JPH0526588B2 - - Google Patents

Info

Publication number
JPH0526588B2
JPH0526588B2 JP9130484A JP9130484A JPH0526588B2 JP H0526588 B2 JPH0526588 B2 JP H0526588B2 JP 9130484 A JP9130484 A JP 9130484A JP 9130484 A JP9130484 A JP 9130484A JP H0526588 B2 JPH0526588 B2 JP H0526588B2
Authority
JP
Japan
Prior art keywords
amorphous metal
wire
metal thin
thin wire
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9130484A
Other languages
Japanese (ja)
Other versions
JPS60234746A (en
Inventor
Akira Menjo
Takeshi Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP9130484A priority Critical patent/JPS60234746A/en
Publication of JPS60234746A publication Critical patent/JPS60234746A/en
Publication of JPH0526588B2 publication Critical patent/JPH0526588B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ropes Or Cables (AREA)
  • Continuous Casting (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、加工性の改良された非晶質金属細線
に関するものである。 溶融金属を超急冷すると、非晶質の金属が得ら
れ、しかも結晶質金属より優れた諸性質を有する
ことが知られている。すなわち、機械的強度が高
いことや耐蝕性に優れていること、また遷移金属
を主体とする組成の合金は電磁気特性に優れてい
ることなどがその代表的な特性として知られてい
る。従来、これらの非晶質の優れた特性を生かす
べく、フイルム、リボンの形で実用化の検討がな
されてきている。 一方、非晶質金属の線や、その線を製造する方
法についても、すでに数多く知られ、特に最近で
は、その製造が難しいとされていた円形断面を有
する線の製造方法も紹介されており、実用化に近
づきつつある。しかしながら、リボンも含めて従
来知られている線のままでは、撚り、織り、編み
等の高次加工に耐えることができず、実用性を十
分満足する段階には未だ到達していないのが現状
である。この金属線材を実用する際には、多くの
場合、巻きつけ、撚糸、編成、製織等の加工工程
を経ることが必要であり、この場合には線材が適
切な強度や伸長を有する他に、大変形が可能で、
かつ、どの方向にも曲がるという性能を十分に有
していることが必須条件となる。現在非晶質金属
細線として知られているアモルフアス金属リボン
の場合には、その形状から明らかなように偏平で
あるがために変形が異方的であり、そのような高
次加工が行い難く、得られるものも実用性に乏し
いものになる。 また、リボン状の線材とは別に円形断面を有す
る非晶質金属線材を提供する試みもすでに数多く
提案されている。例えば、特開昭54−99035号公
報には遷移金属と非金属との適正な組成からなる
溶融物を急冷して得た非晶質金属針金は、構造的
にモロイ性質を有する線であり、上記したごと
く、撚り、織り、編み等の高次加工に耐えること
ができない。 また、特開昭56−165016号公報には、回転ドラ
ム内に遠心力により液体層を形成し、この液体層
に溶融金属流を噴出して冷却固化させて円形断面
を有する非晶質金属細線を得る方法が提案されて
いる。この方法を第1図によつて説明すると、1
は駆動部2によつて回転する円筒状ドラム(以下
回転円筒状ドラムという。)で、4は回転軸3を
支える軸受を示す。回転円筒ドラム1の構造は回
転軸3にその中心部を固設した円板部1Aと、円
筒状の形状を有してその内壁部に遠心力によつて
液体層5と、製造された金属細線6とが保持され
る円筒部1Bと、円筒部1Bの外端をドーナツ形
状となして液体層5の深さを保持するとともに、
溶融金属のルツボ9、ノズル7と液体補給部(図
示省略)との回転ドラム内部への挿入及び製造さ
れた金属細線の取り出しを可能にした開口部を有
する外縁部1Cとで構成されており、回転円筒状
ドラム1の円筒内壁に形成された液体層5に向け
て噴出する溶融金属流8は、ルツボ9の中にあら
かじめ投入された金属原料を不活性ガス雰囲気下
で供給しつつ加熱装置10によつて溶融し、不活
性ガス導入管11よりバルブ12を開けて導入し
た噴出用不活性ガスの圧力によつてルツボ9の先
端のノズル7より噴出せしめることによつて噴出
金属流8は直ちに液体層5に浸入して、回転円筒
状ドラム1の内壁に遠心力によつて引き取られ、
急速に冷却されて金属細線6となるものであり、
金属細線6はトラバース装置(図示省略)によつ
てトラバース運動させて回転円筒状ドラム1の内
壁に均一な束に形成させる。この際液体層5は循
環装置によつて常に更新され、液温は一定に保た
しめられる。 上記の装置及び操作方法によつて非晶質金属細
線が製造されるので円形断面を有する非晶質金属
細線の製造方法としては非常に優れた方法ではあ
るが、ときとして製造された非晶質金属細線に線
径斑が生じ、上記したごとく、撚り、織り、編み
等の高次加工に耐えることができなくなることも
あり、高次加工性に優れた非晶質金属細線は未だ
得られていないのが現状である。 そこで本発明らは、このような現状に鑑み、高
次加工性に優れ、実用性能を十分に満足し得る非
晶質金属細線を提供することを目的として鋭意研
究した結果、特定の曲げ特性を有する非晶質金属
細線が、上記の目的に適合しうることを見出し、
本発明に到達した。 すなわち、本発明は、次式(1)及び(2)を満足する
曲げ特性を有し、かつ断面が円形である加工性の
改良された非晶質金属細線である。 θmax−θmin≦40 ……(1) (但し、θmaxは非晶質金属細線の最大破壊曲
げ角度(度)、θminはその非晶質金属細線の最小
破壊曲げ角度(度)を表す。) 1/L(1/sinθ/2−1)≦10.0 ……(2) (但し、Lは非晶質金属細線の平均線径(mm)、
θは平均破壊曲げ角度(度)を表す。) 本発明で破壊曲げ角度とは、第2図に示す試料
台上に3±0.3mmの間隔に設置された直径0.9±0.1
mmの円柱状支点C1,C2に20mmの長さの非晶質金
属細線の試験片bをセツトし、支点C1,C2と同
じ曲率を有する押し曲げ支点C3を移動させて試
験片bを曲げ変形させ、破壊が生ずる瞬間の角度
A(度)を読み取つた後、180度よりA(度)を差
し引いた値(θ)をいう。曲がりやすい材料では
θは大きく、破壊しやすい材料ではθは小さく、
測定時に破壊しないものは180度と定義する。特
に非晶質金属細線は、断面内に構造異方性があ
り、同一細線でも破壊曲げ角度に差が生じる。例
えば、断面が真円ではなく、長方形やダ円形のよ
うな形態異方性があり、細線の長手方向に断面が
不規則な連続線(いわゆるムラの大きな線)の場
合、この線を、長手方向に何点か押し曲げ破壊さ
せると、線径が大きいとき、破壊曲げ角度θは小
さく、一方線径が小さいとき、θは大きく観測さ
れる。これは、線径の大きな方向では、少しの角
度だけ曲げても材料表面にかけられる実質的なひ
ずみは大きくて、その材料の破壊ひずみをこえて
しまい、破壊が生じ、線径の小さな方向では大き
く曲げないと破壊ひずみをこえないためである。
このように、線のムラの大きな材料や、円形断面
から大きくはずれた異方性の大きな断面を有する
線材の場合には、曲げ試験をランダムに多数点行
うと、θに大きなばらつきが生じる。また、線の
断面が真円である材料でも、非晶質金属線の場
合、部分的に結晶が混在していたりするとモロイ
部分となつて、やはり曲げ角度θに大きなばらつ
きが生じる。すなわち、非晶質金属細線の破壊曲
げ角度のばらつきのうち、最大のθ(=θmax)
と最小のθ(=θmin)とが生じる。 本発明にいうθmaxとθminとは、得られた非晶
