより、座標体の3軸の重力分力を
求め、これより座標体の傾斜諸元を算出する座標体の3
軸リードばね型傾斜測定装置。
Claim: What is claimed is: 1. A strip-shaped lead spring having one end fixed on each of the three orthogonal axes of the coordinate body and having a load on the other end, the longitudinal direction of the lead being the corresponding axis. Attaching the orthogonal lines of both surfaces of the lead in parallel to the axis concerned, and bending or strain of the spring tip due to gravity component force acting on the tip load is provided with electronic displacement or strain measuring means near the lead tip or on the lead surface. By doing so, the gravity component force of the three axes of the coordinate body is obtained, and the tilt specifications of the coordinate body are calculated from this
Axial lead spring type tilt measuring device.
JP3186689A 1991-07-25 1991-07-25 Three-axis reed spring type inclination measuring device Pending JPH0526670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3186689A JPH0526670A (en) 1991-07-25 1991-07-25 Three-axis reed spring type inclination measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3186689A JPH0526670A (en) 1991-07-25 1991-07-25 Three-axis reed spring type inclination measuring device

Publications (1)

Publication Number Publication Date
JPH0526670A true JPH0526670A (en) 1993-02-02

Family

ID=16192917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3186689A Pending JPH0526670A (en) 1991-07-25 1991-07-25 Three-axis reed spring type inclination measuring device

Country Status (1)

Country Link
JP (1) JPH0526670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107514992A (en) * 2016-06-17 2017-12-26 湖南科技学院 A kind of strain resistance type horizon detector
CN113267168A (en) * 2021-06-21 2021-08-17 甘肃第四建设集团有限责任公司 Object inclination measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107514992A (en) * 2016-06-17 2017-12-26 湖南科技学院 A kind of strain resistance type horizon detector
CN113267168A (en) * 2021-06-21 2021-08-17 甘肃第四建设集团有限责任公司 Object inclination measuring device

Similar Documents

Publication Publication Date Title
US10702988B2 (en) Method and system for load estimation and gravity compensation on a robotic arm
US4611491A (en) Accelerometer system
JPS6226532A (en) Isometric controller
CN109983345B (en) Signal processing device, inertial sensor, acceleration measurement method, electronic device, and program
TW200403439A (en) Acceleration measuring apparatus with calibration function
JPH0518750A (en) Total-range inclined direction measuring device
CN110192150A (en) Attitude-control device, holding meanss, attitude control method and program
WO2019047560A1 (en) Weight-bearing measuring device and method, and weight-bearing apparatus
JP2008151596A (en) Load cell and mass meter
JPH0526670A (en) Three-axis reed spring type inclination measuring device
KR100585499B1 (en) Device and method for measuring azimuth angle using 2-axis magnetic sensor and 2-axis acceleration sensor
JPH08304448A (en) Apparatus and method for detection of dynamic amount
KR101931758B1 (en) Portable displacement measuring device using laser
JP3621188B2 (en) Mass measuring device
JP5490576B2 (en) Magnetic field detector
Patel et al. Validation of experimental strain measurement technique and development of force transducer
JP4352892B2 (en) Micro tilt detector
JP2010025840A (en) Force detector
JP3642639B2 (en) A weighing device having a plurality of load converting means
JP2019095312A (en) Triaxial acceleration sensor
JP2022134578A (en) Triaxial load measurement system, triaxial load measurement method, and program
JPH10104097A (en) Load detector
JPWO2005052601A1 (en) Acceleration detector
JP2632449B2 (en) Mechanical quantity detector
JP3350819B2 (en) Contour data measurement device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20071206

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20081206

LAPS Cancellation because of no payment of annual fees