JPH05264934A - Optical modulator driving circuit - Google Patents

Optical modulator driving circuit

Info

Publication number
JPH05264934A
JPH05264934A JP6432392A JP6432392A JPH05264934A JP H05264934 A JPH05264934 A JP H05264934A JP 6432392 A JP6432392 A JP 6432392A JP 6432392 A JP6432392 A JP 6432392A JP H05264934 A JPH05264934 A JP H05264934A
Authority
JP
Japan
Prior art keywords
optical modulator
coil
fet
transistor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6432392A
Other languages
Japanese (ja)
Inventor
Sadao Fujita
定男 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6432392A priority Critical patent/JPH05264934A/en
Publication of JPH05264934A publication Critical patent/JPH05264934A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To reduce the power consumption by allowing most of currents for flowing through a transistor to flow to an optical modulator side. CONSTITUTION:A DC current path of an FET 1 is formed by connecting in series the FET 1 for executing power amplification of an input electric signal 101, a coil L11 of 100nH to a drain terminal of the FET 1 and a resistor R11 of 50OMEGA in which the other terminal is grounded. Also, to the drain terminal, a capacitor C11 of 0.1muF, an optical modulator 2 of a progressive form, a bias circuit 3 and a terminal resistance RL of 50OMEGA are cascaded, and the optical modulator 2 is driven. According to such a constitution, a low frequency current 102 of <=30kHz flows through the path of the coil L11 and the resistance R11, and a component of >=30kHz being a modulating signal flows through the optical modulator 2 side. When this driving circuit is operated at a transmission rate 10Gb/s, and current f is allowed to flow through the FET 1 in amplitude of 120mA, as for a high frequency component, that is, the modulating signal, its amplitude value becomes 110mA and becomes a value which can drive enough the optical modulator 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信システムに於け
る光送信部の光変調器駆動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical modulator drive circuit for an optical transmitter in an optical communication system.

【0002】[0002]

【従来の技術】近年、大容量の情報を伝送するための光
通信システムとして、伝送速度がギガビットレンジの光
通信装置が開発されている。このような大容量の光通信
システムに用いる光通信部の光変調器としては、変調時
にもスペクトル拡がりが小さく、光ファイバの分散の影
響を受けずに長距離伝送が可能なリチウムナイオベート
(ニオブ酸リチウム)を用いたマッハツェンダ型の光変
調器がある。
2. Description of the Related Art Recently, as an optical communication system for transmitting a large amount of information, an optical communication device having a transmission speed of a gigabit range has been developed. As an optical modulator of an optical communication unit used in such a large capacity optical communication system, a lithium niobate (niobium) that has a small spectrum spread even during modulation and is capable of long-distance transmission without being affected by dispersion of an optical fiber. There is a Mach-Zehnder type optical modulator using lithium oxide).

【0003】しかしながら、リチウムナイオベートを用
いたマッハツェンダ型の光変調器では、変調電圧に対す
る光変調特性の動作点ドリフト(DCドリフト)が存在
するため、光変調器に適正な直流バイアスを加えるバイ
アス回路が必要となる。この様なマッハツェンダ型の光
変調器の駆動回路としては、変調する電気信号に直流バ
イアスを重畳させる方法が提案されている。例えば、図
3に示す回路である。(詳細は桑田らによる“マッハツ
ェンダ型光変調器用自動バイアス制御回路の検討”19
90年電子情報通信学会春季全国大会B−976によ
る)。
However, in the Mach-Zehnder type optical modulator using lithium niobate, since there is an operating point drift (DC drift) of the optical modulation characteristic with respect to the modulation voltage, a bias circuit for applying an appropriate DC bias to the optical modulator. Is required. As a driving circuit of such a Mach-Zehnder type optical modulator, a method of superposing a DC bias on an electric signal to be modulated has been proposed. For example, the circuit shown in FIG. (See Kuwata et al. “Study on automatic bias control circuit for Mach-Zehnder type optical modulator” 19)
90th IEICE Spring National Convention B-976).