質金属細線の両端より各5mずつサンプリングし、
少なくとも20カ所測定したときの最大のθと最小
のθをいう。このθmaxとθminとの差が、40を越
えると、非晶質金属細線を撚つたり、織つたり、
編んだりするような高次加工性が失われてくるの
である。 次に式(2)は、非晶質金属細線の平均破壊曲げ角
度(θ)が、平均線径(L)とも関連するため、細線
の本質的な曲げ破断に対する強さを表す必要上か
ら導かれた式であり、 1/L(1/sinθ/2−1) の値が、10.0を越えると、非晶質金属細線を撚つ
たり、織つたり、編んだりするような高次加工性
が失われてくるのである。 ここの式(2)でいうθとは、上記した少なくとも
20カ所測定したときの平均のθをいい、またLと
は、その20カ所を測定したときの平均した値をい
う。 本発明の非晶質金属細線のうちで、θmax−
θminが30以下、 1/L(1/sinθ/2−1) が8.0以下で、かつ切断伸度が1.7%以上有する非
晶質金属細線が好ましい。 本発明の非晶質金属細線を得るには、例えば、
第3図に示す装置を用いて製造すればよい。この
装置は、前記した特開昭56−165016号公報に記載
されている装置を改良したもので、201は円筒
長を任意の広範例えば、200mmとした回転円筒状
ドラムで、その円周面には仕切板214及び21
4′によつて液層溝215を形成し、液体層を仕
切る。仕切板214,214′の高さ及び幅によ
つて液体層の深さ(約20mm)及び幅(約80mm)が
規定されている。 すなわち、201は回転円筒状ドラムであり、
これは201Aの円板部、201Bの円筒部、2
01Cの外縁部とからなつている。さらに、円筒
部の内側には、214,214′で示される仕切
板が設けられている。216は溶湯を吹き出す噴
出炉系であり、これは209のノズル部と210
の加熱装置とから成つている。冷極液は、21
4,214′で仕切られた間に入れられ、201
の回転円筒状ドラムの回転に伴つて、ドラムの周
方向に層状に形成され、液体層215となる。合
金溶融は、210の加熱装置によりノズル209
内で溶解され、適正なガス圧によりノズル下端の
孔から噴出させられ、回転円筒ドラムの内側に仕
切板によつて仕切られ、乱れのない水層215中
に導入され、冷却固化される。冷却固化後、水層
を吸引、除去後、ドラムを停止させ、ドラム壁面
より非晶質金属細線206をトラバース213さ
せながら採取すればよい。回転円筒状ドラムの内
周面に設けた仕切板によつて形成される液層は、
実質上幅が5mm〜100mmで、かつ深さが10mm〜80
mmであることが好ましい。 このように、液層の幅及び深さをコントロール
することにより、冷却液流体の乱れが著しく減少
し、従来困難であつた冷却液体の高速運動の安定
性が増した結果、冷却能が向上し、より高性能、
すなわち、本発明の非晶質金属細線が得られたも
のである。 本発明に適用される非晶質金属は「サイエン
ス」第8号、1978年62〜72頁、日本金属学会会報
15巻第3号、1976年151〜206頁、「金属」1971年
12月1日号73〜78頁、さらには特開昭49−91014
号、特開昭50−101215号、特開昭49−135820号、
特開昭51−4017号、特開昭51−4018号、特開昭51
−4019号、特開昭51−65012号、特開昭51−73920
号、特開昭51−73923号、特開昭51−78705号、特
開昭51−79613号、特開昭52−5620号、特開昭52
−114421号など多くの公報に記載されている。こ
の中で、実用特性上、特に好ましい合金組成とし
ては、Fe又はCoを主体とする金属−非金属の組
合せの合金が挙げられるが、これらは強度、伸び
に優れている他に、電磁気特性にも優れている。
また、NiやCrを含有するものは耐蝕性をあわせ
持つ。さらに、Cr含量の高いものは、硬度が増
す。特にFe又はCoを、少なくとも50原子%以上、
好ましくは60原子%以上さらに好ましくは65原子
%以上含有する合金が好ましく、このFe、Coの
他に含有してもよい元素としては、Ni、Al、V、
Sn、Cr、Ta、Zr、Mo、Mn、W、Nbなどが挙
げられる。一方非金属元素としては、P、B、
C、Si、Geなどが挙げられ、その中でもP、B、
C、Siが好ましい。また優れた加工特性を示すも
のを例示すると、Fe−Si−Bを主体とする合金
とFe−P−C、Co−Si−Bを主体とする合金が
挙げられる。さらに、本発明をより好ましく実施
するためには、これらFe−Si−B、Fe−P−C、
Co−Si−B系の非晶質金属において、以下の条
件を満足するものが望まれる。すなわち、Si17原
子%以下で、Bが10〜20原子%で、SiとBとの和
が17〜30原子%であり、残部の90原子%以上が
Feよりなる組成を有する合金、また、P8〜16原
子%で、C5〜16原子%以下で、PとCとの和が
15〜28原子%であり、残部の90原子%以上がFe
よりなる組成を有する合金、また、Si17原子%以
下で、B11〜20原子%で、SiとBとの和が19〜32
原子%であり、残部の90原子%以上がCoよりな
る組成を有する合金である。本発明の非晶質金属
細線は、真円度0.8以上の円形断面を有している。
この真円度とは、同一断面の最長軸直径Lmaxと
最短軸直径Lminとの比Lmin/Lmaxをいう。 本発明の非晶質金属細線は、上記物性を有する
ため、撚つたり、織つたり、編んだりするような
高次加工ができるので、タイヤコード、ベルト用
補強材、プラスチツク用補強材、耐放射線用材
料、電磁しやへい用材料、メツシユ状フイルタ
ー、よりコードなどの幅広い分野に適用すること
ができる。 以下本発明を実施例により具体的に説明する。 実施例1〜11、比較例1〜4 第3図に示す装置を用いてFe79Si5P1B19C1(原
子%)なる組成を有する合金を、直径0.13mmφの
孔径を有する石英ノズルより、1300℃の温度で吹
き出し、内径60cmのステンレス製ドラムの内壁に
形成された10℃の水層にて冷却する回転液中紡糸
法にて、非晶質金属細線を製造し、採取した。こ
の際、ドラムの内壁に周方向に沿つて平行に高さ
50mmの仕切板を表1に示す各種幅に設け、この内
部に水層を表1に示す各種高さに形成させた。 その結果を表1に示す。 また、比較のため、第1図に示す従来の装置
(幅300mm)を用いて上記と同様にして非晶質金属
細線を製造した。 その結果も表1に示す。 なお、上記の得られた非晶質金属細線の長さは
300mであり、その両端各5mずつ切り取り、その
中より2cmのサンプル20点をランダムに取り出し
表1に示す性能を測定した。
The present invention relates to an amorphous metal thin wire with improved workability. It is known that when molten metal is ultra-quenched, an amorphous metal is obtained, which has properties superior to crystalline metals. That is, typical properties are known to be high mechanical strength and excellent corrosion resistance, and alloys with compositions mainly composed of transition metals have excellent electromagnetic properties. In order to take advantage of the excellent properties of these amorphous materials, studies have been made to put them into practical use in the form of films and ribbons. On the other hand, many amorphous metal wires and methods for manufacturing them are already known, and recently, methods for manufacturing wires with circular cross sections, which were considered difficult to manufacture, have been introduced. It is approaching practical application. However, conventionally known wires, including ribbons, cannot withstand high-level processing such as twisting, weaving, and knitting, and the current situation is that they have not yet reached the stage where they are fully practical. It is. When putting this metal wire into practical use, it is often necessary to go through processing steps such as winding, twisting, knitting, and weaving. Large deformation is possible,
