JPH05266002A - Disease condition estimating system applying inter-viscous tissue network - Google Patents

Disease condition estimating system applying inter-viscous tissue network

Info

Publication number
JPH05266002A
JPH05266002A JP6306392A JP6306392A JPH05266002A JP H05266002 A JPH05266002 A JP H05266002A JP 6306392 A JP6306392 A JP 6306392A JP 6306392 A JP6306392 A JP 6306392A JP H05266002 A JPH05266002 A JP H05266002A
Authority
JP
Japan
Prior art keywords
tissue
database
lesion
tissues
medication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6306392A
Other languages
Japanese (ja)
Inventor
Keiji Okamura
敬二 岡村
Jun Motoike
順 本池
Hideyuki Ban
伴  秀行
Akihide Hashizume
明英 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6306392A priority Critical patent/JPH05266002A/en
Publication of JPH05266002A publication Critical patent/JPH05266002A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a disease condition estimating system which backs up a doctor to exactly estimate the progress of the disease condition of a patient without relying on the experiences of the doctor. CONSTITUTION:Plural viscera which may possibly be morbid metastasis are connected to each other via the transfer paths and at the same time each viscus is divided into internal tissues in an inter-viscus tissue network model. Based on this model, a disease estimating system carries out the calculation to estimate the change of the disease condition. Then a processor of this system estimates the capacity rate of each internal tissue to be morbid at an optional future time point based on a data base 22 related to the self-growing speed, the inter- tissue metastasis frequency statistics, and the inter-viscus metastasis frequency statistics and also based on the capacity rate of the tissue to be morbid set against the total capacity of each internal tissue of the relevant patient inputted as the initial conditions 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は癌などに対する医師の投
薬、手術、入退院時期の早期決定のための支援システム
に関する。また、アルコール依存症や慢性的な中毒など
に陥っている患者の病巣分布の将来の状態を予測して提
示するのに利用可能なシステムに関する。さらに、初期
条件に仮想的な病巣分布と仮想的な投薬デ−タを入力す
ることで医師の投薬におけるエクスパート性を訓練する
学習シミュレータシステムとして利用することも可能で
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a support system for doctors for cancer and the like, surgery, and early determination of the time of admission and discharge. It also relates to a system that can be used for predicting and presenting the future state of lesion distribution in patients suffering from alcoholism, chronic intoxication, etc. Furthermore, it is also possible to use it as a learning simulator system that trains a doctor's expertise in medication by inputting virtual lesion distribution and virtual medication data as initial conditions.

【0002】[0002]

【従来の技術】現在患者への投薬、患者の手術、入退院
時期の決定はその多くを医師の経験によっている。胃癌
治療時の最適投薬支援システムの研究がいくつか発表さ
れているが、いずれも各々の臓器内に限った支援システ
ムに留まっている。最近の例として、国立癌センターで
は過去10年間の診療カルテを統計的に整理し症例デー
タベースを充実させることで今後の病状進行を確率的に
予測している。また感染症の流行予測や白血病の治療計
画への数理モデルの応用例が報告されている。さらに、
臨床検査情報から病状診断支援システムを構築し、リス
クの疾病に対して予後(軽快か死亡か)を統計的な判別
値として評価した川崎医科大学の報告がある。
2. Description of the Related Art At present, most of the decisions on drug administration to patients, surgery on patients, and timing of admission and discharge depend on the experience of doctors. Several studies have been published on the optimal medication support system for treating gastric cancer, but all of them are limited to the support system within each organ. As a recent example, the National Cancer Center has probabilistically predicted future disease progression by statistically organizing medical records for the past 10 years and expanding the case database. In addition, examples of application of mathematical models to predicting epidemics of infectious diseases and treatment plans for leukemia have been reported. further,
There is a report from Kawasaki Medical School that constructed a medical condition diagnosis support system from clinical laboratory information and evaluated the prognosis (exacerbation or death) for risk diseases as a statistical discriminant value.

【0003】[0003]

【発明が解決しようとする課題】現在、患者への投薬、
患者の手術、入退院時期の決定は医師の経験によるとこ
ろが大きい。しかも病床数不足や看護婦不足が叫ばれて
いる今、患者数の適正化、手術もしくは投薬時期の適正
化は重要な課題となる。従来の投薬判断の支援システム
や病状進行の予測システムは相互に関連する複数の臓器
の病巣について病状の進行や投薬効果の予測情報提供す
るものでなく、医師の総合的判断を支援する点でも、ま
た医師の学習の支援システムとしても十分ではなかっ
た。
[Problems to be Solved by the Invention] At present, medication to patients,
Determining the timing of surgery and hospitalization for patients depends largely on the experience of the doctor. Moreover, now that the lack of beds and the lack of nurses are being emphasized, it is an important issue to optimize the number of patients and the timing of surgery or medication. Conventional support system for medication judgment and prediction system of disease progression do not provide predictive information of disease progression or medication effect for lesions of multiple organs related to each other, and also in terms of supporting comprehensive judgment of doctors. It was also not sufficient as a support system for doctors' learning.