【0004】この駆動回路は入力電気信号301により
駆動されるFET1の出力側に負荷抵抗器R31が接続
されており、この負荷抵抗器R31に対して並列に光変
調器2が接続されており、これに変調信号303が供給
される。即ち、変調信号303は直流分阻止用のコンデ
ンサC31を通し光変調器2の駆動回路に流れるが、反
対側からは直流バイアス電圧VBがバイアス回路3から
印加されている。変調信号303は負荷抵抗器RLによ
りその電流値が設定される。この駆動回路では、例えば
適正な直流バイアス電圧を伝送速度2.5Gb/sの電
気信号に重畳して良好な光送信波形が得られる。
In this drive circuit, a load resistor R31 is connected to the output side of the FET1 driven by an input electric signal 301, and an optical modulator 2 is connected in parallel to the load resistor R31. The modulated signal 303 is supplied to this. That is, the modulation signal 303 flows to the drive circuit of the optical modulator 2 through the DC blocking capacitor C31, but the DC bias voltage VB is applied from the bias circuit 3 from the opposite side. The current value of the modulation signal 303 is set by the load resistor RL. In this drive circuit, for example, a proper DC bias voltage is superimposed on an electric signal at a transmission rate of 2.5 Gb / s to obtain a good optical transmission waveform.

【0005】[0005]

【発明が解決しようとする課題】上述したように、バイ
アス回路により直流電圧を変調信号に重畳してマッハツ
ェンダ形の光変調器は良好な状態で駆動できる。しかし
ながら、上述の方式では直流分阻止のためのコンデンサ
をバイアス回路内に用いているため、駆動回路のトラン
ジスタを流れる電流をすべて光変調器に流す事ができな
い。
As described above, the Mach-Zehnder type optical modulator can be driven in a good state by superimposing the DC voltage on the modulation signal by the bias circuit. However, in the above-mentioned method, since the capacitor for blocking the direct current component is used in the bias circuit, it is impossible to flow all the current flowing through the transistor of the drive circuit to the optical modulator.

【0006】即ち、光変調器の駆動回路では、駆動回路
内にトランジスタの負荷抵抗を備え、トランジスタのD
Cバイアス条件を安定させて、光変調器にはバイアス回
路を介して変調信号を印加している。この場合、トラン
ジスタからみた負荷は、駆動回路内の負荷抵抗と光変調
器側の負荷の並列回路となるので、光変調器に流れる電
流はトランジスタを流れる電流の約50%となる。すな
わち、光変調器に供給される電力は、駆動トランジスタ
で発生させた電力の50%に過ぎず消費電力が大きくな
るという欠点がある。
That is, in the drive circuit of the optical modulator, the load resistance of the transistor is provided in the drive circuit, and
The C bias condition is stabilized, and the modulation signal is applied to the optical modulator through the bias circuit. In this case, the load seen from the transistor is a parallel circuit of the load resistance in the drive circuit and the load on the optical modulator side, so that the current flowing through the optical modulator is about 50% of the current flowing through the transistor. That is, there is a drawback that the power supplied to the optical modulator is only 50% of the power generated by the driving transistor and the power consumption increases.

【0007】本発明の目的は、トランジスタを流れる殆
どの電流が光変調器側に流れ、電力の使用効率をほぼ1
00%に改善する光変調器駆動回路を提供することにあ
る。
An object of the present invention is that most of the current flowing through the transistor flows to the optical modulator side, and the power usage efficiency is almost 1%.
An object of the present invention is to provide an optical modulator driving circuit improved to 00%.

【0008】[0008]

【課題を解決するための手段】本発明の光変調器駆動回
路は、変調入力信号により駆動されるトランジスタと、
前記トランジスタの出力側に接続された高周波阻止用の
コイルと、前記コイルに直列に接続された前記トランジ
スタの動作点を安定化するための抵抗器と、前記コイル
と前記抵抗器とに対して並列に接続された低周波阻止用
のコンデンサと、前記コンデンサに直列に接続された光
変調器と、前記光変調器に直列に接続された前記光変調
器に直流バイアスを加えるためのバイアス回路と、前記
バイアス回路に直列に接続された前記光変調器の駆動電
流を設定するための負荷抵抗器とを備えている。また、
前記コイルと前記コンデンサとの代りにそれぞれ低域周
波器と高域周波器とを用いても良い。
The optical modulator driving circuit of the present invention comprises a transistor driven by a modulation input signal,
A coil for high frequency blocking connected to the output side of the transistor, a resistor for stabilizing the operating point of the transistor connected in series to the coil, and a parallel to the coil and the resistor. A low-frequency blocking capacitor connected to, an optical modulator connected in series to the capacitor, and a bias circuit for applying a DC bias to the optical modulator connected in series to the optical modulator, A load resistor for setting a drive current of the optical modulator connected in series to the bias circuit. Also,
A low frequency device and a high frequency device may be used instead of the coil and the capacitor, respectively.

【0009】[0009]

【作用】本発明は、駆動回路のトランジスタの負荷に周
波数特性をもたせ、トランジスタの安定動作に必要な直
流成分はコイルまたは低周波通過フィルタ側に流し、変
調信号である高周波信号は光変調器側に流し電力効率の
効率向上を図るものである。
According to the present invention, the load of the transistor of the drive circuit has a frequency characteristic, the DC component necessary for stable operation of the transistor is passed to the coil or the low frequency pass filter side, and the high frequency signal as the modulation signal is fed to the optical modulator side. It is intended to improve the efficiency of the power flow to the drain.

【0010】[0010]

【実施例】次に本発明の実施例を図面を参照して説明す
る。図1に本発明の第1の実施例の回路図を示す。図1
において、入力電気信号101を電力増幅するためのF
ET1と、FET1のドレイン端子に100nHのコイ
ルL11と他端が接地された50Ωの抵抗器R1とを直
列に接続し、FET1の直流電流パスを形成している。
更にドレイン端子には0.1μFのコンデンサC11と
進行形の光変調器2とバイアス回路3と50Ωの終端抵
抗RLをカスケードに接続し、光変調器2を駆動させて
いる。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows a circuit diagram of a first embodiment of the present invention. Figure 1
In order to amplify the electric power of the input electric signal 101,
ET1, a coil L11 of 100 nH at the drain terminal of FET1 and a resistor R1 of 50Ω whose other end is grounded are connected in series to form a direct current path of FET1.
Further, a 0.1 μF capacitor C11, a progressive type optical modulator 2, a bias circuit 3 and a terminating resistor RL of 50Ω are connected in cascade to the drain terminal to drive the optical modulator 2.

【0011】以上の構成で、30kHz以下の低周波電
流102はコイルL1と抵抗R1の経路をながれ、変調
信号103である30kHz以上の成分は光変調器2側
を流れるようになる。この駆動回路を伝送速度10Gb
/sで動作させ、FET1に120mAの振幅の電流を
流すと、高周波成分即ち、変調信号103はその振幅値
は110mAとなり光変調器2を十分に駆動できる値と
なる。
With the above configuration, the low-frequency current 102 of 30 kHz or less flows along the path of the coil L1 and the resistor R1, and the component of the modulation signal 103 of 30 kHz or more flows through the optical modulator 2 side. This drive circuit is connected at a transmission speed of 10 Gb
When operated at / s and a current with an amplitude of 120 mA is passed through the FET 1, the high frequency component, that is, the modulation signal 103 has an amplitude value of 110 mA, which is a value capable of sufficiently driving the optical modulator 2.

【0012】また、光変調器2に入力光を入射させると
変調された良好な波形の出力を得ることができる。
Further, when input light is made incident on the optical modulator 2, it is possible to obtain an output having a good modulated waveform.

【0013】以上、本発明の第1の実施例について説明
したが、駆動回路に用いる能動素子は、FETに限ら
ず、バイポーラトランジスタを用いてもよい。また、駆
動回路の回路形式は、作動形に限らず、シングルエンド
形としてもよい。さらに、抵抗R1とコイルL1の位置
を入れ換えてもよい。
Although the first embodiment of the present invention has been described above, the active element used in the drive circuit is not limited to the FET, but a bipolar transistor may be used. Further, the circuit type of the drive circuit is not limited to the operation type, but may be a single end type. Further, the positions of the resistor R1 and the coil L1 may be exchanged.

【0014】図2は本発明の第2実施例の回路図であ
る。図2において、図1に比べ、高周波成分をより効率
的に光変調器2側に供給するため、図1のコイルL11
の代わりに、低周波通過フィルタ(LPF)4を採用し
ている。ここでは、LPF4は遮断周波数が例えば3k
HzのコイルL23,L24,L25およびコンデンサ
C23,C24とから成る5次の低周波通過フィルタと
した。一方、コンデンサ11の代りに高周波通過フィル
タ(HPF)5を使用し、このHPF5としては例えば
遮断周波数は3kHzのコンデンサC25,26,27
とコイルL26,27とから成る5次の高周波通過フィ
ルタとする。
FIG. 2 is a circuit diagram of the second embodiment of the present invention. 2, in order to supply the high-frequency component to the optical modulator 2 side more efficiently than in FIG. 1, the coil L11 in FIG.
Instead of, the low frequency pass filter (LPF) 4 is adopted. Here, the LPF 4 has a cutoff frequency of, for example, 3k.
A fifth-order low-frequency pass filter composed of Hz coils L23, L24, L25 and capacitors C23, C24. On the other hand, a high frequency pass filter (HPF) 5 is used instead of the capacitor 11, and as the HPF 5, for example, capacitors C25, 26, 27 having a cutoff frequency of 3 kHz are used.
And a coil L26, 27 to form a fifth-order high-frequency pass filter.

【0015】以上、本発明の第2実施例について説明し
たが、LPF4あるいはHPF5のいづれか一方のみを
採用したもの、LPF4あるいはHPF5は本実施例に
示した5段構成のものだけでなく、段数をかえたもの、
バターワース形としたもの、あるいは抵抗を用いたラグ
リードフィルタを採用してもよい。さらに、カスコード
に接続したHPF5と光変調器2のバイアス回路3と終
端抵抗RLの接続順序を変更してもよい。
The second embodiment of the present invention has been described above. However, either one of LPF4 and HPF5 is adopted, and LPF4 and HPF5 are not limited to the five-stage configuration shown in the present embodiment, but the number of stages can be changed. The one that changed
A Butterworth type or a lag lead filter using a resistor may be adopted. Furthermore, the connection order of the HPF 5 connected to the cascode, the bias circuit 3 of the optical modulator 2, and the terminating resistor RL may be changed.

【0016】[0016]

【発明の効果】以上、説明した様に、本発明によれば、
光変調器へ効率よく変調信号を供給することが可能であ
るため、駆動トランジスタに余分な負荷がかからず、消
費電力を低減する効果がある。
As described above, according to the present invention,
Since it is possible to efficiently supply the modulation signal to the optical modulator, an extra load is not applied to the drive transistor, which has an effect of reducing power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の回路図である。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

【図2】本発明の第2の実施例の回路図である。FIG. 2 is a circuit diagram of a second embodiment of the present invention.

【図3】従来例の回路図である。FIG. 3 is a circuit diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 FET 2 光変調器 3 バイアス回路 4 LPF 5 HPF 101,201 入力電気信号 102,202 低周波電流 103,203 変調信号 1 FET 2 Optical modulator 3 Bias circuit 4 LPF 5 HPF 101,201 Input electric signal 102,202 Low frequency current 103,203 Modulation signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 入力電気信号により駆動されるトランジ
スタと、前記トランジスタの出力側に接続された高周波
阻止用のコイルと、前記コイルに直列に接続された前記
トランジスタの動作点を安定化するための抵抗器と、前
記コイルと前記抵抗器とに対して並列に接続された低周
波阻止用のコンデンサと、前記コンデンサに直列に接続
された光変調器と、前記光変調器に直列に接続された前
記光変調器に直流バイアスを加えるためのバイアス回路
と、前記バイアス回路に直列に接続された前記光変調器
の駆動電流を設定するための負荷抵抗器とを備えること
を特徴とする光変調器駆動回路。
1. A transistor driven by an input electric signal, a high frequency blocking coil connected to the output side of the transistor, and an operating point of the transistor connected in series to the coil for stabilizing the operating point. A resistor, a low frequency blocking capacitor connected in parallel to the coil and the resistor, an optical modulator connected in series to the capacitor, and a serial connection to the optical modulator. An optical modulator comprising: a bias circuit for applying a DC bias to the optical modulator; and a load resistor connected in series with the bias circuit for setting a drive current of the optical modulator. Drive circuit.
【請求項2】 前記コイルと前記コンデンサとの代りに
それぞれ低域周波器と高域周波器とを用いることを特徴
とする請求項1記載の光変調器駆動回路。
2. The optical modulator driving circuit according to claim 1, wherein a low-frequency device and a high-frequency device are used instead of the coil and the capacitor, respectively.
JP6432392A 1992-03-23 1992-03-23 Optical modulator driving circuit Withdrawn JPH05264934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6432392A JPH05264934A (en) 1992-03-23 1992-03-23 Optical modulator driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6432392A JPH05264934A (en) 1992-03-23 1992-03-23 Optical modulator driving circuit

Publications (1)

Publication Number Publication Date
JPH05264934A true JPH05264934A (en) 1993-10-15

Family

ID=13254920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6432392A Withdrawn JPH05264934A (en) 1992-03-23 1992-03-23 Optical modulator driving circuit

Country Status (1)

Country Link
JP (1) JPH05264934A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844508A2 (en) * 1996-11-26 1998-05-27 NEC Corporation Optical modulation apparatus and method
JP2002294176A (en) * 2001-03-29 2002-10-09 Nippon Paint Co Ltd Water-base coating material composition and method for forming multilayered coating film using the same
JP2014071352A (en) * 2012-09-28 2014-04-21 Sumitomo Osaka Cement Co Ltd Optical modulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844508A2 (en) * 1996-11-26 1998-05-27 NEC Corporation Optical modulation apparatus and method
EP0844508A3 (en) * 1996-11-26 1998-12-23 NEC Corporation Optical modulation apparatus and method
US6335991B1 (en) 1996-11-26 2002-01-01 Nec Corporation Optical modulation apparatus and optical modulation method
JP2002294176A (en) * 2001-03-29 2002-10-09 Nippon Paint Co Ltd Water-base coating material composition and method for forming multilayered coating film using the same
JP2014071352A (en) * 2012-09-28 2014-04-21 Sumitomo Osaka Cement Co Ltd Optical modulator

Similar Documents

Publication Publication Date Title
US7069062B2 (en) Transceiver capable of causing series resonance with parasitic capacitance
EP2487763A1 (en) Biasing circuit of electro-absorption modulated laser and debugging method thereof
US5771255A (en) Laser light generator
JP3736953B2 (en) Electroabsorption optical modulator drive circuit and optical transmitter using the same
JPH09181682A (en) Driving circuit for light modulator, and light transmitter
JPH10163764A (en) Wide band class s modulator and its method
KR20090104879A (en) Method and system for increasing sampling frequency for switching amplifier
JP3816648B2 (en) Drive circuit for electroabsorption optical modulator
JPH04140712A (en) Optical transmission equipment
JP2018180255A (en) Optical transmitter
CN100533882C (en) Laser diode driving circuit
JPH05264934A (en) Optical modulator driving circuit
JP2556298B2 (en) Optical transmitter in subcarrier multiplexing optical transmission system
US5745282A (en) Light modulation device
US7412173B2 (en) Apparatus for generating optical carrier suppressed return-to-zero
WO2003047143A1 (en) A method and apparatus of light signal modulation in light
JPS5813038B2 (en) LED modulation method
JP5966828B2 (en) Light modulator
EP1376788B1 (en) Digital optical sourcing and methods of operating a digital optical source
JPH1093472A (en) Antenna switching circuit
JP2749505B2 (en) Optical fiber link amplitude stabilization circuit
JP4173392B2 (en) Optical transmitter
JPS5826705B2 (en) optical transmitter
JPH0746190A (en) Automatic light output amplitude compensating external modulation circuit
CN104038282B (en) A kind of lithium columbate crystal external modulation driving means

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608