In addition, it is essential that it has sufficient ability to bend in any direction. In the case of amorphous metal ribbons, which are currently known as amorphous metal thin wires, their deformation is anisotropic due to their flat shape, making it difficult to perform such high-order processing. What you get will also be of little practical use. In addition, many attempts have already been made to provide amorphous metal wires having a circular cross section, in addition to ribbon-shaped wires. For example, Japanese Patent Application Laid-Open No. 54-99035 states that an amorphous metal wire obtained by rapidly cooling a melt consisting of a suitable composition of transition metals and non-metals is a wire that structurally has molloy properties. As mentioned above, it cannot withstand high-level processing such as twisting, weaving, and knitting. In addition, Japanese Patent Application Laid-open No. 165016/1983 discloses that a liquid layer is formed in a rotating drum by centrifugal force, a molten metal stream is jetted into this liquid layer, and the liquid layer is cooled and solidified to form an amorphous metal thin wire having a circular cross section. A method has been proposed to obtain the . This method will be explained with reference to Figure 1.
4 is a cylindrical drum (hereinafter referred to as a rotating cylindrical drum) rotated by the drive unit 2, and 4 is a bearing that supports the rotating shaft 3. The structure of the rotating cylindrical drum 1 includes a disk portion 1A whose center portion is fixed to a rotating shaft 3, a liquid layer 5 formed by centrifugal force on the inner wall of the disk portion 1A having a cylindrical shape, and a manufactured metal. The cylindrical portion 1B holds the thin wire 6, and the outer end of the cylindrical portion 1B is formed into a donut shape to maintain the depth of the liquid layer 5.
It is composed of a crucible 9 for molten metal, a nozzle 7, and an outer edge part 1C having an opening that allows insertion of a liquid supply part (not shown) into the rotating drum and removal of the manufactured thin metal wire, The molten metal flow 8 ejected toward the liquid layer 5 formed on the cylindrical inner wall of the rotating cylindrical drum 1 is heated by the heating device 10 while supplying the metal raw material previously introduced into the crucible 9 under an inert gas atmosphere. By opening the valve 12 and introducing the inert gas from the inert gas inlet pipe 11, the metal stream 8 is immediately ejected from the nozzle 7 at the tip of the crucible 9 under the pressure of the inert gas for ejection. It enters the liquid layer 5 and is taken up by the inner wall of the rotating cylindrical drum 1 by centrifugal force.
It is rapidly cooled and becomes a thin metal wire 6,
The thin metal wires 6 are traversed by a traverse device (not shown) to form a uniform bundle on the inner wall of the rotating cylindrical drum 1. At this time, the liquid layer 5 is constantly updated by the circulation device, and the liquid temperature is kept constant. Although the above-mentioned apparatus and operating method produce amorphous metal thin wires, it is an excellent method for producing amorphous metal thin wires having a circular cross section. Wire diameter irregularities occur in thin metal wires, and as mentioned above, they may not be able to withstand high-order processing such as twisting, weaving, and knitting, and amorphous metal thin wires with excellent high-order processability have not yet been obtained. The current situation is that there is no such thing. Therefore, in view of the current situation, the present inventors conducted extensive research with the aim of providing an amorphous metal thin wire that has excellent high-order processability and satisfies practical performance. discovered that the amorphous metal thin wire having
We have arrived at the present invention. That is, the present invention is an amorphous metal thin wire with improved workability, which has bending characteristics satisfying the following formulas (1) and (2), and has a circular cross section. θmax−θmin≦40 ……(1) (However, θmax represents the maximum fracture bending angle (degrees) of the amorphous metal thin wire, and θmin represents the minimum fracture bending angle (degrees) of the amorphous metal thin wire.) 1 /L(1/sinθ/2-1)≦10.0...(2) (However, L is the average wire diameter (mm) of the amorphous metal thin wire,
θ represents the average fracture bending angle (degrees). ) In the present invention, the fracture bending angle refers to the diameter of 0.9±0.1 mm installed on the sample stage shown in Figure 2 at an interval of 3±0.3 mm.
Test specimen b of amorphous metal fine wire with a length of 20 mm was set on cylindrical supports C 1 and C 2 of mm, and the push-bending support C 3 having the same curvature as the supports C 1 and C 2 was moved. After bending and deforming piece b and reading the angle A (degrees) at the moment when breakage occurs, it is the value (θ) obtained by subtracting A (degrees) from 180 degrees. For materials that are easy to bend, θ is large; for materials that are easy to break, θ is small;
180 degrees is defined as something that does not break during measurement. In particular, amorphous metal wires have structural anisotropy in their cross sections, and even the same wires have different fracture bending angles. For example, if the cross section is not a perfect circle but has an anisotropic shape such as a rectangle or a circular shape, and the cross section is irregular in the longitudinal direction of the thin wire (so-called a line with large unevenness), this line is When the wire is pressed and bent at several points in the direction to break it, when the wire diameter is large, the fracture bending angle θ is observed to be small, while when the wire diameter is small, θ is observed to be large. This is because in the direction of the wire with a large diameter, even if the wire is bent by a small angle, the actual strain applied to the material surface is large and exceeds the fracture strain of the material, resulting in fracture. This is because the fracture strain will not be exceeded unless it is bent.
As described above, in the case of a material with large wire irregularities or a wire having a cross section with large anisotropy that deviates greatly from a circular cross section, if a bending test is performed at multiple points at random, large variations in θ will occur. Furthermore, even if the cross section of the wire is a perfect circle, in the case of an amorphous metal wire, if crystals are partially mixed in the wire, it will become a moloy portion, which will still cause large variations in the bending angle θ. In other words, the maximum θ (=θmax) among the variations in the fracture bending angle of the amorphous metal thin wire
and the minimum θ (=θmin) occur. θmax and θmin in the present invention are obtained by sampling 5 m each from both ends of the obtained amorphous metal thin wire.
The maximum θ and minimum θ when measured at at least 20 locations. If the difference between θmax and θmin exceeds 40, the amorphous metal wire cannot be twisted or woven.
High-order workability such as knitting is lost. Next, equation (2) is derived from the necessity to represent the essential bending strength of the thin wire, since the average fracture bending angle (θ) of the thin amorphous metal wire is also related to the average wire diameter (L). When the value of 1/L (1/sin θ/2-1) exceeds 10.0, high-order processability such as twisting, weaving, or knitting of amorphous metal thin wires is obtained. will be lost. θ in equation (2) here means at least the above-mentioned
It refers to the average θ when measurements are taken at 20 locations, and L refers to the average value when measurements are made at those 20 locations. Among the amorphous metal thin wires of the present invention, θmax−
Preferably, the amorphous metal thin wire has θmin of 30 or less, 1/L (1/sin θ/2-1) of 8.0 or less, and cutting elongation of 1.7% or more. In order to obtain the amorphous metal thin wire of the present invention, for example,
It may be manufactured using the apparatus shown in FIG. This device is an improved version of the device described in the above-mentioned Japanese Patent Application Laid-open No. 56-165016, and 201 is a rotating cylindrical drum with a cylinder length of a wide range, for example, 200 mm. are partition plates 214 and 21
4' forms a liquid layer groove 215 and partitions the liquid layer. The depth (approximately 20 mm) and width (approximately 80 mm) of the liquid layer are determined by the height and width of the partition plates 214, 214'. That is, 201 is a rotating cylindrical drum,
This is the disc part of 201A, the cylindrical part of 201B, 2
It consists of the outer edge of 01C. Furthermore, partition plates indicated by 214 and 214' are provided inside the cylindrical portion. 216 is a blowing furnace system that blows out molten metal, and this is made up of a nozzle section 209 and 210.
It consists of a heating device. The cold electrolyte is 21
It is placed in a space partitioned by 4,214', 201
As the rotating cylindrical drum rotates, the liquid layer 215 is formed in a layered manner in the circumferential direction of the drum. The alloy is melted through the nozzle 209 by the heating device 210.
The liquid is dissolved in the water layer 215, is ejected from the hole at the lower end of the nozzle under appropriate gas pressure, is partitioned by a partition plate inside the rotating cylindrical drum, is introduced into the undisturbed water layer 215, and is cooled and solidified. After cooling and solidifying, the aqueous layer is suctioned and removed, the drum is stopped, and the amorphous metal thin wire 206 is collected from the drum wall while being traversed 213. The liquid layer formed by the partition plate provided on the inner peripheral surface of the rotating cylindrical drum is
The actual width is 5mm to 100mm and the depth is 10mm to 80mm.
Preferably, it is mm. In this way, by controlling the width and depth of the liquid layer, turbulence in the coolant fluid is significantly reduced, and the stability of the high-speed movement of the coolant liquid, which was previously difficult to achieve, is increased, resulting in improved cooling performance. , higher performance,
That is, the amorphous metal thin wire of the present invention was obtained. The amorphous metal applied to the present invention is "Science" No. 8, 1978, pp. 62-72, Bulletin of the Japan Institute of Metals.
Volume 15, No. 3, 1976, pp. 151-206, "Metals" 1971
December 1st issue, pages 73-78, as well as JP-A-49-91014
No., JP-A-50-101215, JP-A-49-135820,
JP-A-51-4017, JP-A-51-4018, JP-A-51
-4019, JP-A-51-65012, JP-A-51-73920
No., JP-A-51-73923, JP-A-51-78705, JP-A-51-79613, JP-A-52-5620, JP-A-52
-Described in many publications such as No. 114421. Among these, particularly preferred alloy compositions in terms of practical properties include metal-nonmetal combination alloys mainly composed of Fe or Co, which have excellent strength and elongation as well as excellent electromagnetic properties. is also excellent.
Additionally, those containing Ni and Cr also have corrosion resistance. Furthermore, those with high Cr content have increased hardness. In particular, Fe or Co, at least 50 atomic% or more,
Preferably, the alloy contains 60 atomic % or more, more preferably 65 atomic % or more, and other elements that may be contained in addition to Fe and Co include Ni, Al, V,
Examples include Sn, Cr, Ta, Zr, Mo, Mn, W, and Nb. On the other hand, nonmetallic elements include P, B,
Examples include C, Si, Ge, etc. Among them, P, B,
C and Si are preferred. Examples of materials exhibiting excellent processing properties include alloys mainly composed of Fe-Si-B and alloys mainly composed of Fe-P-C and Co-Si-B. Furthermore, in order to carry out the present invention more preferably, these Fe-Si-B, Fe-P-C,
Co-Si-B based amorphous metals that satisfy the following conditions are desired. That is, Si is 17 at % or less, B is 10 to 20 at %, the sum of Si and B is 17 to 30 at %, and the remaining 90 at % or more is
Alloys with a composition consisting of Fe, with P8 to 16 atomic% and C5 to 16 atomic% or less, and the sum of P and C
15 to 28 atomic%, and the remaining 90 atomic% or more is Fe.
An alloy having a composition consisting of 17 atomic % or less of Si, 11 to 20 atomic % of B, and a sum of Si and B of 19 to 32 atomic %.
It is an alloy having a composition in which the remaining 90 atomic % or more is Co. The amorphous metal thin wire of the present invention has a circular cross section with a roundness of 0.8 or more.
This roundness refers to the ratio Lmin/Lmax of the longest axis diameter Lmax and the shortest axis diameter Lmin of the same cross section. Since the amorphous metal thin wire of the present invention has the above-mentioned physical properties, it can be subjected to high-order processing such as twisting, weaving, and knitting. It can be applied to a wide range of fields such as radiation materials, electromagnetic shielding materials, mesh filters, and cords. The present invention will be specifically explained below using examples. Examples 1 to 11, Comparative Examples 1 to 4 Using the apparatus shown in Fig. 3, an alloy having a composition of Fe 79 Si 5 P 1 B 19 C 1 (atomic %) was injected into a quartz nozzle having a hole diameter of 0.13 mmφ. A fine amorphous metal wire was produced and collected using a rotating liquid spinning method in which the material was blown out at a temperature of 1300°C and cooled in a 10°C water layer formed on the inner wall of a stainless steel drum with an inner diameter of 60cm. At this time, the height is parallel to the inner wall of the drum along the circumferential direction.
50 mm partition plates were provided with various widths shown in Table 1, and water layers were formed inside them at various heights shown in Table 1. The results are shown in Table 1. For comparison, an amorphous metal thin wire was manufactured in the same manner as above using the conventional apparatus (width 300 mm) shown in FIG. The results are also shown in Table 1. In addition, the length of the amorphous metal thin wire obtained above is
The length was 300 m, and 5 m of each end was cut out, and 20 2 cm samples were randomly taken out and the performance shown in Table 1 was measured.

【表】【table】

【表】 なお、表1中の織り性については、各細線を用
いて10メツシユの角目平織の金網を25cm2の面積で
作製したときに、その面積中に見出される線の切
断カ所数をしらべ、全く切断が見られなかつた場
合を◎で示し、1カ所〜5カ所までを〇で示し、
6カ所〜10カ所のものは△で示し、11カ所以上の
ものは×で示した。 表1より、しきり幅を規制して得た本発明の非
晶質金属細線は、式(1)及び(2)をすべて満足してお
り、織り性の結果も良好であつたが、しきり板を
もうけていない装置で得た比較例1〜3の非晶質
金属細線は、式(1)及び(2)をすべて満足しておら
ず、織り性の結果が悪いことが明らかである。
[Table] Regarding the weavability in Table 1, when a 10-mesh square plain weave wire mesh is made using each thin wire in an area of 25 cm 2 , the number of wire cuts found in that area is calculated. After inspection, if no cuts were observed, mark ◎, and if there were 1 to 5 cuts, mark ○.
Those with 6 to 10 locations are indicated by △, and those with 11 or more locations are indicated with ×. From Table 1, it can be seen that the amorphous metal thin wire of the present invention obtained by regulating the width of the slit satisfies both formulas (1) and (2) and had good weavability results. It is clear that the amorphous metal thin wires of Comparative Examples 1 to 3 obtained using devices that do not have the following conditions do not satisfy all of formulas (1) and (2), and have poor weavability results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来装置の概略断面図、第2図は、
本発明における破壊曲げ角度を測定するための説
明図、第3図は、本発明に用いる装置の一実施例
を示す一部概略縦断面図である。 1,201…回転円筒状ドラム、5,215…
液体層、6,206…非晶質金属細線、9,20
9…ルツボ、10,210…加熱装置、214,
214′…仕切板。
Figure 1 is a schematic sectional view of a conventional device, and Figure 2 is a
FIG. 3, an explanatory diagram for measuring the fracture bending angle in the present invention, is a partially schematic vertical sectional view showing an embodiment of the apparatus used in the present invention. 1,201...Rotating cylindrical drum, 5,215...
Liquid layer, 6,206... Amorphous metal thin wire, 9,20
9... Crucible, 10, 210... Heating device, 214,
214'...Partition plate.

Claims (1)

【特許請求の範囲】 1 次式(1)及び(2)を満足する曲げ特性を有し、か
つ断面が円形である加工性の改良された非晶質金
属細線。 θmax−θmin≦40 ……(1) (但し、θmaxは非晶質金属細線の最大破壊曲
げ角度(度)、θminはその非晶質金属細線の最小
破壊曲げ角度(度)を表す。) 1/L(1/sinθ/2−1)≦10.0 ……(2) (但し、Lは非晶質金属細線の平均線径(mm)、
θは平均破壊曲げ角度(度)を表す。)
[Scope of Claims] An amorphous metal thin wire with improved workability, which has bending properties that satisfy linear equations (1) and (2), and has a circular cross section. θmax−θmin≦40 ……(1) (However, θmax represents the maximum fracture bending angle (degrees) of the amorphous metal thin wire, and θmin represents the minimum fracture bending angle (degrees) of the amorphous metal thin wire.) 1 /L(1/sinθ/2-1)≦10.0...(2) (However, L is the average wire diameter (mm) of the amorphous metal thin wire,
θ represents the average fracture bending angle (degrees). )
JP9130484A 1984-05-07 1984-05-07 Fine amorphous metallic wire Granted JPS60234746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9130484A JPS60234746A (en) 1984-05-07 1984-05-07 Fine amorphous metallic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9130484A JPS60234746A (en) 1984-05-07 1984-05-07 Fine amorphous metallic wire

Publications (2)

Publication Number Publication Date
JPS60234746A JPS60234746A (en) 1985-11-21
JPH0526588B2 true JPH0526588B2 (en) 1993-04-16

Family

ID=14022722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9130484A Granted JPS60234746A (en) 1984-05-07 1984-05-07 Fine amorphous metallic wire

Country Status (1)

Country Link
JP (1) JPS60234746A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288242A (en) * 1987-05-19 1988-11-25 新日本製鐵株式会社 Interlaced fabric using amorphous metal fiber yarn
JPS6435022U (en) * 1987-08-28 1989-03-03

Also Published As

Publication number Publication date
JPS60234746A (en) 1985-11-21

Similar Documents

Publication Publication Date Title
US4495691A (en) Process for the production of fine amorphous metallic wires
Hagiwara et al. Mechanical properties of Fe-Si-B amorphous wires produced by in-rotating-water spinning method
JP5837824B2 (en) Method and product for cutting material
EP0039169B1 (en) Amorphous metal filaments and process for producing the same
US4052201A (en) Amorphous alloys with improved resistance to embrittlement upon heat treatment
US4265682A (en) High silicon steel thin strips and a method for producing the same
DE2606581A1 (en) PROCESS FOR MANUFACTURING METAL ALLOY FEMS
EP2491148B1 (en) Process for continuous production of ductile microwires from glass forming systems
KR101860590B1 (en) Glassy Nano-Materials
JPH08269647A (en) Ni-based amorphous metallic filament
US20160304998A1 (en) Alloys Exhibiting Spinodal Glass Matrix Microconstituents Structure And Deformation Mechanisms
JPH0526588B2 (en)
Motoyasu et al. The characteristics of single crystal bismuth wires produced by the Ohno continuous casting process
JPH07316755A (en) Al-base amorphous metallic filament
JP2708410B2 (en) Amorphous metal wire
Inoue et al. Production of Ni-Pd-Si and Ni-Pd-P amorphous wires and their mechanical and corrosion properties
EP0603407B1 (en) Vapor deposition material and production method thereof
JPH09143642A (en) Nickel base amorphous metal filament
JPS5964740A (en) Amorphous metal filament and manufacture thereof
JP2021037543A (en) Metallic strip, method for producing amorphous metallic strip, and method for producing nanocrystal metallic strip
JPH0260752B2 (en)
JPH0929399A (en) Manufacture of amorphous metallic thin wire
RU2213149C2 (en) Method for manufacture of monocrystalline metal wire
US4570695A (en) Thin metal band and a method for the manufacture of the same
JPH05125499A (en) Aluminum-base alloy having high strength and high toughness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees