JPH0526542A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH0526542A JPH0526542A JP17927891A JP17927891A JPH0526542A JP H0526542 A JPH0526542 A JP H0526542A JP 17927891 A JP17927891 A JP 17927891A JP 17927891 A JP17927891 A JP 17927891A JP H0526542 A JPH0526542 A JP H0526542A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat
- air conditioner
- storage tank
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,蓄熱槽を有する冷凍サ
イクルを備え,蓄熱槽の蓄熱材に蓄えられた熱を利用し
て室内の暖房を行いつつ蒸発器に付着した霜を除霜する
空気調和機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a refrigeration cycle having a heat storage tank, and uses the heat stored in the heat storage material of the heat storage tank to heat the interior of the room while defrosting the frost adhering to the evaporator. Regarding air conditioners.
【0002】[0002]
【従来の技術】この種の空気調和機の一例となるヒート
ポンプ式の空気調和機1a の冷凍サイクルを図5に示
す。上記空気調和機1a の図示状態では,四方弁19の
流路切り替えによって暖房運転モードになっている。そ
して,暖房運転中,第1の電磁弁18は閉じられ,第2
の電磁弁21は開かれている。そこで,圧縮機2から吐
出された高温の冷媒は蓄熱槽3a の与熱用熱交換器10
によって蓄熱材20に蓄熱し,四方弁19,室内の凝縮
器4,膨張弁28,室外の蒸発器9,四方弁19,電磁
弁21,圧縮機2の順に,実線の矢印で示すように,冷
媒管30内を流通し,これによって室内が暖房されるよ
うになっている。このとき,外気温が低いと,上記蒸発
器9の表面に霜が付着し暖房能力に低下をきたすことが
ある。そのため,適宜蒸発器9の表面の除霜をする必要
がある。そこで,上記蓄熱槽3a が冷凍サイクルの冷媒
管30に連結され,これによって,除霜運転中の暖房能
力を増加させると共に除霜時間の短縮化を図るようにな
っている。上記蓄熱槽3a は,図6に示すように,槽内
の蓄熱材20中に上記与熱用熱交換器10と後述する受
熱用熱交換器11とが収容されている。そこで,除霜運
転と暖房運転とを同時に行う際には,上記電磁弁18が
開かれ,上記電磁弁21が閉じられる。そして,圧縮機
2から吐出された冷媒は破線の矢印で示すように,上記
膨張弁28を迂回して電磁弁18を流通して蒸発器9に
導かれる。このとき,上記冷媒は電磁弁18において大
きく減圧されることがないため,比較的高い温度で上記
蒸発器9を加熱する。これによって,蒸発器9の除霜が
行われる。そして,上記凝縮器4及び蒸発器9において
凝縮された冷媒はキャピラリチューブ7において減圧さ
れて一部気化した後,上記蓄熱槽3a の蓄熱材20に蓄
えられた熱を受熱用熱交換器11により取り出して完全
に気化された後上記圧縮機2に戻るようになっている。2. Description of the Related Art FIG. 5 shows a refrigeration cycle of a heat pump type air conditioner 1a which is an example of this type of air conditioner. In the illustrated state of the air conditioner 1 a, the heating operation mode is set by switching the flow path of the four-way valve 19. During the heating operation, the first solenoid valve 18 is closed and the second solenoid valve 18 is closed.
The solenoid valve 21 of is open. Therefore, refrigerant discharged from the compressor 2 high temperature heat storage tank 3 a heat heat exchanger 10 given the
The heat is stored in the heat storage material 20 by the four-way valve 19, the indoor condenser 4, the expansion valve 28, the outdoor evaporator 9, the four-way valve 19, the solenoid valve 21, and the compressor 2 in this order, as indicated by the solid arrow, It circulates in the refrigerant pipe 30 to heat the room. At this time, if the outside air temperature is low, frost may adhere to the surface of the evaporator 9 to lower the heating capacity. Therefore, it is necessary to appropriately defrost the surface of the evaporator 9. Therefore, the heat storage tank 3 a is connected to the refrigerant pipe 30 of the refrigeration cycle, whereby, so as to shorten the defrosting time with increasing heating capacity during the defrosting operation. As shown in FIG. 6, in the heat storage tank 3 a , the heat exchanger 10 for heating and the heat exchanger 11 for heat reception described later are housed in a heat storage material 20 in the tank. Therefore, when the defrosting operation and the heating operation are simultaneously performed, the solenoid valve 18 is opened and the solenoid valve 21 is closed. Then, the refrigerant discharged from the compressor 2 bypasses the expansion valve 28, flows through the electromagnetic valve 18, and is guided to the evaporator 9, as indicated by a dashed arrow. At this time, the refrigerant is not greatly decompressed in the solenoid valve 18, so the evaporator 9 is heated at a relatively high temperature. Thereby, the evaporator 9 is defrosted. The refrigerant condensed in the condenser 4 and the evaporator 9 is decompressed in the capillary tube 7 and partially vaporized, and then the heat stored in the heat storage material 20 of the heat storage tank 3 a is transferred to the heat receiving heat exchanger 11 After being taken out and completely vaporized, it is returned to the compressor 2.