【0004】本発明のひとつの目的は、相互に関連する
複数の臓器についてこれからの病状進行、もしくは投薬
による治療効果を、経験によらず医師が的確に予測する
ことを支援する病状予測システムを提供することにあ
る。
An object of the present invention is to provide a medical condition predicting system which assists a doctor to accurately predict the future medical condition progress of a plurality of mutually related organs or the therapeutic effect of medication regardless of experience. To do.

【0005】本発明の他の目的は、初期に仮想的に患者
の病変状態を設定し、最適投薬時期をアドバイスできる
病状予測システムを提供することにある。
Another object of the present invention is to provide a medical condition predicting system capable of virtually setting a lesion state of a patient in the initial stage and giving an advice on an optimum timing of medication.

【0006】本発明の他の目的は、実経験によらず病変
状態の予測や投薬効果を学習するのに適した病状予測シ
ステムを提供することにある。
Another object of the present invention is to provide a medical condition predicting system suitable for predicting a lesion state and learning a drug effect regardless of actual experience.

【0007】[0007]

【課題を解決するための手段】本発明のシステムは、病
変予測計算の初期条件と病変進行途中における投薬デー
タを入力するための対話型入力装置と、データベース蓄
積手段と、計算処理を行なうための処理装置と、予測計
算結果を医師に提示するための表示装置とを含み、体液
循環により病変の転移可能性のある複数の臓器をその転
移経路で結合し、かつ各臓器を複数の内部組織に分割し
た臓器組織間ネットワークモデルをもとに病状予測処理
を行う。初期条件としては対象患者の上記各臓器の各内
部組織ごとの全容量に対する病変組織の容量率が入力さ
れ、データベースとしては少なくとも病巣組織の自己増
殖速度、組織間の転移頻度統計、及び臓器間の転移頻度
統計に関するデータベースが予め蓄積されている。処理
装置は初期条件の各内部組織ごとの病変組織の容量率と
上記データベースとを用いて任意の将来の時点の各組織
の病変組織容量率を求める予測計算を行う。
The system of the present invention comprises an interactive input device for inputting initial conditions for lesion prediction calculation and medication data during lesion progression, database accumulating means, and calculation processing. It includes a processing device and a display device for presenting a prediction calculation result to a doctor, and connects a plurality of organs having a possibility of metastasis of a lesion by body fluid circulation by the metastatic route, and connects each organ to a plurality of internal tissues. The medical condition prediction process is performed based on the divided network model between organ tissues. As the initial condition, the volume ratio of the diseased tissue to the total volume of each internal tissue of each organ of the target patient is input, and as a database, at least the self-proliferation rate of lesion tissue, the metastasis frequency statistics between tissues, and A database of metastasis frequency statistics is stored in advance. The processing device performs a predictive calculation for obtaining a lesion tissue volume ratio of each tissue at an arbitrary future time point using the volume ratio of the lesion tissue for each internal tissue under the initial condition and the database.

【0008】本発明の別の特徴は、上記データベース蓄
積手段は、病変組織の容量率と発現症状を検索キー項目
として作成された症例データベースをさらに蓄積してお
り、上記処理装置は、予測計算の結果で得た各臓器、各
組織の病変組織の容量率を降順にソートし直し、対応す
る組織番号をキー項目として容量率の大きい病変組織か
ら順に上記症例データベースを検索する点にある。
Another feature of the present invention is that the database accumulating means further accumulates a case database created by using the volumetric ratio of lesion tissue and the manifestation symptom as a search key item, and the processing device is configured to perform predictive calculation. The volume ratio of the lesion tissues of each organ and each tissue obtained as a result is sorted in descending order, and the case database is searched in order from the lesion tissues having the largest volume ratio using the corresponding tissue number as a key item.

【0009】本発明のさらに別の特徴は、データベース
蓄積手段は薬品名に対応する治癒組織番号とその治癒速
度を示す投薬データベースを更に蓄積するものであり、
上記処理装置は上記病変進行途中における投薬データと
上記を投薬データベースを用いて投薬効果を加味した任
意の将来の時点の上記各内部組織ごとの病変組織の容量
率を予測計算する点にある。
Still another feature of the present invention is that the database storage means further stores a medication database indicating a healing tissue number corresponding to a drug name and its healing rate,
The processing device is for predicting and calculating the volumetric ratio of the lesioned tissue for each internal tissue at any future time point in which the medication effect is taken into consideration by using the medication data during the progress of the lesion and the medication database.

【0010】本発明の代表的実施例における処理装置の
ソフトウエアは次のサブルーチンからなる。
The software of the processor in a representative embodiment of the invention comprises the following subroutines:

【0011】(1)ある時間ステップで各臓器、組織の
病変組織の容量率分布図を出力すること、(2)設定し
た臓器、組織の相互作用下で次の時間ステップの容量率
を計算すること、(3)容量率を値の大きい順にソート
し、それらに対応した組織番号を検索キー項目として症
例データベースを検索し、その時点で患者に発現する症
状を出力すること、(4)あらかじめ投薬データベース
で指定した時間ステップにおいて、その投薬薬品名をキ
ー項目として、その対象組織番号と治癒速度を取り出
し、容量率データを変換すること。
(1) Output a volumetric distribution map of lesioned tissue of each organ or tissue at a certain time step, and (2) calculate a volumetric rate at the next time step under the set interaction of organs and tissues. (3) Sort the capacity rates in descending order of value, search the case database using the tissue numbers corresponding to them as search key items, and output the symptoms that appear in the patient at that time. (4) Premedication At the time step specified in the database, the target tissue number and healing rate are extracted using the drug name as a key item, and the volume ratio data is converted.

【0012】[0012]

【作用】本発明によると従来医者の裁量で決められてい
た疾病の進行予測と投薬、手術、入退院時期の決定にお
けるエキスパート性をソフトウエア上で実現できる。こ
れにより医師の経験の有無による裁量の差により患者の
その後の容体に大きな差が生じないように医師を支援で
きる。
According to the present invention, it is possible to realize, on software, the expertness in the prediction of disease progression and the determination of medication, surgery, and the time of admission and discharge, which has been conventionally determined by a doctor. As a result, it is possible to support the doctor so that the patient's subsequent condition does not greatly differ due to the discretionary difference depending on the experience of the doctor.

【0013】[0013]

【実施例】図1は本発明の実施例の予測システムの概略
を示す図である。図中20、26は処理装置の中の予測
計算の対象とする臓器組織間ネットワークモデルを示し
ている。体液循環により病変の転移可能性のある複数の
臓器10をその転移経路12で結合し、かつ各臓器を複
数の内部組織に分割したのがこの臓器組織間ネットワー
クモデルである。たとえば脳を1、肺を2、心臓を3、
胃を4、肝臓を5、・・・のように各臓器に番号をつけ
る。それぞれの臓器を複数の内部組織に分割し順に番号
をつける。臓器番号、組織番号をまとめ(5,2)と記
す場合には肝臓の第2組織を意味する。組織(i,j)
の全容量に占める病変組織容量の割合をN(i,j)と
定義する。ここでNは一般に0以上1以下の変域をとり
N=0は正常組織であることを意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the outline of a prediction system according to an embodiment of the present invention. In the figure, reference numerals 20 and 26 denote network models between organs and tissues which are targets of prediction calculation in the processing device. This organ-tissue network model is a system in which a plurality of organs 10 having a possibility of metastasis of a lesion due to circulation of body fluid are connected by a metastatic path 12 and each organ is divided into a plurality of internal tissues. For example, brain 1, lung 2, heart 3,
Number each organ such as 4, stomach, 5, liver, and so on. Each organ is divided into multiple internal tissues and numbered in order. When the organ number and the tissue number are collectively written as (5, 2), it means the second tissue of the liver. Organization (i, j)
The ratio of the lesion tissue volume to the total volume is defined as N (i, j). Here, N generally has a variable range of 0 or more and 1 or less, and N = 0 means a normal tissue.

【0014】予測システムには、現時点、つまりt=0
における対象の患者のN(i,j)の検診結果が予測計
算の初期条件18として入力される。N(i,j)の評
価法としては、例えばCTやレントゲン写真から目視あ
るいは自動判別された病変の面積を対象組織の前面積で
割った数値を用いる。具体的には初期条件18は、患者
名、疾病名、臓器番号i、組織番号j、それらのN
(i,j)からなり、対話型入力装置からキー入力す
る。
In the prediction system, the present time, that is, t = 0
The N (i, j) examination result of the target patient in is input as the initial condition 18 of the prediction calculation. As a method of evaluating N (i, j), for example, a numerical value obtained by dividing the area of a lesion visually or automatically discriminated from CT or radiograph by the front area of the target tissue is used. Specifically, the initial condition 18 is patient name, disease name, organ number i, tissue number j, and N of those.
It consists of (i, j) and is keyed in from an interactive input device.

【0015】処理装置は図1の20に示す表示を行うた
め、初期条件入力にしたがってデータを表示装置に出力
する。図中の長方形14は各組織に対応し、ハッチング
された区域15はNがあるしきい値以上である組織を表
している。この様な臓器組織間ネットワークモデル上に
対象患者の現在の病変分布を表して表示することによ
り、患者の病状もしくは手術、投薬が必要な組織を視覚
的イメージで把握できる。病変分布のもう一つの表現法
は各臓器の各内部組織のNの値と色を対応させカラー出
力装置に表示する方法である。例えば、Nの値が大きく
なるにつれて暖色系の色を指定し、正常組織は寒色表現
する。
Since the processing device performs the display shown in 20 of FIG. 1, the data is output to the display device in accordance with the input of the initial condition. A rectangle 14 in the drawing corresponds to each tissue, and a hatched area 15 represents a tissue in which N is equal to or larger than a certain threshold value. By displaying and displaying the current lesion distribution of the target patient on such an organ-tissue network model, it is possible to grasp the patient's medical condition or the tissue requiring surgery or medication with a visual image. Another expression method of the lesion distribution is a method of displaying the color on the color output device by associating the value of N with the color of each internal tissue of each organ. For example, a warmer color is designated as the value of N increases, and normal tissues are expressed in cold colors.

【0016】処理装置は病変の増殖、転移を時間発展問
題として数学的に解く。このためNの時間変化率に関し
ての非線形微分方程式を導入する。N(i,j)の時間
変化率をM(i,j)とすると、この変数依存性は自己
増殖の他に(i,j)に隣接する組織(i,k)のN
(i,k)に依存するのみならず他の臓器とのネットワ
ークを通じて他の臓器組織(m,n)(mはiに等しく
ない)のN(m,n)にも依存する。よってM(i,
j)を次の3項で記述する。 1.自己増殖:これはN(i,j)の2乗に比例する。
比例係数をA(i,j) 、あるいは略してAとす
る。 2.同一臓器内の他の組織(i,k)からの転移:これ
はN(i,j)とN(i,k)の積に比例する。比例係
数をB(i,j,i,k),あるいは略してBとする。 3.異なる臓器の他の組織(m,n)からの転移:これ
はN(i,j)とN(m,n)の積に比例する。比例係
数をC(i,j,m,n),あるいは略してCとする。
The processing device mathematically solves the growth and metastasis of lesions as a time development problem. For this reason, a non-linear differential equation concerning the time change rate of N is introduced. If the rate of change of N (i, j) with time is M (i, j), this variable dependence is N in the tissue (i, k) adjacent to (i, j) in addition to self-reproduction.
It depends not only on (i, k) but also on N (m, n) of other organ tissues (m, n) (m is not equal to i) through the network with other organs. Therefore, M (i,
j) is described in the next three sections. 1. Self-propagation: This is proportional to the square of N (i, j).
The proportionality coefficient is A (i, j), or A for short. 2. Metastases from other tissues (i, k) within the same organ: This is proportional to the product of N (i, j) and N (i, k). The proportionality coefficient is B (i, j, i, k), or B for short. 3. Metastases from other tissues (m, n) of different organs: This is proportional to the product of N (i, j) and N (m, n). The proportional coefficient is C (i, j, m, n), or C for short.

【0017】以上からM(i,j)は、 M(i,j)=A(i,j)*N(i,j)*N(i,j)+ B(i,j,i,k)*N(i,j)*N(i,k)+ C(i,j,m,n)*N(i,j)*N(m,n) (数1) となる。(数1)の左辺は時間変化率であるので差分法の
評価に従ってM(i,j)を1時間ステップ後のN’
(i,j)と現在のN(i,j)の差として(数2)で
評価する。 M(i,j)=(N’(i,j)−N(i,j))/DT (数2) ここでDTは1時間ステップ幅である。
From the above, M (i, j) is M (i, j) = A (i, j) * N (i, j) * N (i, j) + B (i, j, i, k) ) * N (i, j) * N (i, k) + C (i, j, m, n) * N (i, j) * N (m, n) (Equation 1). Since the left side of (Equation 1) is the rate of change over time, N (1) after one hour step of M (i, j) is evaluated according to the evaluation of the difference method.
The difference between (i, j) and the current N (i, j) is evaluated by (Equation 2). M (i, j) = (N '(i, j) -N (i, j)) / DT (Equation 2) Here, DT is one time step width.

【0018】(数1)、(数2)からある時間ステップ
のN(i,j)が与えられればその1時間ステップ後の
N’(i,j)を(3)で計算できる。 N’(i,j)=N(i,j)+DT{ A(i,j)*N(i,j)*N(i,j)+ B(i,j,i,k)*N(i,j)*N(i,k)+ C(i,j,m,n)*N(i,j)*N(m,n)} (数3) (数3)を計算した後、全てのi,jに対して、 N(i,j)=N’(i,j) (数4) とおいて再び(1)、(2)の計算を繰り返す。
If N (i, j) of a certain time step is given from (Equation 1) and (Equation 2), N '(i, j) after one time step can be calculated by (3). N '(i, j) = N (i, j) + DT {A (i, j) * N (i, j) * N (i, j) + B (i, j, i, k) * N ( i, j) * N (i, k) + C (i, j, m, n) * N (i, j) * N (m, n)} (Equation 3) (Equation 3) For all i and j, N (i, j) = N ′ (i, j) (Equation 4) is set and the calculation of (1) and (2) is repeated again.

【0019】(数3)の係数Aは、病巣組織細胞を自己
培養させた時の細胞数の増殖曲線をA*N*Nの曲線に
内挿して決定する。係数B,Cは対応する疾病に関する
臨床データから疾病の組織間転移データを次のように作
成する。同一臓器内の他の組織(i,k)から(i,
j)への転移について及び異なる臓器の他の組織(m,
n)から(i,j)への転移についてはそれぞれ図4及
び図5のような帳票項目で転移件数データベースを構築
する。図4ではi,j,k,転移件数、図5ではi,
j,m,n,転移件数をそのキー項目とする。すなわ
ち、図1のデータベース蓄積手段22には各臓器、組織
間の相互作用のデータとして各臓器の各内部組織の病巣
組織の自己培養の結果得た係数Aのデータベースと、図
4に示す臓器内の組織間の移転件数のデータベースから
算出した係数Bのデータベースと、図5に示す臓器間の
移転件数のデータベースから算出した係数Cのデータベ
ースが含まれる。処理装置は入力した初期条件とこれら
のデータべベースとを用い、(数3)の計算を繰り返し
て任意の将来の時点t(例えば1ヵ月後)のN’(i,
j)値を各(i,j)について求める。その結果を初期
の病変分布と同様に表示装置に出力し、例えば図1の2
6に示すように表示する。
The coefficient A of (Equation 3) is determined by interpolating the growth curve of the number of cells when the focal tissue cells are self-cultured into the curve of A * N * N. Coefficients B and C generate inter-tissue metastasis data of disease from clinical data on corresponding disease as follows. From other tissues (i, k) in the same organ (i, k
j) and other tissues of different organs (m,
Regarding the transfer from (n) to (i, j), a transfer number database is constructed with the form items as shown in FIGS. 4 and 5, respectively. In FIG. 4, i, j, k, the number of transfer cases, and in FIG. 5, i, j, k
The key items are j, m, n, and the number of transfers. That is, the database accumulating means 22 of FIG. 1 stores a database of the coefficient A obtained as a result of the self-culture of the focal tissue of each internal tissue of each organ as the data of the interaction between each organ and the internal organs shown in FIG. The database of the coefficient B calculated from the database of the number of cases of transfer between organizations and the database of the coefficient C calculated from the database of the number of cases of transfer between organs shown in FIG. 5 are included. The processor uses the input initial conditions and these databases, and repeats the calculation of (Equation 3) to obtain N ′ (i, i, i) at any future time point t (for example, one month later).
j) Find the value for each (i, j). The result is output to the display device in the same manner as the initial lesion distribution, for example, in FIG.
Display as shown in FIG.

【0020】以上の病変分布予測、及び表示を行うシス
テムによれば、実経験によらずに入院時期、投薬時期、
手術時期等の医師の判断を支援することができる。また
医師の学習の支援システムとして有効である。
According to the above-described system for predicting and displaying lesion distribution, the time of hospitalization, the time of medication,
It is possible to support the doctor's judgment such as the timing of surgery. It is also effective as a doctor's learning support system.

【0021】図1の実施例のデータベース蓄積手段22
にはさらに薬品名を検索キーとしてその薬品によって治
癒する臓器番号i、組織番号j、及び治癒速度をV
(i,j)を記録した投薬データベースが蓄積されてい
る。上述した将来の病状予測の計算は、ある時期に投薬
したことを仮定してそれによる治癒効果を加味して行う
ことができる。
Database storage means 22 of the embodiment shown in FIG.
Further, using the drug name as a search key, the organ number i, the tissue number j, and the healing rate that are healed by the drug are V
A medication database recording (i, j) is stored. The above-mentioned calculation of the future medical condition prediction can be performed by assuming that the drug has been administered at a certain time and taking into consideration the healing effect thereof.

【0022】すなわち、各時間ステップiごとに投薬を
するかどうかを示す配列変数F(t)を立てておく。F
(t)=0はこの時間ステップで投薬をしないことを意
味し、F(i)=1は投薬することを意味する。この配
列変数F(t)は、対話型入力装置に薬品名、投薬時間
のデータ24を入力することにより処理装置で作成され
る。(数3)、(数4)の計算では時間ステップごとに
このフラグをチェックしておき、F(t)=1ならば以
下の投薬によるNの変更計算をtに対して実行する。こ
の変更計算では、まず薬品名を検索キーとして投薬デー
タベースを検索し、薬品によって治癒する臓器番号i,
組織番号j、及び治癒速度をV(i,j)を投薬データ
ベースから出力する。次にF(t)=1の時点の次の時
間ステップでのN’を N'(i,j)=N'(i,j)*exp(−V(i,j)*DT) (数5) と置き換えることにより投薬効果を加味した病変分布の
予測計算が可能となる。
That is, an array variable F (t) indicating whether or not to administer medication is set up at each time step i. F
(T) = 0 means no medication at this time step, F (i) = 1 means dosing. The array variable F (t) is created by the processing device by inputting the data 24 of the drug name and the administration time into the interactive input device. In the calculation of (Equation 3) and (Equation 4), this flag is checked at each time step, and if F (t) = 1, the following N change calculation by medication is executed for t. In this change calculation, first, the drug database is searched using the drug name as the search key, and the organ number i, which is cured by the drug,
The tissue number j and the healing rate V (i, j) are output from the medication database. Next, N ′ at the next time step when F (t) = 1 is calculated as N ′ (i, j) = N ′ (i, j) * exp (−V (i, j) * DT) (number By replacing with 5), it becomes possible to perform predictive calculation of lesion distribution in consideration of the drug effect.

【0023】この投薬による治癒効果を加味した場合の
処理装置における処理フローを図2に示す。指定したス
テップ回数だけ演算を繰返し、すべてのi,jに対して
Nの将来の値を求め、先に述べたとおり表示装置に図1
の26のように表示する。この様な予測処理により、投
薬時期を種々設定して病状の推移を予想することがで
き、適切な投薬時期の判断に役立つ。
FIG. 2 shows a processing flow in the processing apparatus when the healing effect of this medication is taken into consideration. The calculation is repeated for the specified number of steps, and future values of N are obtained for all i and j, and as shown in FIG.
26 is displayed. By such a prediction process, it is possible to predict the transition of the medical condition by variously setting the medication timing, which is useful for determining the appropriate medication timing.

【0024】図1の実施例では、このようにして得られ
た将来のある時点の病変分布から、その時に患者に現わ
れると予測される症状を例示する。このため病状予測シ
ステムは各臓器の各組織の病変組織の容量率に対応する
症例を列記した症例データベース28を備える、処理装
置は図3に示すフローの処理を行う。まず計算して得た
各臓器の各内部組織ごとの病変組織の容量率の予測値N
(i,j)を値の降順にソートする。次に対応する組織
番号を検索キー項目として容量率の大きい順から症例デ
ータベースを検索する。これらの症例項目を表示装置に
出力する。例えば、Nの値によって出力文字表示色を分
け、緊急度の高い症例は暖色系で、緊急度の低い症例に
は寒色系の表示するのが好ましい。さらに、特に緊急の
治療を要する症例に対しては文字表示を点滅させる等に
より、医師に注意を促すことができる。
The embodiment shown in FIG. 1 illustrates a symptom predicted to appear in a patient at that time from the lesion distribution at a certain point in the future thus obtained. For this reason, the medical condition prediction system includes a case database 28 listing cases corresponding to the volume ratio of the diseased tissue of each tissue of each organ, and the processing device performs the processing of the flow shown in FIG. First, the predicted value N of the volumetric ratio of the diseased tissue for each internal tissue of each organ obtained by calculation
Sort (i, j) in descending order of value. Next, the case database is searched in descending order of capacity ratio using the corresponding organization number as a search key item. These case items are output to the display device. For example, it is preferable that the output character display color is divided according to the value of N, and the case of high urgency is displayed in warm color, and the case of low urgency is displayed in cold color. Further, for a case that requires urgent treatment, the doctor can be alerted by blinking the character display.

【0025】[0025]

【発明の効果】以上のように本発明によれば、相互に関
連する複数の臓器についてこれからの病状進行、もしく
は投薬による治療効果を、経験によらず医師が的確に予
測することを支援できる。したがって、投薬時期、入院
時期、もしくは手術時期を医師が適切に判断することが
可能となる。にさらにアルコール依存症や慢性的な中毒
などに陥っている患者への警告のために用いても効果が
ある。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to assist a doctor to accurately predict the future disease state progression of a plurality of mutually related organs or the therapeutic effect of medication regardless of experience. Therefore, it becomes possible for the doctor to appropriately determine the timing of medication, the time of hospitalization, or the time of surgery. Moreover, it can be used as a warning to patients who are suffering from alcoholism or chronic poisoning.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の予測システムの概略構成を示す概念図
である。
FIG. 1 is a conceptual diagram showing a schematic configuration of a prediction system of the present invention.

【図2】実施例の時間発展計算のフローチャートであ
る。
FIG. 2 is a flowchart of time evolution calculation according to the embodiment.

【図3】実施例の時間発展計算の最終ステップでの容量
率から症例を出力するフローチャートである。
FIG. 3 is a flowchart for outputting a case from a capacity ratio in the final step of the time evolution calculation of the embodiment.

【図4】実施例の同一臓器内の異なる組織間の転移件数
データベース構造を示す図である。
FIG. 4 is a diagram showing a database structure of the number of metastases between different tissues in the same organ according to the example.

【図5】実施例の異なる臓器間の組織間の転移件数デー
タベース構造を示す図である。
FIG. 5 is a diagram showing a database of the number of cases of metastasis between tissues of different organs in the example.

フロントページの続き (72)発明者 橋詰 明英 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Akihide Hashizume 1-280 Higashi Koikekubo, Kokubunji, Tokyo Metropolitan Research Center, Hitachi Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】体液循環により病変の転移可能性のある複
数の臓器をその転移経路で結合し、かつ各臓器を複数の
内部組織に分割した臓器組織間ネットワークモデルをも
とに病変予測計算を行う病状予測システムであり、病変
予測計算の初期条件と病変進行途中における投薬データ
を入力するための対話型入力装置と、病巣組織の自己増
殖速度、組織間の転移頻度統計、及び臓器間の転移頻度
統計に関するデータベースを蓄積したデータベース蓄積
手段と、初期条件として入力された対象患者の各内部組
織ごとの全容量に対する病変組織の容量率から上記デー
タベース蓄積手段をアクセスしてて任意の将来の時点の
上記各内部組織ごとの病変組織の容量率を予測計算する
処理装置と、予測計算の結果を表示する表示手段を含む
ことを特徴とする病状予測システム。
1. A lesion prediction calculation based on an organ-tissue network model in which a plurality of organs having a possibility of metastasis of a lesion due to body fluid circulation are connected by their metastasis path and each organ is divided into a plurality of internal tissues. This is a system for predicting pathological conditions, which is an interactive input device for inputting initial conditions for lesion prediction calculation and medication data during the course of lesion, self-propagation rate of lesion tissues, frequency statistics between tissues, and metastasis between organs. By accessing the database storage means from the database storage means that stores the database relating to frequency statistics and the volume ratio of the diseased tissue to the total volume of each internal tissue of the target patient input as the initial condition, the database storage means can be accessed at any future time point. It is characterized by including a processing device for predictively calculating the volumetric ratio of the diseased tissue for each internal tissue, and a display unit for displaying the result of the prediction calculation. Jo prediction system.
【請求項2】上記処理装置の予測計算は、病原細胞の自
己増殖に対応する自らの組織番号の容量率の2乗に比例
する項と他の組織からの転移に対応する異なる組織番号
の容量率の積の項を含む方程式により実行されることを
特徴とする請求項1に記載の病状予測システム。
2. The predictive calculation of the processing device is such that the term proportional to the square of the volume ratio of its own tissue number corresponding to self-proliferation of pathogenic cells and the capacity of different tissue number corresponding to metastasis from another tissue. The medical condition predicting system according to claim 1, wherein the medical condition predicting system is executed by an equation including a term of a product of rates.
【請求項3】上記データベース蓄積手段は薬品名に対応
する治癒組織番号とその治癒速度を示す投薬データベー
スを更に蓄積するものであり、上記処理装置は上記病変
進行途中における投薬データと上記を投薬データベース
を用いて投薬効果を加味した任意の将来の時点の上記各
内部組織ごとの病変組織の容量率を予測計算することを
特徴とする請求項1に記載の病状予測システム。
3. The database storing means further stores a healing tissue number corresponding to a drug name and a medication database showing a healing rate thereof, and the processing device stores the medication data during the progress of the lesion and the medication database. The disease state prediction system according to claim 1, wherein the volume ratio of the diseased tissue for each of the internal tissues at any future point in time that takes into account the medication effect is calculated by using.
【請求項4】上記データベース蓄積手段は、病変組織の
容量率と発現症状を検索キー項目として作成された症例
データベースをさらに蓄積することを特徴とする請求項
1に記載の病状予測システム。
4. The medical condition predicting system according to claim 1, wherein the database accumulating means further accumulates a case database created by using a volumetric ratio and a manifestation symptom of the diseased tissue as search key items.
【請求項5】上記処理装置は、予測計算の結果で得た各
臓器、各組織の病変組織の容量率を降順にソートし直
し、対応する組織番号をキー項目として容量率の大きい
病変組織から順に上記症例データベースを検索すること
を特徴とする請求項4に記載の病状予測システム。
5. The processing device sorts the volume ratios of the lesion tissues of each organ and each tissue obtained as a result of the prediction calculation in descending order, and selects from the lesion tissues having a large volume ratio using the corresponding tissue number as a key item. The medical condition prediction system according to claim 4, wherein the case database is searched in order.
JP6306392A 1992-03-19 1992-03-19 Disease condition estimating system applying inter-viscous tissue network Pending JPH05266002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6306392A JPH05266002A (en) 1992-03-19 1992-03-19 Disease condition estimating system applying inter-viscous tissue network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6306392A JPH05266002A (en) 1992-03-19 1992-03-19 Disease condition estimating system applying inter-viscous tissue network

Publications (1)

Publication Number Publication Date
JPH05266002A true JPH05266002A (en) 1993-10-15

Family

ID=13218513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6306392A Pending JPH05266002A (en) 1992-03-19 1992-03-19 Disease condition estimating system applying inter-viscous tissue network

Country Status (1)

Country Link
JP (1) JPH05266002A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954768A (en) * 1995-08-17 1997-02-25 Nec Corp Medical substance test simulation system
US6233539B1 (en) * 1997-01-10 2001-05-15 Health Hero Network, Inc. Disease simulation system and method
JP2006318162A (en) * 2005-05-12 2006-11-24 Sysmex Corp Prediction system for medical treatment effect and its program
JP2010134946A (en) * 1997-03-14 2010-06-17 First Opinion Corp Computerized medical advice system
JP2011524037A (en) * 2008-05-07 2011-08-25 ローレンス エー. リン, Medical disorder pattern search engine
US8612749B2 (en) 2008-05-08 2013-12-17 Health Hero Network, Inc. Medical device rights and recall management system
US8870762B2 (en) 1997-03-28 2014-10-28 Robert Bosch Gmbh Electronic data capture in clinical and pharmaceutical trials
US9031793B2 (en) 2001-05-17 2015-05-12 Lawrence A. Lynn Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9953453B2 (en) 2012-11-14 2018-04-24 Lawrence A. Lynn System for converting biologic particle density data into dynamic images
US10354429B2 (en) 2012-11-14 2019-07-16 Lawrence A. Lynn Patient storm tracker and visualization processor
JP2019146936A (en) * 2018-02-28 2019-09-05 富士フイルム株式会社 Diagnosis support system, diagnosis support method, and program
US10540786B2 (en) 2013-02-28 2020-01-21 Lawrence A. Lynn Graphically presenting features of rise or fall perturbations of sequential values of five or more clinical tests

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954768A (en) * 1995-08-17 1997-02-25 Nec Corp Medical substance test simulation system
US6233539B1 (en) * 1997-01-10 2001-05-15 Health Hero Network, Inc. Disease simulation system and method
US7920998B2 (en) 1997-01-10 2011-04-05 Health Hero Network, Inc. Diabetes care management system
US7937255B2 (en) 1997-01-10 2011-05-03 Health Hero Network, Inc. Diabetes care management system
US7941308B2 (en) 1997-01-10 2011-05-10 Health Hero Network, Inc. Disease simulation system and method
US7979259B2 (en) 1997-01-10 2011-07-12 Health Hero Network, Inc. Diabetes care management system
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
JP2010134946A (en) * 1997-03-14 2010-06-17 First Opinion Corp Computerized medical advice system
US8870762B2 (en) 1997-03-28 2014-10-28 Robert Bosch Gmbh Electronic data capture in clinical and pharmaceutical trials
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9031793B2 (en) 2001-05-17 2015-05-12 Lawrence A. Lynn Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US10032526B2 (en) 2001-05-17 2018-07-24 Lawrence A. Lynn Patient safety processor
US10366790B2 (en) 2001-05-17 2019-07-30 Lawrence A. Lynn Patient safety processor
US10354753B2 (en) 2001-05-17 2019-07-16 Lawrence A. Lynn Medical failure pattern search engine
US10297348B2 (en) 2001-05-17 2019-05-21 Lawrence A. Lynn Patient safety processor
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
JP2006318162A (en) * 2005-05-12 2006-11-24 Sysmex Corp Prediction system for medical treatment effect and its program
JP2014075154A (en) * 2008-05-07 2014-04-24 Laurence A Lynn Medical failure pattern search engine
JP2011524037A (en) * 2008-05-07 2011-08-25 ローレンス エー. リン, Medical disorder pattern search engine
US8612749B2 (en) 2008-05-08 2013-12-17 Health Hero Network, Inc. Medical device rights and recall management system
US9953453B2 (en) 2012-11-14 2018-04-24 Lawrence A. Lynn System for converting biologic particle density data into dynamic images
US10354429B2 (en) 2012-11-14 2019-07-16 Lawrence A. Lynn Patient storm tracker and visualization processor
US10540786B2 (en) 2013-02-28 2020-01-21 Lawrence A. Lynn Graphically presenting features of rise or fall perturbations of sequential values of five or more clinical tests
JP2019146936A (en) * 2018-02-28 2019-09-05 富士フイルム株式会社 Diagnosis support system, diagnosis support method, and program

Similar Documents

Publication Publication Date Title
JPH05266002A (en) Disease condition estimating system applying inter-viscous tissue network
Cassot et al. Branching patterns for arterioles and venules of the human cerebral cortex
Kramer et al. Aerobic exercise for women during pregnancy
Baschat et al. The cerebroplacental Doppler ratio revisited
Steyerberg et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets
Jackson et al. The effects of maternal aerobic exercise on human placental development: placental volumetric composition and surface areas
CN103270513B (en) For the method and system of patient-specific blood flow modeling
CN101911077B (en) For the method and apparatus of hierarchical search
Klebanoff et al. Maternal size at birth and the development of hypertension during pregnancy: a test of the Barker hypothesis
EP0590200A1 (en) Device and method for the visualisation of cardiovascular risk factors
EP3276571A1 (en) Medical diagnosis assistance device, method for operating medical diagnosis assistance device, and medical diagnosis assistance system
US8260735B2 (en) Method for assessing a rupture risk of an aneurysm of a patient and associated system
Smith et al. Risk of uterine rupture among women attempting vaginal birth after cesarean with an unknown uterine scar
Altman et al. The cost of nurse-midwifery care: use of interventions, resources, and associated costs in the hospital setting
Franconeri et al. Structured vs narrative reporting of pelvic MRI for fibroids: clarity and impact on treatment planning
Lagrew Jr et al. Lowering the cesarean section rate in a private hospital: comparison of individual physicians' rates, risk factors, and outcomes
JP2012505007A (en) Determination and / or presentation of health risk values
Yasnitsky et al. Dynamic artificial neural networks as basis for medicine revolution
Haas et al. The relationship between physicians' qualifications and experience and the adequacy of prenatal care and low birthweight.
Shulkin The July phenomenon revisited: are hospital complications associated with new house staff?
McKinney et al. Duration of labor and maternal and neonatal morbidity
JP2002331031A (en) Proper transfusion support instrument and method and program
Sivarao et al. Weight, volume and surface area of placenta of normal pregnant women and their relation to maternal and neonatal parameters in Malay, Chinese and Indian ethnic groups
US20230142909A1 (en) Clinically meaningful and personalized disease progression monitoring incorporating established disease staging definitions
JP3194666B2 (en) Disease prevention counseling system