JPH05265509A - Learning control device - Google Patents

Learning control device

Info

Publication number
JPH05265509A
JPH05265509A JP5811092A JP5811092A JPH05265509A JP H05265509 A JPH05265509 A JP H05265509A JP 5811092 A JP5811092 A JP 5811092A JP 5811092 A JP5811092 A JP 5811092A JP H05265509 A JPH05265509 A JP H05265509A
Authority
JP
Japan
Prior art keywords
learning
mode
control device
input
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5811092A
Other languages
Japanese (ja)
Inventor
Yujiro Shimizu
祐次郎 清水
Shinichiro Hori
慎一郎 堀
Katsuyoshi Maemoto
勝由 前本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5811092A priority Critical patent/JPH05265509A/en
Publication of JPH05265509A publication Critical patent/JPH05265509A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To improve control speed by reducing unnecessary input term and calculation volume at the time of an operation mode. CONSTITUTION:A computer processor 10A performs the learning of a target generation device 100 by switching to a learning mode side at first. In this learning mode, an operation changeover switch is connected with the side of a learning control device 400 and a learning is executed by a measuring data corresponding to educator data. The operation changeover switch is switched to the side of an influence degree evaluation means 500 when an error becomes less than a fixed value epsilon by this learning, the influence degree evaluation is performed and the evaluation result is delivered to an omission means 600. The omission means 600 deletes input terms having little influences, based on the evaluation result. Afterwards, the learning is performed by switching to the learning mode again. When this learning which was performed again is terminated, the control for a control object 300 is performed by switching to an operation mode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、雨水排水機場のポンプ
制御、その他、モデル化が困難で熟練オペレータが制御
している各種プラントにおける学習制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pump control system for a rainwater drainage pump station and a learning control system for various plants which are difficult to model and are controlled by a skilled operator.

【0002】[0002]

【従来の技術】例えば雨水排水機場の制御のようにオペ
レータの経験によって制御している装置では、制御対象
である流域を含めて正確にモデル化することは困難であ
る。このような制御対象に対しては、従来、熟練オペレ
ータの操作結果をニューラルネットに学習させて制御す
ることが行なわれている。
2. Description of the Related Art In a device controlled by experience of an operator such as control of a rainwater drainage pump station, it is difficult to accurately model the watershed to be controlled. For such a control target, conventionally, a neural network is made to learn the operation result of a skilled operator and controlled.

【0003】この場合、オペレータがどのような情報に
基づいてポンプを制御しているかが不明確なため、取り
敢えず出力に影響すると思われる観測値を入力項とし、
出力としてオペレータの操作量を採用する。実際のオペ
レータの運転時データを教師データとして学習させる
と、ニューラルネットにオペレータの判断モデルが生成
され、オペレータと同様な制御が可能になる。
In this case, since it is unclear what kind of information the operator controls the pump based on, it is necessary to use the observed value that seems to affect the output as an input term.
The operation amount of the operator is adopted as the output. When the actual operating data of the operator is learned as teacher data, a judgment model of the operator is generated in the neural network, and the same control as the operator becomes possible.

【0004】この場合の従来の学習型制御装置の構成例
を図4に示し、また、そのときの概略フローチャートを
図5に示す。図4において、10はニューラルネットを
実現するための計算機処理装置であり、この内部の機能
は目標生成装置100と学習制御装置400から構成さ
れる。また、目標生成装置100の入力側及び出力側に
は、それぞれ学習モードと運用モードとを切換えるモー
ド切換スイッチ21,22が設けられる。このモード切
換スイッチ21,22により学習モードに切換えた場合
は、目標生成装置100に対して学習制御装置400が
接続され、運用モードに切換えた場合には目標生成装置
100が制御装置200、制御対象300に接続され
る。
FIG. 4 shows an example of the configuration of a conventional learning type control device in this case, and FIG. 5 shows a schematic flow chart at that time. In FIG. 4, reference numeral 10 is a computer processing device for realizing a neural network, and the internal function is composed of a target generation device 100 and a learning control device 400. Further, mode changeover switches 21 and 22 for switching between the learning mode and the operation mode are provided on the input side and the output side of the target generation device 100, respectively. When the learning mode is switched by the mode changeover switches 21 and 22, the learning control device 400 is connected to the target generation device 100, and when the operation mode is switched, the target generation device 100 is the control device 200, the control target. Connected to 300.

【0005】上記目標生成装置100は、パーセプトロ
ン型多層フィードフォワード結合型ニューラルネットと
呼ばれるもので、現在よく使用されている。この目標生
成装置100の各層は、ニューロンと呼ばれる多入力1
出力の非線形素子から構成される。1つのニューロンI
i には入力がn個あり、それをIij(j=1〜n)、入
力値Iijにかかる重み係数をWij、出力をOj とする
と、入力の総和Ii は Ii =ΣIij*Wij で表され、この入力に対し、出力はロジスティック関数
と呼ばれる非線形関数 f(x)=1/(1+exp (-x+di)) が用いられる。x=Ii として、Oi =f(x)により
出力値Oj が計算される。なお、diは閾値である。
The above target generation device 100 is called a perceptron type multilayer feedforward combination type neural network and is often used at present. Each layer of the target generation device 100 has a multi-input 1 called a neuron.
It is composed of an output nonlinear element. One neuron I
i has n inputs, Iij (j = 1 to n), a weighting coefficient applied to the input value Iij is Wij, and an output is Oj, the total sum Ii of the inputs is represented by Ii = ΣIij * Wij, For this input, a nonlinear function f (x) = 1 / (1 + exp (-x + di)) called a logistic function is used for the output. With x = Ii, the output value Oj is calculated by Oi = f (x). Note that di is a threshold value.

【0006】スタート時には、計算機処理装置10の動
作モードをモード切換スイッチ21,22により学習モ
ードに切換え、目標生成装置100を学習制御装置40
0に接続して学習を行なう。この学習では、学習法BP
(Back Propagation、誤差逆伝播法)と呼ばれる手法が
使われ、入力に対して出力の値を教師データと比較し、
この誤差が決められた値ε(例えば0.001)以下に
なるまで重み係数Wijを修正する。そして、誤差がε以
下になると学習を終了し、モード切換スイッチ21,2
2により運用モードに切換え、目標生成装置100によ
り制御装置200にオペレータが行なっていたと同様に
測定値に対して目標値を出力させ、制御対象300の制
御を行なう。
At the start, the operation mode of the computer processor 10 is switched to the learning mode by the mode changeover switches 21 and 22, and the target generator 100 is set to the learning controller 40.
Connect to 0 for learning. In this learning, learning method BP
A method called (Back Propagation, Back Propagation) is used to compare the output value with the teacher data for the input,
The weighting factor Wij is corrected until the error becomes equal to or less than the determined value ε (for example, 0.001). Then, when the error becomes equal to or less than ε, the learning is terminated and the mode changeover switches 21 and 2 are
The operation mode is switched by 2 and the target generation device 100 causes the control device 200 to output the target value with respect to the measured value in the same manner as the operator performed, and the controlled object 300 is controlled.

【0007】[0007]

【発明が解決しようとする課題】上記のように実際のオ
ペレータの運転時データを教師データとして学習させる
ことにより、オペレータと同様な制御が可能になる。し
かし、オペレータの判断時に関係しそうな入力項を全て
使って学習させると、ニューラルネットが大きく、実行
時に要する時間が長くなるという問題がある。
By learning the actual operating data of the operator as the teacher data as described above, the same control as the operator becomes possible. However, if all the input terms that are likely to be relevant to the operator's judgment are used for learning, there is a problem that the neural network becomes large and the time required for execution becomes long.

【0008】本発明は上記実情に鑑みてなされたもの
で、不要な入力項を減らすことにより運用モード時の計
算量を減少でき、制御速度を向上できる学習制御装置を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a learning control device capable of reducing the amount of calculation in the operation mode and reducing the control speed by reducing unnecessary input terms. ..

【0009】[0009]

【課題を解決するための手段】本発明は、多入力多出力
を備えた多層のニューラルネットを利用した学習型制御
装置において、入力値の出力に及ぼす影響度を評価する
手段と、この手段による評価結果に基づいて影響度の小
さいものを入力項から省略する手段とを備えたことを特
徴とする。
According to the present invention, there is provided a learning type control device using a multi-layered neural network having multiple inputs and multiple outputs, a means for evaluating the degree of influence of an input value on the output, and this means. And a means for omitting an item having a small influence degree from the input item based on the evaluation result.

【0010】[0010]

【作用】学習時に制御に影響すると思われる因子を全て
入力として学習制御装置に入力して学習を実施し、学習
終了後に影響度評価手段により、入力項の出力に影響を
及ぼす影響度を求める。次いで、この影響度に基づい
て、出力に及ぼす影響の小さいものを入力項から省略す
る。その後、再度学習を実施して学習制御装置を再構成
する。この結果、不要な入力項を減らして運用モード時
の計算量を減少でき、制御速度を向上することが可能と
なる。
In the learning control device, all the factors that seem to affect the control during learning are input to the learning control device to perform learning, and after the learning is completed, the influence evaluation means determines the influence that affects the output of the input term. Then, based on this degree of influence, those having a small influence on the output are omitted from the input term. Then, learning is performed again to reconfigure the learning control device. As a result, unnecessary input terms can be reduced, the amount of calculation in the operation mode can be reduced, and the control speed can be improved.

【0011】[0011]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。図1は本発明を雨水排水機場のポンプ制御に実
施した場合の学習制御装置の全体構成を示し、図2はそ
の動作を示すフローチャートである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the overall configuration of a learning control device when the present invention is applied to pump control of a rainwater drainage station, and FIG. 2 is a flow chart showing its operation.

【0012】図1において、10Aはニューラルネット
を実現するための計算機処理装置であり、目標生成装置
100、学習制御装置400、入力値の出力に及ぶ影響
度を評価する影響度評価手段500、この手段500に
よる評価結果に基づいて影響度の小さいものを入力項か
ら省略する省略手段600により構成される。また、目
標生成装置100の入力側及び出力側には、それぞれ学
習モードと運用モードとを切換えるモード切換スイッチ
21,22が設けられる。更に計算機処理装置10Aに
は、学習制御装置400及び影響度評価手段500の入
力側に動作切換えスイッチ23が設けられる。この動作
切換えスイッチ23は、学習モードにおいて、学習中は
学習制御装置400を目標生成装置100に接続し、学
習を終了すると影響度評価手段500を目標生成装置1
00に切換え接続する。
In FIG. 1, reference numeral 10A denotes a computer processing device for realizing a neural network, which includes a target generation device 100, a learning control device 400, and an impact degree evaluation means 500 for assessing the impact degree on the output of an input value. The omission means 600 is configured to omit the items having a small influence degree from the input items based on the evaluation result by the means 500. Further, mode changeover switches 21 and 22 for switching between the learning mode and the operation mode are provided on the input side and the output side of the target generation device 100, respectively. Further, the computer processing device 10A is provided with the operation changeover switch 23 on the input side of the learning control device 400 and the influence degree evaluation means 500. This operation changeover switch 23 connects the learning control device 400 to the target generation device 100 during learning in the learning mode, and when the learning is completed, the influence degree evaluation means 500 is connected to the target generation device 1.
Switch to 00 and connect.

【0013】また、モード切換スイッチ21,22を運
用モードに切換えた場合は、目標生成装置100から出
力される目標値が制御装置200へ送られ、制御対象3
00が制御される。そして、この制御対象300の各種
状態量に対する検出信号が目標生成装置100に入力さ
れる。
When the mode changeover switches 21 and 22 are switched to the operation mode, the target value output from the target generation device 100 is sent to the control device 200 and the controlled object 3 is controlled.
00 is controlled. Then, detection signals for the various state quantities of the controlled object 300 are input to the target generation device 100.

【0014】次に上記実施例の動作を図2のフローチャ
ートを参照して説明する。この図2は、計算機処理装置
10Aの処理動作を示したものである。計算機処理装置
10Aは、動作を開始すると、まず、初めての動作であ
るか否かを判断し(ステップA1 )、初めてである場合
にはモード切換スイッチ21,22を学習モード側に切
換え、目標生成装置100の学習を行なう(ステップA
2 )。この学習モードでは、最初に動作切換えスイッチ
23を学習制御装置400側に接続し、教師データと対
応する測定データにより学習を実施する。そして、目標
生成装置100の入力に対する出力の値を教師データと
比較し、この誤差が決められた値ε以下になるまで重み
係数を修正する。
Next, the operation of the above embodiment will be described with reference to the flowchart of FIG. FIG. 2 shows the processing operation of the computer processing apparatus 10A. When the operation is started, the computer processing device 10A first determines whether or not it is the first operation (step A1), and if it is the first operation, switches the mode changeover switches 21 and 22 to the learning mode side to generate a target. Learn the device 100 (step A)
2). In this learning mode, first, the operation changeover switch 23 is connected to the learning control device 400 side, and learning is performed by the measurement data corresponding to the teacher data. Then, the value of the output with respect to the input of the target generation device 100 is compared with the teacher data, and the weighting coefficient is corrected until the error becomes equal to or less than the determined value ε.

【0015】上記の学習により誤差が決められた値ε以
下になったか否かを判断し(ステップA3 )、誤差がε
以下になった時点で動作切換えスイッチ23を影響度評
価手段500側に切換え、影響度評価を行なう(ステッ
プA4 )。影響度評価手段500は、目標生成装置10
0の各入力項目について、その出力に及ぼす影響度を例
えば次式で評価する。 Wi =Σj |Woj|*|Wji| 但し、 Wi :i番入力ニューロンの出力値に対する寄与 Woj:中間層j番ニューロンから出力層へのリンク重み Wji:入力層i番ニューロンから中間層j番ニューロン
へのリンク重み
By the above learning, it is judged whether or not the error is equal to or less than the determined value ε (step A3), and the error is ε.
When it becomes the following, the operation changeover switch 23 is changed over to the influence degree evaluation means 500 side and the influence degree is evaluated (step A4). The impact degree evaluation means 500 uses the target generation device 10
For each input item of 0, the degree of influence on the output is evaluated by, for example, the following formula. Wi = Σj | Woj | * | Wji | where Wi: contribution to the output value of the i-th input neuron Woj: link weight from the j-th neuron of the intermediate layer to the output layer Wji: i-th neuron of the i-th input layer Link weight to

【0016】このWi の値により重要な入力とそれほど
影響のない入力を比較することができる。図3は、影響
度評価手段500による評価結果の一例を示したもので
ある。この図3に示した評価結果から、ポンプ井水位、
降雨量、予測流入量の寄与が大きいことが分かり、この
3つの測定値で同等の制御が可能であることが分かる。
この影響度評価手段500による評価結果は、省略手段
600に送られる。
The value of Wi allows comparison of important and less affected inputs. FIG. 3 shows an example of the evaluation result by the influence degree evaluation means 500. From the evaluation results shown in FIG. 3, the pump well water level,
It can be seen that the contributions of the rainfall amount and the predicted inflow amount are large, and that it is possible to perform equivalent control with these three measured values.
The evaluation result by the influence degree evaluation means 500 is sent to the omission means 600.

【0017】省略手段600は、上記評価結果に基づい
て、影響の小さな入力項を削除する(ステップA5 )。
その後、再び動作切換えスイッチ23を学習制御装置4
00側に切換えて学習モードとする(ステップA6 )。
この再学習の結果、誤差が一定値以下になったか否かを
判断し(ステップA7 )、一定値以下になれば学習を終
了する。
The omission means 600 deletes the input term having a small influence based on the evaluation result (step A5).
After that, the operation changeover switch 23 is set again to the learning control device 4
The learning mode is set by switching to the 00 side (step A6).
As a result of this re-learning, it is judged whether or not the error is below a certain value (step A7), and if it is below a certain value, the learning is terminated.

【0018】上記の学習を終了した後は、モード切換ス
イッチ21,22を運用モードに切換える(ステップA
8 )。この運用モードでは、目標生成装置100より測
定値に対する目標値を制御装置200に出力させ、制御
対象300の制御を行なう。この運用モードにおいて
も、偏差が大きいか否かを判断し(ステップA9 )、偏
差が一定値以内に収まっていれば、そのまま制御対象3
00に対する制御動作を続行する。しかし、偏差が大き
くなった場合は、ステップA10を経てステップA2 に戻
り、上記した学習を再度行なう。
After the above learning is completed, the mode selector switches 21 and 22 are switched to the operation mode (step A).
8). In this operation mode, the target generation device 100 causes the control device 200 to output the target value for the measured value, and the control target 300 is controlled. Even in this operation mode, it is judged whether the deviation is large (step A9), and if the deviation is within a certain value, the control target 3
The control operation for 00 is continued. However, if the deviation becomes large, the process returns to step A2 via step A10, and the above learning is performed again.

【0019】[0019]

【発明の効果】以上詳記したように本発明によれば、入
力値の出力に及ぶ影響度を評価し、この評価結果に基づ
いて影響度の小さい入力項を省略するようにしたので、
不要な入力項を減らすことができ、運用モード時の計算
量を減少して制御速度を向上することができる。
As described above in detail, according to the present invention, the degree of influence of the input value on the output is evaluated, and the input item having the small degree of influence is omitted based on the evaluation result.
It is possible to reduce unnecessary input terms, reduce the amount of calculation in the operation mode, and improve the control speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る学習制御装置の全体構
成図。
FIG. 1 is an overall configuration diagram of a learning control device according to an embodiment of the present invention.

【図2】同実施例の動作を示すフローチャート。FIG. 2 is a flowchart showing the operation of the embodiment.

【図3】影響度評価手段の出力例を示す図。FIG. 3 is a diagram showing an output example of an impact evaluation unit.

【図4】従来の学習制御装置の全体構成図。FIG. 4 is an overall configuration diagram of a conventional learning control device.

【図5】従来装置の動作を示すフローチャート。FIG. 5 is a flowchart showing the operation of the conventional device.

【符号の説明】[Explanation of symbols]

10,10A…計算機処理装置、100…目標生成装
置、200…制御装置、300…制御対象、400…学
習制御装置、500…影響度評価手段、600…入力を
省略する手段。
10, 10A ... Computer processing device, 100 ... Target generation device, 200 ... Control device, 300 ... Control object, 400 ... Learning control device, 500 ... Impact evaluation means, 600 ... Means for omitting input.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多入力多出力を備えた多層のニューラル
ネットを利用した学習型制御装置において、入力値の出
力に及ぼす影響度を評価する手段と、この手段による評
価結果に基づいて影響度の小さいものを入力項から省略
する手段とを備えたことを特徴とする学習型制御装置。
1. A learning-type control device using a multi-layered neural network having multiple inputs and multiple outputs, a means for evaluating the degree of influence of an input value on the output, and a means for evaluating the degree of influence based on the evaluation result by this means. A learning type control device comprising means for omitting a small one from an input term.
JP5811092A 1992-03-16 1992-03-16 Learning control device Withdrawn JPH05265509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5811092A JPH05265509A (en) 1992-03-16 1992-03-16 Learning control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5811092A JPH05265509A (en) 1992-03-16 1992-03-16 Learning control device

Publications (1)

Publication Number Publication Date
JPH05265509A true JPH05265509A (en) 1993-10-15

Family

ID=13074838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5811092A Withdrawn JPH05265509A (en) 1992-03-16 1992-03-16 Learning control device

Country Status (1)

Country Link
JP (1) JPH05265509A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022914A1 (en) * 1995-12-19 1997-06-26 Hitachi Construction Machinery Co., Ltd. Method of output correction for control apparatus, the control apparatus, and hydraulic pump control apparatus
US6101456A (en) * 1995-03-07 2000-08-08 Hitachi Construction Machinery Co., Ltd. Output correcting method in control system, control system, and hydraulic pump control system
JP2010282547A (en) * 2009-06-08 2010-12-16 Fuji Electric Systems Co Ltd Input variable selection support apparatus
JP2014038609A (en) * 2012-07-23 2014-02-27 Alstom Technology Ltd Nonlinear model predictive control for chemical looping process
JP2018169960A (en) * 2017-03-30 2018-11-01 株式会社Jsol Creation system, creation method, and creation program of linear polynomial model in multilayer neural network (deep learning)
JP2018169959A (en) * 2017-03-30 2018-11-01 株式会社Jsol Extraction system, extraction method, and extraction program of high contribution degree item for improving performance of multilayer neural network (deep learning)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6101456A (en) * 1995-03-07 2000-08-08 Hitachi Construction Machinery Co., Ltd. Output correcting method in control system, control system, and hydraulic pump control system
WO1997022914A1 (en) * 1995-12-19 1997-06-26 Hitachi Construction Machinery Co., Ltd. Method of output correction for control apparatus, the control apparatus, and hydraulic pump control apparatus
JP2010282547A (en) * 2009-06-08 2010-12-16 Fuji Electric Systems Co Ltd Input variable selection support apparatus
JP2014038609A (en) * 2012-07-23 2014-02-27 Alstom Technology Ltd Nonlinear model predictive control for chemical looping process
JP2015195061A (en) * 2012-07-23 2015-11-05 アルストム テクノロジー リミテッドALSTOM Technology Ltd Nonlinear model predictive control for chemical looping process
US9740214B2 (en) 2012-07-23 2017-08-22 General Electric Technology Gmbh Nonlinear model predictive control for chemical looping process
JP2018169960A (en) * 2017-03-30 2018-11-01 株式会社Jsol Creation system, creation method, and creation program of linear polynomial model in multilayer neural network (deep learning)
JP2018169959A (en) * 2017-03-30 2018-11-01 株式会社Jsol Extraction system, extraction method, and extraction program of high contribution degree item for improving performance of multilayer neural network (deep learning)

Similar Documents

Publication Publication Date Title
Pérez-Sánchez et al. A review of adaptive online learning for artificial neural networks
US5313559A (en) Method of and system for controlling learning in neural network
US5682465A (en) Learning method of non-linear network for non-linear function approximation
JPH05265509A (en) Learning control device
JPH0895938A (en) Method and device for learning time sequential data
JP3056324B2 (en) Learning / recalling method and device
JP2540654B2 (en) Learning device for neural network
Rossi et al. Geometrical initialization, parametrization and control of multilayer perceptrons: application to function approximation
JPH06175998A (en) Time series prediction method
JPH03105663A (en) Incentive learning processing system
Temponi et al. A fuzzy neural architecture for customer satisfaction assessment
Piazza et al. Fast spline neural networks for image compression
JPH09138786A (en) Learning device for neural network
JP2734374B2 (en) Neural network simulator
JP3031075B2 (en) Neural network learning device
JPH0635881A (en) Neural network
JP2607351B2 (en) Error Signal Generation Method for Efficient Learning of Multilayer Perceptron Neural Network
JPH08166934A (en) Function generator using neural network
JPH05233860A (en) Learning system for time sequential pattern
Lee et al. Error self-recurrent neural networks for control of fast time-varying nonlinear systems
JPH08137821A (en) Device and method for learning neural network
JPH05265990A (en) Neuro-computer
JPH06231289A (en) Method for estimating time series
Yonghong et al. Research on the feedforward network method of marine radar track
GB2295703A (en) Inference apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518