【0003】[0003]
【発明が解決しようとする課題】ところで,表面に着霜
した蒸発器9内の冷媒が凝縮するときの圧力(凝縮圧
力)は,例えば0℃以下である霜の温度に対応する飽和
圧力になり,比較的低い。従って,上記電磁弁18とし
て冷媒圧力損失が十分小さなものが採用されている場合
には,上記凝縮器4内の冷媒も蒸発器9内と同じく低い
圧力になり,凝縮しにくくなる。このため,除霜運転時
の暖房能力は極めて小さくなる。逆に,上記凝縮器4内
の圧力を上げて暖房能力を大きくすべく,冷媒圧力損失
の大きな電磁弁18を採用すると,冷媒は上記凝縮器4
で多くが凝縮し,上記蒸発器9には,液比率の大きな気
液2相状態の冷媒が流入することになる。そのため,冷
媒の凝縮潜熱に依存する除霜能力は極めて小さなものに
なる。従って,除霜時間が長びくことにもなる。このよ
うに,上記従来の空気調和機1a は,除霜運転中の暖房
能力と除霜能力とが不均衡であった。一方,比較的スペ
ースを必要とする蓄熱槽3a をコンパクトにしたいとい
う要請もあった。そこで,本発明の目的とするところ
は,除霜運転中の暖房能力と除霜能力とのバランスのと
れた運転を行い得ると共に,蓄熱槽のコンパクト化を図
ることのできる空気調和機を提供することにある。By the way, the pressure (condensation pressure) when the refrigerant in the evaporator 9 frosted on the surface is condensed becomes a saturation pressure corresponding to a frost temperature of 0 ° C. or less, for example. , Relatively low. Therefore, when the solenoid valve 18 having a sufficiently small refrigerant pressure loss is adopted, the refrigerant in the condenser 4 has the same low pressure as in the evaporator 9 and is less likely to condense. Therefore, the heating capacity during defrosting operation is extremely small. On the contrary, if the solenoid valve 18 with a large refrigerant pressure loss is adopted in order to increase the pressure in the condenser 4 and increase the heating capacity, the refrigerant will be cooled by the condenser 4.
Most of them are condensed, and the vapor-liquid two-phase refrigerant having a large liquid ratio flows into the evaporator 9. Therefore, the defrosting ability that depends on the latent heat of condensation of the refrigerant is extremely small. Therefore, the defrosting time will be extended. Thus, the conventional air conditioner 1 a includes a were unbalanced heating capacity and defrosting capacity in the defrosting operation. On the other hand, was also a demand for a compact thermal storage tank 3 a that require relatively space. Therefore, an object of the present invention is to provide an air conditioner capable of performing a well-balanced operation of the heating capacity and the defrosting capacity during the defrosting operation and making the heat storage tank compact. Especially.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する主たる手段は,その要旨とすると
ころが,圧縮機,蓄熱槽,室内側の凝縮器,絞り機構及
び室外側の蒸発器をこれらの順序で冷媒管を介して連結
してなる冷凍サイクルを備え,上記蓄熱槽の与熱用の冷
媒管から上記蓄熱槽に蓄えた熱を受熱用の冷媒管より取
り出して室内の暖房を行いつつ上記蒸発器を除霜する空
気調和機において,上記与熱用及び受熱用の冷媒管を共
通の冷媒管により構成した蓄熱槽と,上記凝縮器及び絞
り機構と上記蓄熱槽との冷媒流通順序を入れ替える冷媒
流路切替手段と,上記凝縮器及び絞り機構に並列に上記
冷凍サイクルに連結され,冷媒を上記凝縮器及び絞り機
構を迂回して流通させる冷媒迂回手段とを具備してなる
点に係る空気調和機として構成されている。In order to achieve the above object, the main means adopted by the present invention are, as its gist, a compressor, a heat storage tank, a condenser on the indoor side, a throttle mechanism and an outdoor side. A refrigeration cycle is provided in which the evaporators are connected in this order through the refrigerant pipes, and the heat stored in the heat storage tank is taken out from the heat-supplying refrigerant pipes of the heat storage tank and taken out from the heat-receiving refrigerant pipe. In an air conditioner that defrosts the evaporator while performing heating, a heat storage tank in which the heating and receiving refrigerant pipes are formed by a common refrigerant pipe, and the condenser and throttle mechanism and the heat storage tank A refrigerant flow path switching means for changing the order of refrigerant flow, and a refrigerant bypass means connected in parallel to the condenser and the throttling mechanism to the refrigeration cycle and allowing the refrigerant to flow by bypassing the condenser and the throttling mechanism. Air conditioning related to It is configured as.
【0005】[0005]
【作用】本発明の空気調和機においては,例えば暖房運
転のみの場合と暖房運転と除霜運転を同時に行う場合と
では,凝縮器及び絞り機構と蓄熱槽との冷媒流通順序が
冷媒流路切替手段により入れ替えられる。従って,上記
蓄熱槽の与熱用及び受熱用の冷媒管が共通の冷媒管です
むため,上記蓄熱槽はコンパクトになる。一方,上記暖
房運転と除霜運転を同時に行うときには,圧縮機からの
高温の冷媒の一部が,上記凝縮器及び絞り機構を迂回し
て流通する。これによって,上記一部の冷媒の熱は凝縮
器において放出されることなく蒸発器の除霜に供され
る。In the air conditioner of the present invention, for example, in the case of only the heating operation and in the case of simultaneously performing the heating operation and the defrosting operation, the refrigerant flow order of the condenser / throttle mechanism and the heat storage tank is switched between the refrigerant flow paths. It is replaced by means. Therefore, a common refrigerant pipe is used for heating and receiving heat of the heat storage tank, and thus the heat storage tank becomes compact. On the other hand, when the heating operation and the defrosting operation are performed at the same time, a part of the high temperature refrigerant from the compressor circulates around the condenser and the throttle mechanism. As a result, the heat of the part of the refrigerant is used for defrosting the evaporator without being released in the condenser.
【0006】[0006]
【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る空気調和機の冷凍サ
イクルを示す構成図,図2は上記空気調和機の蓄熱槽に
用いられる共用熱交換器を示す斜視図,図3は上記空気
調和機の圧力−エンタルピ挙動を示すモリエル線図,図
4は図2のG矢視に視た共用熱交換器を蓄熱槽に収容し
た状態を示す状態説明図である。但し,図5に示した上
記従来の空気調和機1a と共通する要素には,同一の符
号を使用すると共に,その詳細な説明は省略する。本実
施例に係る空気調和機1の冷凍サイクルは,図1に示す
ように,圧縮機2,三方弁15,四方弁19,凝縮器
4,膨張弁8,蒸発器9,四方弁19が順次冷媒管30
を介して連結されてなっている。更に,上記膨張弁8に
並列に,キャピラリチューブ5,逆止弁16,共用熱交
換器12,電磁弁13が順次上記冷凍サイクルに接続さ
れ,上記逆止弁16と共用熱交換器12とを連結する冷
媒管と上記三方弁15の一方の冷媒出口とが接続され,
上記共用熱交換器12と電磁弁13とを連結する冷媒管
と上記三方弁15の他方の冷媒出口と四方弁19とを連
結する冷媒管とが逆止弁17を介して接続されている。
更に,上記三方弁15の一方の冷媒出口の冷媒管と他方
の冷媒出口の冷媒管とは,キャピラリチューブ6を介し
て連結されている。即ち,上記キャピラリチューブ6及
びこれに連結された冷媒管が本発明にいう冷媒迂回手段
である。上記共用熱交換器12は,図2に示すように,
多重に屈曲した1本の冷媒管30が多数の冷却フィン2
5に嵌通して固定されてなっている。この共用熱交換器
12は,蓄熱槽3内の,例えばポリエチレングリコー
ル,パラフィン,酢酸ナトリウム3水塩等よりなる蓄熱
材20中に配設される(図4)。なお,上記キャピラリ
チューブ6を備えた冷媒管は,除霜運転中の暖房能力と
除霜能力とのバランスをとるように設けられたものであ
って,上記凝縮器4及びキャピラリチューブ5(絞り機
構)に並列に上記冷凍サイクルに連結されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not of the nature to limit the technical scope of the present invention. 1 is a block diagram showing a refrigeration cycle of an air conditioner according to an embodiment of the present invention, FIG. 2 is a perspective view showing a shared heat exchanger used in a heat storage tank of the air conditioner, and FIG. 2 is a Mollier diagram showing the pressure-enthalpy behavior of the air conditioner, and FIG. 4 is a state explanatory view showing a state in which the shared heat exchanger viewed in the direction of arrow G in FIG. However, the same reference numerals are used for the elements common to the above-described conventional air conditioner 1 a shown in FIG. 5, and the detailed description thereof will be omitted. In the refrigeration cycle of the air conditioner 1 according to the present embodiment, as shown in FIG. 1, the compressor 2, the three-way valve 15, the four-way valve 19, the condenser 4, the expansion valve 8, the evaporator 9, and the four-way valve 19 are sequentially arranged. Refrigerant pipe 30
Are connected via. Further, in parallel with the expansion valve 8, a capillary tube 5, a check valve 16, a common heat exchanger 12, and a solenoid valve 13 are sequentially connected to the refrigeration cycle, and the check valve 16 and the common heat exchanger 12 are connected to each other. The connecting refrigerant pipe and one refrigerant outlet of the three-way valve 15 are connected,
A refrigerant pipe connecting the shared heat exchanger 12 and the electromagnetic valve 13 and a refrigerant pipe connecting the other refrigerant outlet of the three-way valve 15 and the four-way valve 19 are connected via a check valve 17.
Further, the refrigerant pipe at one refrigerant outlet of the three-way valve 15 and the refrigerant pipe at the other refrigerant outlet are connected via a capillary tube 6. That is, the capillary tube 6 and the refrigerant pipe connected thereto are the refrigerant bypass means according to the present invention. The common heat exchanger 12 is, as shown in FIG.
One refrigerant pipe 30 that is bent multiple times has a large number of cooling fins 2.
It is fixed by being inserted into 5. The shared heat exchanger 12 is arranged in the heat storage tank 3 in the heat storage material 20 made of, for example, polyethylene glycol, paraffin, sodium acetate trihydrate or the like (FIG. 4). The refrigerant tube provided with the capillary tube 6 is provided so as to balance the heating capacity and the defrosting capacity during the defrosting operation, and the condenser 4 and the capillary tube 5 (throttle mechanism). ) In parallel with the above refrigeration cycle.
【0007】本実施例の空気調和機1は上記したように
構成されている。上記空気調和機1はヒートポンプ式の
ものであって,四方弁19の流路切り替えによって冷房
運転を行うこともできるが,以下暖房運転に関して説明
する。そこで,暖房運転を行う際には,三方弁15は蓄
熱槽3への流路が開放され,電磁弁13は閉じられる。
従って,圧縮機2から吐出された高温の冷媒は共用熱交
換器12において蓄熱材20を加熱した後,逆止弁1
7,四方弁19,凝縮器4,膨張弁8,蒸発器9,四方
弁19を経て圧縮機2に戻る(実線の矢印)。この際,
上記冷媒は室外の蒸発器9において外気より吸熱し,室
内の凝縮器4において室内の暖房を行うと共に蓄熱材2
0に蓄熱する。一方上記暖房運転を行いつつ除霜運転を
実行する際には,膨張弁8が全閉にされ,三方弁15が
四方弁19への流路を開放するように切り替えられると
共に,電磁弁13が開放される。これによって,上記暖
房運転のみの場合に対して,上記凝縮器4及びキャピラ
リチューブ5又は膨張弁8(いずれも絞り機構)と上記
蓄熱槽3の共用熱交換器12との冷媒流通順序が入れ替
えられる。従って,圧縮機2から吐出された冷媒は,四
方弁19を経て凝縮器4において放熱し凝縮した後,キ
ャピラリチューブ5,逆止弁16を通って共用熱交換器
12において蓄熱材20から吸熱して高温となり,更に
電磁弁13,蒸発器9,四方弁19を通って圧縮機2に
戻る(破線の矢印)。これによって,暖房運転を継続し
ながら除霜運転が行われる。なお,上記逆止弁16は暖
房運転時に圧縮機2から吐出された冷媒がキャピラリチ
ューブ5を通って膨張弁8へ流入するのを防ぐために設
けられており,上記逆止弁17は除霜運転中に圧縮機2
からの冷媒が電磁弁13へ流入することを防ぐために設
けられている。即ち,上記膨張弁8,電磁弁13,三方
弁15,逆止弁16,17及びこれらに関連して接続さ
れた冷媒管よりなる構成が本発明にいう冷媒流路切替手
段である。The air conditioner 1 of this embodiment is constructed as described above. The air conditioner 1 is of a heat pump type and can perform a cooling operation by switching the flow path of the four-way valve 19, but the heating operation will be described below. Therefore, when performing the heating operation, the three-way valve 15 opens the flow path to the heat storage tank 3, and the solenoid valve 13 is closed.
Therefore, the high-temperature refrigerant discharged from the compressor 2 heats the heat storage material 20 in the common heat exchanger 12, and then the check valve 1
7, the four-way valve 19, the condenser 4, the expansion valve 8, the evaporator 9, and the four-way valve 19 are returned to the compressor 2 (solid arrow). On this occasion,
The refrigerant absorbs heat from the outside air in the outdoor evaporator 9, heats the room in the indoor condenser 4, and heat-storage material 2
Stores heat to 0. On the other hand, when performing the defrosting operation while performing the heating operation, the expansion valve 8 is fully closed, the three-way valve 15 is switched to open the flow path to the four-way valve 19, and the solenoid valve 13 is turned on. Be released. As a result, the order of refrigerant flow between the condenser 4, the capillary tube 5, or the expansion valve 8 (both throttle mechanisms) and the shared heat exchanger 12 of the heat storage tank 3 is exchanged with respect to the case of only the heating operation. .. Therefore, the refrigerant discharged from the compressor 2 radiates heat in the condenser 4 via the four-way valve 19 and is condensed, and thereafter, the heat is absorbed from the heat storage material 20 in the common heat exchanger 12 through the capillary tube 5 and the check valve 16. Then, the temperature rises to a high temperature, and further returns to the compressor 2 through the solenoid valve 13, the evaporator 9, and the four-way valve 19 (broken arrow). As a result, the defrosting operation is performed while continuing the heating operation. The check valve 16 is provided to prevent the refrigerant discharged from the compressor 2 from flowing into the expansion valve 8 through the capillary tube 5 during the heating operation, and the check valve 17 is provided in the defrosting operation. Inside the compressor 2
It is provided in order to prevent the refrigerant from the above from flowing into the solenoid valve 13. That is, the structure comprising the expansion valve 8, the solenoid valve 13, the three-way valve 15, the check valves 16 and 17, and the refrigerant pipes connected to them is the refrigerant flow path switching means according to the present invention.
【0008】上記したような暖房運転と除霜運転の併用
時の冷媒の状態を図3のモリエル線図に示す。同図にお
いて,点A〜Fは図1の冷媒管の位置A〜Fにおける冷
媒の状態に対応する。このモリエル線図によれば,除霜
時に圧縮機2からの冷媒(A)は,凝縮器4において放
熱・凝縮して(B)の状態になった後,キャピラリチュ
ーブ5を通過して減圧状態(C)になる。続いてこの冷
媒は共用熱交換器12において加熱されて高温の状態
(D)になった後,蒸発器9において一部が放熱・凝縮
することによって蒸発器9の表面の霜を溶かして状態
(E)になり圧縮機2へ戻るサイクル線Qの流れを形成
している。但し,上記したように,キャピラリチューブ
6を備えたバイパス流路が設けられているので,実際の
除霜時には上記主流となるサイクル線Qの流れに加え
て,サイクル線qで示すバイパス流れが追加されること
になる。このとき,上記サイクル線Qの冷媒流通量と上
記サイクル線qの冷媒流通量の比率は,上記キャピラリ
チューブ5とキャピラリチューブ6のそれぞれの流路抵
抗の比で決定され,これらを合わせた全体の循環量は,
両者の流路抵抗の和により決定される。従って,除霜能
力を大きくする場合には,キャピラリチューブ5よりも
キャピラリチューブ6の流路抵抗を小さくし,暖房能力
を大きくする場合には,逆にキャピラリチューブ5の流
路抵抗を小さく設定すればよい。また,全体の冷媒循環
量を調節するためには,上記キャピラリチューブ5,6
の流路抵抗以外に,例えば電磁弁13の流路抵抗を所要
の値に設定してもよい。The state of the refrigerant when the heating operation and the defrosting operation as described above are used together is shown in the Mollier diagram of FIG. In the figure, points A to F correspond to the states of the refrigerant at positions A to F of the refrigerant pipe in FIG. According to this Mollier diagram, during defrosting, the refrigerant (A) from the compressor 2 dissipates and condenses in the condenser 4 to become the state of (B), and then passes through the capillary tube 5 to be in a depressurized state. It becomes (C). Subsequently, this refrigerant is heated in the shared heat exchanger 12 to a high temperature state (D), and then part of the evaporator 9 dissipates heat and condenses to melt the frost on the surface of the evaporator 9 ( The flow of the cycle line Q, which becomes E) and returns to the compressor 2, is formed. However, as described above, since the bypass flow path provided with the capillary tube 6 is provided, a bypass flow indicated by the cycle line q is added in addition to the flow of the cycle line Q which is the main flow at the time of actual defrosting. Will be done. At this time, the ratio of the refrigerant flow amount of the cycle line Q and the refrigerant flow amount of the cycle line q is determined by the ratio of the flow channel resistances of the capillary tube 5 and the capillary tube 6, and the total of these is determined. Circulation amount is
It is determined by the sum of both flow path resistances. Therefore, when the defrosting capacity is increased, the flow path resistance of the capillary tube 6 is made smaller than that of the capillary tube 5, and when the heating capacity is increased, conversely, the flow path resistance of the capillary tube 5 is set small. Good. Further, in order to adjust the total amount of refrigerant circulation, the above-mentioned capillary tubes 5, 6 are used.
In addition to the flow path resistance of, for example, the flow path resistance of the solenoid valve 13 may be set to a required value.
【0009】上記したように,本実施例によれば,除霜
運転中の暖房能力と除霜能力のバランスをとることがで
きる。これによって,例えば大きな能力の暖房運転を行
いつつ短時間で蒸発器9の除霜を行うことができる。ま
た,従来のような与熱用熱交換器10と受熱用熱交換器
11とが1つの共用熱交換器12で兼用されているた
め,蓄熱槽3に収容される蓄熱材20が少量ですむう
え,蓄熱槽3のコンパクト化が可能である等大きな利点
を有する。なお,上記共用熱交換器12における蓄熱時
の温度分布曲線T1 ,放熱時の温度分布曲線T2を図4
に示す。上記それぞれの温度分布曲線T1 ,T2 で囲ま
れた斜線部の面積が蓄熱材への熱の出入り量に相当する
が,これは,従来の与熱用熱交換器10及び受熱用熱交
換器11により形成される蓄熱時及び放熱時の温度分布
曲線T11,T12により囲まれた斜線部により表される熱
の出入り量(図6)とほぼ同等であって,熱交換器の小
型化を図ったにもかかわらず熱交換効率が変わらないこ
とを示している。なお,上記実施例では,暖房運転のみ
のとき,圧縮機からの吐出冷媒を共用熱交換器12に常
時流通させるようにしたが,これに限定されるものでは
なく,上記三方弁を適時切り替えて上記吐出冷媒による
蓄熱量を制御することもできる。また,除霜運転時に膨
張弁8を全閉にするように構成したが,これに替えて,
キャピラリチューブと全閉全開式の電磁弁の組合せを用
いることもできる。更に,上記した実施例では,予め設
定された流路抵抗のキャピラリチューブ5及びキャピラ
リチューブ6を設けたが,上記キャピラリチューブ5も
しくはキャピラリチューブ6またはこれらの双方に替え
て,冷媒流通量可変の膨張弁を用いてもよい。これによ
って,上記暖房能力と除霜能力とのバランスを運転中に
微調整することも可能である。As described above, according to this embodiment, the heating capacity and the defrosting capacity during the defrosting operation can be balanced. As a result, for example, the evaporator 9 can be defrosted in a short time while performing a heating operation with a large capacity. Further, since the heat exchanger 10 for heating and the heat exchanger 11 for receiving heat as in the conventional case are shared by the single common heat exchanger 12, the heat storage material 20 accommodated in the heat storage tank 3 requires a small amount. In addition, it has a great advantage that the heat storage tank 3 can be made compact. The temperature distribution curve T 1 during heat storage and the temperature distribution curve T 2 during heat dissipation in the shared heat exchanger 12 are shown in FIG.
Shown in. The area of the shaded area surrounded by the respective temperature distribution curves T 1 and T 2 corresponds to the amount of heat input and output to and from the heat storage material, which is the same as the conventional heat exchanger 10 for heat application and heat exchange for heat reception. The heat input / output amount (Fig. 6) represented by the shaded area surrounded by the temperature distribution curves T 11 and T 12 at the time of heat storage and heat dissipation formed by the heat exchanger 11 is almost the same, and the size of the heat exchanger is small. It shows that the heat exchange efficiency does not change despite the fact that it was attempted. In the above embodiment, the refrigerant discharged from the compressor is always circulated in the common heat exchanger 12 only during the heating operation, but the present invention is not limited to this, and the three-way valve can be switched at appropriate times. The amount of heat stored by the discharged refrigerant can also be controlled. Further, the expansion valve 8 is configured to be fully closed during the defrosting operation, but instead of this,
It is also possible to use a combination of a capillary tube and a fully closed and fully opened solenoid valve. Further, in the above-described embodiment, the capillary tube 5 and the capillary tube 6 having the preset flow path resistance are provided. However, the capillary tube 5 or the capillary tube 6 or both of them are replaced, and the expansion of the variable amount of refrigerant flow is performed. A valve may be used. This makes it possible to finely adjust the balance between the heating capacity and the defrosting capacity during operation.
【0010】[0010]
【発明の効果】上記したように,本発明は圧縮機,蓄熱
槽,室内側の凝縮器,絞り機構及び室外側の蒸発器をこ
れらの順序で冷媒管を介して連結してなる冷凍サイクル
を備え,上記蓄熱槽の与熱用の冷媒管から上記蓄熱槽に
蓄えた熱を受熱用の冷媒管より取り出して室内の暖房を
行いつつ上記蒸発器を除霜する空気調和機において,上
記与熱用及び受熱用の冷媒管を共通の冷媒管により構成
した蓄熱槽と,上記凝縮器及び絞り機構と上記蓄熱槽と
の冷媒流通順序を入れ替える冷媒流路切替手段と,上記
凝縮器及び絞り機構に並列に上記冷凍サイクルに連結さ
れ,冷媒を上記凝縮器及び絞り機構を迂回して流通させ
る冷媒迂回手段とを具備してなることを特徴とする空気
調和機であるので,除霜運転中の暖房能力と除霜能力と
のバランスのとれた運転を行うことができるうえ,蓄熱
槽のコンパクト化を図ることもできる。As described above, the present invention provides a refrigeration cycle in which a compressor, a heat storage tank, an indoor condenser, a throttle mechanism and an outdoor evaporator are connected in this order through a refrigerant pipe. In the air conditioner for defrosting the evaporator while heating the room by taking out the heat stored in the heat storage tank from the heat supply refrigerant tube from the heat storage tank, Storage tank in which the refrigerant tubes for heat reception and heat reception are constituted by a common refrigerant tube, refrigerant flow path switching means for switching the refrigerant circulation order between the condenser and the throttling mechanism and the heat storage tank, and the condenser and the throttling mechanism. Since the air conditioner is connected in parallel to the refrigeration cycle and is provided with a refrigerant bypass means that allows the refrigerant to flow by bypassing the condenser and the throttling mechanism, the heating during the defrosting operation is achieved. Balance between defrosting ability and defrosting ability After which it is possible to perform the operation, it may be made compact in the heat storage tank.
【図1】 本発明の一実施例に係る空気調和機の冷凍サ
イクルを示す構成図。FIG. 1 is a configuration diagram showing a refrigeration cycle of an air conditioner according to an embodiment of the present invention.
【図2】 上記空気調和機の蓄熱槽に用いられる共用熱
交換器を示す斜視図。FIG. 2 is a perspective view showing a common heat exchanger used in the heat storage tank of the air conditioner.
【図3】 上記空気調和機の圧力−エンタルピ挙動を示
すモリエル線図。FIG. 3 is a Mollier diagram showing the pressure-enthalpy behavior of the air conditioner.
【図4】 図2のG矢視に視た共用熱交換器を蓄熱槽に
収容した状態を示す状態説明図。FIG. 4 is a state explanatory view showing a state in which the shared heat exchanger viewed in the direction of arrow G in FIG. 2 is housed in a heat storage tank.
【図5】 本発明の背景の一例となる従来の空気調和機
の冷凍サイクルを示す構成図。FIG. 5 is a configuration diagram showing a refrigeration cycle of a conventional air conditioner as an example of the background of the present invention.
【図6】 図5の蓄熱槽内部の状態を示す状態説明図。FIG. 6 is a state explanatory view showing a state inside the heat storage tank of FIG.
1,1a …空気調和機 2…圧縮機 3,3a …蓄熱槽 4…凝縮器 5…キャピラリチューブ(絞り機構) 6…キャピラ
リチューブ 7…キャピラリチューブ 8…膨張弁
(絞り機構) 9…蒸発器 10…与熱用熱
交換器 11…受熱用熱交換器 12…共用熱
交換器 13…電磁弁 15…三方弁 16,17…逆止弁 30…冷媒管1, 1 a ... Air conditioner 2 ... Compressor 3, 3 a ... Heat storage tank 4 ... Condenser 5 ... Capillary tube (throttle mechanism) 6 ... Capillary tube 7 ... Capillary tube 8 ... Expansion valve (throttle mechanism) 9 ... Evaporation Heater 10 ... Heat exchanger for heating 11 ... Heat exchanger for receiving heat 12 ... Common heat exchanger 13 ... Solenoid valve 15 ... Three-way valve 16, 17 ... Check valve 30 ... Refrigerant pipe
Claims (1)
機構及び室外側の蒸発器をこれらの順序で冷媒管を介し
て連結してなる冷凍サイクルを備え,上記蓄熱槽の与熱
用の冷媒管から上記蓄熱槽に蓄えた熱を受熱用の冷媒管
より取り出して室内の暖房を行いつつ上記蒸発器を除霜
する空気調和機において, 上記与熱用及び受熱用の冷媒管を共通の冷媒管により構
成した蓄熱槽と, 上記凝縮器及び絞り機構と上記蓄熱槽との冷媒流通順序
を入れ替える冷媒流路切替手段と, 上記凝縮器及び絞り機構に並列に上記冷凍サイクルに連
結され,冷媒を上記凝縮器及び絞り機構を迂回して流通
させる冷媒迂回手段とを具備してなることを特徴とする
空気調和機。Claim: What is claimed is: 1. A refrigeration cycle comprising a compressor, a heat storage tank, an indoor condenser, a throttle mechanism, and an outdoor evaporator, which are connected in this order through a refrigerant pipe, In an air conditioner that defrosts the evaporator while heating the interior of the room by taking out the heat stored in the heat storage tank from the heat transfer refrigerant tube from the heat receiving refrigerant tube, A heat storage tank in which a refrigerant pipe for heat reception is formed by a common refrigerant pipe, a refrigerant flow path switching means for switching the order of refrigerant flow between the condenser and the throttling mechanism, and the heat storage tank, and in parallel with the condenser and the throttling mechanism. An air conditioner connected to the refrigeration cycle, comprising: a refrigerant bypass means for allowing a refrigerant to flow by bypassing the condenser and the throttle mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3179278A JP3004773B2 (en) | 1991-07-19 | 1991-07-19 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3179278A JP3004773B2 (en) | 1991-07-19 | 1991-07-19 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0526542A true JPH0526542A (en) | 1993-02-02 |
JP3004773B2 JP3004773B2 (en) | 2000-01-31 |
Family
ID=16063047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3179278A Expired - Fee Related JP3004773B2 (en) | 1991-07-19 | 1991-07-19 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3004773B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005337662A (en) * | 2004-05-31 | 2005-12-08 | Daikin Ind Ltd | Air conditioning device |
JP2006308156A (en) * | 2005-04-27 | 2006-11-09 | Matsushita Electric Ind Co Ltd | Air conditioner |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6089555U (en) * | 1983-11-25 | 1985-06-19 | 株式会社東芝 | heat pump air conditioner |
JPS6448553U (en) * | 1987-09-18 | 1989-03-24 |
-
1991
- 1991-07-19 JP JP3179278A patent/JP3004773B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6089555U (en) * | 1983-11-25 | 1985-06-19 | 株式会社東芝 | heat pump air conditioner |
JPS6448553U (en) * | 1987-09-18 | 1989-03-24 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005337662A (en) * | 2004-05-31 | 2005-12-08 | Daikin Ind Ltd | Air conditioning device |
JP4569174B2 (en) * | 2004-05-31 | 2010-10-27 | ダイキン工業株式会社 | Air conditioner |
JP2006308156A (en) * | 2005-04-27 | 2006-11-09 | Matsushita Electric Ind Co Ltd | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP3004773B2 (en) | 2000-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6685409B2 (en) | Air conditioner | |
US4311020A (en) | Combination reversing valve and expansion device for a reversible refrigeration circuit | |
JPH0481101B2 (en) | ||
JP2002156149A (en) | Air conditioner | |
JPH03117866A (en) | Heat pump type refrigerating cycle | |
JP2667741B2 (en) | Air conditioner | |
JPH10205933A (en) | Air conditioner | |
JP3004773B2 (en) | Air conditioner | |
CN213089945U (en) | Air conditioner | |
CN106949670B (en) | Refrigerating system and control method | |
CN206846873U (en) | Heating unit | |
JPH07104080B2 (en) | Heat pump device | |
JP2698179B2 (en) | Air conditioning | |
JP2001033126A (en) | Air conditioner | |
JPH10141815A (en) | Air conditioner | |
JPH10325641A (en) | Refrigerating device | |
JPH09318178A (en) | Air conditioner | |
WO2023275917A1 (en) | Air-refrigerant heat exchanger | |
WO2023275916A1 (en) | Refrigeration cycle device | |
WO2023243054A1 (en) | Air conditioner | |
JPH03164668A (en) | Heat pump device | |
JP2557940Y2 (en) | Air heat source heat pump air conditioner | |
JP2002061897A (en) | Heat storage type air conditioner | |
JPS6117873A (en) | Air-conditioning hot-water supply device | |
JPH0573989B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20081119 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091119 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |