JPH05264771A - Vent device for reactor containment - Google Patents

Vent device for reactor containment

Info

Publication number
JPH05264771A
JPH05264771A JP4064729A JP6472992A JPH05264771A JP H05264771 A JPH05264771 A JP H05264771A JP 4064729 A JP4064729 A JP 4064729A JP 6472992 A JP6472992 A JP 6472992A JP H05264771 A JPH05264771 A JP H05264771A
Authority
JP
Japan
Prior art keywords
pipe
isolation valve
water
containment vessel
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4064729A
Other languages
Japanese (ja)
Inventor
Yasuo Osawa
康夫 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4064729A priority Critical patent/JPH05264771A/en
Publication of JPH05264771A publication Critical patent/JPH05264771A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To release gas within a reactor storage container to a surrounding environment safely without expecting operation by a drive. CONSTITUTION:A first separation valve 17 is connected onto the upper side surface of a dry well 5a of a reactor containment 4 and a second separation valve 18 is connected onto the upper side surface of a suppression chamber 5b. The output sides of the first and second separation valves 17 and 18 are connected to an input side piping 25 of a main exhaust cylinder 11 and then a third separation valve 21 is connected to the output side of the input side piping 25. The output side of a third separation valve 21 is connected to the main exhaust cylinder 11. A water-level detection element 19 is provided at the input side piping 25, the water-level detection element 19 is connected to first and second control elements 20a and 20b, and then the first control element 20a and the second control element 20b are connected to the first separation valve 17 and the second separation valve 18, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子炉の異常時に原子炉
格納容器内ガスを安全に原子炉格納容器外に放出し、原
子炉格納容器の健全性を確保するための原子炉格納容器
用ベント装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor containment vessel for ensuring the integrity of the reactor containment vessel by safely discharging the gas inside the reactor containment vessel when the reactor is abnormal. Regarding the vent device.

【0002】[0002]

【従来の技術】沸騰水型原子力発電プラントは、万一原
子炉事故が発生した場合にも周辺環境へ大量の放射能が
放出されることのないように多重の防御設備によって防
護されている。
2. Description of the Related Art A boiling water nuclear power plant is protected by multiple defense facilities so that a large amount of radioactivity will not be released to the surrounding environment in the event of a nuclear reactor accident.

【0003】すなわち図7に示すように原子炉の炉心1
は冷却水2が満たされた原子炉圧力容器3に収納されて
おり、原子炉圧力容器3は、ドライウェル5aおよびサ
プレッションチェンバ5bからなる原子炉格納容器4に
収納されている。ドライウェル5aとサプレッションチ
ェンバ5bとはベント管14によって連通している。
That is, as shown in FIG. 7, a reactor core 1
Is contained in a reactor pressure vessel 3 filled with cooling water 2, and the reactor pressure vessel 3 is contained in a reactor containment vessel 4 including a dry well 5a and a suppression chamber 5b. The dry well 5a and the suppression chamber 5b are connected by a vent pipe 14.

【0004】通常炉心1から出る熱は冷却水2に伝えら
れ発電用タービンを回すために使われるが、万一原子炉
圧力容器3につながる配管が破断して冷却水2が原子炉
圧力容器3から漏れ出してしまうと、炉心1が冷却され
なくなるため、炉心1は熱(崩壊熱という)のために損
傷する。
Usually, the heat generated from the core 1 is transferred to the cooling water 2 and used to rotate the power generation turbine. In the unlikely event that the pipe connected to the reactor pressure vessel 3 is broken and the cooling water 2 is cooled by the reactor pressure vessel 3. If it leaks out from the core, the core 1 will not be cooled, and the core 1 will be damaged by heat (referred to as decay heat).

【0005】この場合、炉心1内に保有されていた放射
能は配管の破断口から原子炉格納容器4内へ充満する一
方、依然として炉心1から発生する崩壊熱のため、原子
炉格納容器4は内部の温度,圧力が上昇し、やがて破壊
に至る事態となる。
In this case, the radioactivity contained in the reactor core 1 fills the reactor containment vessel 4 from the breakage of the pipe, while the decay heat generated from the reactor core 1 still causes the reactor containment vessel 4 to The internal temperature and pressure rise, eventually leading to destruction.

【0006】このような事態に至るのを防止するために
現状の沸騰水型原子力発電プラントではサプレッション
チェンバ5b内に貯えられた冷却水6をポンプ7および
熱交換器8を通して原子炉圧力容器3に注水し、炉心1
を冷却するための設備(ECCSという)が設けられて
いる。
In order to prevent such a situation, in the existing boiling water nuclear power plant, the cooling water 6 stored in the suppression chamber 5b is supplied to the reactor pressure vessel 3 through the pump 7 and the heat exchanger 8. Water injection, core 1
There is provided equipment (called ECCS) for cooling the.

【0007】したがって、ECCSが正常に作動してい
れば、原子炉の炉心1が損傷する事故は起こらない。し
かし、仮に万一、ECCSが作動しない場合には、炉心
1は冷却されないため高温となり、炉心1自体が溶けて
原子炉圧力容器3の底部に落下し、さらにその底部をも
溶かして溶けた炉心がドライウェル5aの下部に達する
ことになる。
Therefore, if the ECCS is operating normally, an accident that damages the reactor core 1 does not occur. However, if the ECCS does not operate, the core 1 will not be cooled and will become hot, and the core 1 itself will melt and fall to the bottom of the reactor pressure vessel 3, and the core will also melt and melt. Will reach the bottom of the dry well 5a.

【0008】この溶けた炉心は多量の放射能を含むもの
であるため、このような状況となると原子炉格納容器4
内は炉心から発生する多量の蒸気とともに多量の放射能
で満たされることになる。この場合、原子炉格納容器4
が破損すると放射能が原子炉格納容器4外に出るため、
プラント周辺の環境へ多量の放射能が放出される可能性
がある。
Since the molten core contains a large amount of radioactivity, in such a situation, the reactor containment vessel 4
The inside will be filled with a large amount of radioactivity together with a large amount of steam generated from the core. In this case, the reactor containment vessel 4
If it is damaged, radioactivity will come out of the containment vessel 4,
Large amounts of radioactivity may be released to the environment around the plant.

【0009】このようなECCSが正常に作動しない場
合に起こる事態は通常あり得ないと考えられるが、万一
そのようなことが起こっても対処できるよう検討が進め
られている。すなわち、図7に示すようにドライウェル
5aおよびサプレッションチェンバ5bから主排気筒11
までを配管9で接続し、配管9の途中には二重の隔離弁
10a,10bを設置した設備が考えられている。
It is considered that such a situation that normally occurs when the ECCS does not operate normally is not possible, but studies are underway to cope with such a situation. That is, as shown in FIG. 7, the dry well 5a and the suppression chamber 5b are connected to the main exhaust pipe 11
Are connected with pipe 9 and a double isolation valve is provided in the middle of pipe 9.
A facility equipped with 10a and 10b is considered.

【0010】これはECCSが正常に動作しない場合、
先に述べたように原子炉格納容器4の内圧が上昇しても
隔離弁10a,10bを開くことにより配管9を経由し、原
子炉格納容器4内のガスを大気中へ放出することによっ
て、原子炉格納容器4内の内圧が上りすぎることによる
破損を防ぐことができる。
This is because when ECCS does not operate normally,
As described above, even if the internal pressure of the reactor containment vessel 4 rises, by opening the isolation valves 10a and 10b, the gas in the reactor containment vessel 4 is released to the atmosphere via the pipe 9. It is possible to prevent damage due to an excessive rise in the internal pressure of the reactor containment vessel 4.

【0011】これら配管9、隔離弁10a,10b、主排気
筒11等からなる設備を原子炉格納容器用ベント装置と呼
ぶ。また、ECCSが正常に動作しない場合に対処する
ための別の設備として、外部水源12から給水ポンプ13、
給水管および他の隔離弁10c等を経てドライウェル5a
に冷却水を注入し、原子炉格納容器4を冷却するための
原子炉格納容器の注水設備についても検討が進められて
いる。
The equipment including the pipe 9, the isolation valves 10a and 10b, the main exhaust pipe 11 and the like is called a reactor containment vessel vent device. Further, as another facility for dealing with the case where the ECCS does not operate normally, the external water source 12 to the water supply pump 13,
Dry well 5a through water pipe and other isolation valve 10c
A water injection facility for the reactor containment vessel for injecting cooling water into the reactor and cooling the reactor containment vessel 4 is also under study.

【0012】ここで原子炉格納容器用ベント装置および
原子炉格納容器の注水設備の運転方法について述べる。
万一、ECCSが正常に動作しない事故が発生した場
合、原子炉格納容器4の注水設備から冷却水を外部水源
12から給水ポンプ13により給水管を通してドライウェル
5a内に注入する。この冷却水はベント管14を通してド
ライウェル5aからサプレッションチェンバ5bに流れ
込み、サプレッションチェンバ5b内に貯えられている
冷却水6の量は次第に増加する。
Here, the operation method of the reactor containment vessel vent device and the reactor containment vessel water injection equipment will be described.
In the unlikely event that the ECCS does not operate normally, the cooling water is supplied from the water injection facility of the PCV 4 to the external water source.
The water is pumped into the dry well 5a from 12 through the water supply pipe by the water supply pipe 13. The cooling water flows from the dry well 5a into the suppression chamber 5b through the vent pipe 14, and the amount of the cooling water 6 stored in the suppression chamber 5b gradually increases.

【0013】一方、原子炉格納容器4の内圧が上昇した
場合にはサプレッションチェンバ側の隔離弁10bを開
き、サプレッションチェンバ5b内のガスを主排気筒11
から外部へ放出するという操作を実施する。このため、
冷却水6の水量がサプレッションチェンバ5bの出口ノ
ズル15を上回る状態となると、冷却水は配管9を経て外
部に流出してしまい、冷却水に含まれる放射能が外部環
境に放出されることになる。
On the other hand, when the internal pressure of the reactor containment vessel 4 rises, the isolation valve 10b on the suppression chamber side is opened, and the gas in the suppression chamber 5b is discharged into the main exhaust pipe 11
Perform the operation of releasing from the outside. For this reason,
When the amount of the cooling water 6 exceeds the outlet nozzle 15 of the suppression chamber 5b, the cooling water flows out through the pipe 9 and the radioactivity contained in the cooling water is released to the external environment. ..

【0014】したがって、冷却水6の水位が出口ノズル
15の高さとなるとサプレッションチェンバ側の隔離弁10
bを閉じ、ドライウェル側の隔離弁10aを開けることで
原子炉格納容器4内の圧力を逃がすという運転方法をと
る必要がある。
Therefore, the water level of the cooling water 6 is determined by the outlet nozzle.
Isolation valve 10 on the suppression chamber side at a height of 15
It is necessary to take an operating method of releasing the pressure in the reactor containment vessel 4 by closing b and closing the isolation valve 10a on the drywell side.

【0015】なお、サプレッションチェンバ5b側から
ガスを放出するのは、放射能が水に捕集され易いという
性質をもつことから、外部環境へ放出される放射能量を
極力低減するための措置である。
It should be noted that releasing the gas from the suppression chamber 5b side is a measure for reducing the amount of radioactivity released to the external environment as much as possible, since the radioactivity has the property of being easily collected by water. ..

【0016】[0016]

【発明が解決しようとする課題】以上述べたように原子
炉格納容器用ベント装置は、運転するに当って初めにサ
プレッションチェンバ5b側からベントを行い、その後
サプレッションチェンバ5b内の冷却水6が増加し、サ
プレッションチェンバ5b側からベントを継続できなく
なると、ドライウェル5a側からベントするという操作
が必要となり、水位監視、弁の操作等、運転員の作業が
必要である。
As described above, the venting device for the reactor containment vessel first vents from the suppression chamber 5b side during operation, and then the cooling water 6 in the suppression chamber 5b increases. However, if the suppression chamber 5b side cannot continue venting, the operation of venting from the dry well 5a side is required, and the operator's work such as water level monitoring and valve operation is required.

【0017】しかしながら、万一運転員が操作を失敗す
ると放射能を含む冷却水が外部に放出されることにな
り、多大の影響を周辺環境に与えることになる課題があ
るため、より信頼性の高い設備が望まれる。
However, in the unlikely event that the operator fails to operate, the cooling water containing radioactivity will be released to the outside, and this has the problem of exerting a great influence on the surrounding environment. Expensive equipment is desired.

【0018】本発明は上記課題を解決するためになされ
たもので、運転員の操作に期待することなく、ベント位
置をサプレッションチェンバからドライウェルに切り替
えて原子炉格納容器内のガスを安全に周辺環境へ放出す
るための原子炉格納容器用ベント装置を提供することを
目的とする。
The present invention has been made in order to solve the above problems, and switches the vent position from the suppression chamber to the dry well without expecting the operation of the operator to safely surround the gas inside the reactor containment vessel. An object is to provide a vent device for a containment vessel for release to the environment.

【0019】[0019]

【課題を解決するための手段】本発明は原子炉格納容器
のドライウェルの上部側面に第1の隔離弁が接続され、
サプレッションチェンバの上部側面に第2の隔離弁が接
続され、前記第1および第2の隔離弁の出口側は主排気
筒の入口側配管に接続され、前記入口側配管の出口側に
は第3の隔離弁が接続され、この第3の隔離弁の出口側
は前記主排気筒に接続され、前記入口側配管に水位検出
素子が設けられ、この水位検出素子は第1および第2の
制御素子に接続し、前記第1の制御素子は前記第1の隔
離弁に、前記第2の制御素子は前記第2の隔離弁にそれ
ぞれ電気的に接続してなることを特徴とする。
According to the present invention, a first isolation valve is connected to an upper side surface of a drywell of a reactor containment vessel,
A second isolation valve is connected to an upper side surface of the suppression chamber, outlet sides of the first and second isolation valves are connected to an inlet side pipe of a main exhaust pipe, and an outlet side of the inlet side pipe is a third side. Isolation valve is connected, the outlet side of the third isolation valve is connected to the main exhaust pipe, a water level detecting element is provided in the inlet side pipe, and the water level detecting element is the first and second control elements. And the first control element is electrically connected to the first isolation valve, and the second control element is electrically connected to the second isolation valve.

【0020】[0020]

【作用】原子炉格納容器内のガスをベントする際、運転
員の操作を必要とすることなくサプレッションチェンバ
側からドライウェル側にベントガスの放出元を変更す
る。
When the gas in the reactor containment vessel is vented, the source of vent gas is changed from the suppression chamber side to the drywell side without requiring operator's operation.

【0021】たとえば苛酷事故時のベント方法はサプレ
ッションチェンバからベントするのが一般的であるが、
サプレッションチェンバが満水となるとドライウェルか
らベントするように弁操作する。
[0021] For example, a venting method at the time of a severe accident is generally to vent from a suppression chamber,
Operate the valve to vent from the drywell when the suppression chamber is full.

【0022】サプレッションチェンバと主排気筒との間
の配管に設けた水位計と制御器によりドライウェル側隔
離弁またはサプレッションチェンバ側隔離弁を開閉制御
する。これにより運転員の負担軽減、誤操作の防止を図
ることができ、プラントの信頼性向上に寄与する。
A dry well side isolation valve or a suppression chamber side isolation valve is opened / closed by a water level gauge and a controller provided in a pipe between the suppression chamber and the main exhaust pipe. As a result, the burden on the operator can be reduced and erroneous operation can be prevented, which contributes to improving the reliability of the plant.

【0023】[0023]

【実施例】図1から図6を参照しながら本発明に係る原
子炉格納容器用ベント装置の一実施例を説明する。な
お、図中図7と同一部分には同一符号を付して重複する
部分の説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a vent device for a containment vessel according to the present invention will be described with reference to FIGS. 1 to 6. In the figure, the same parts as those in FIG. 7 are designated by the same reference numerals, and overlapping description will be omitted.

【0024】原子炉格納容器4のドライウェル5aの上
部側面から導出した配管16aに第1の隔離弁17を接続
し、サプレッションチェンバ5bの上部側面から導出し
た配管16bに第2の隔離弁18を接続する。第1および第
2の隔離弁17,18の出口側を主排気筒11の入口側配管25
に接続し、入口側配管25の出口側に第3の隔離弁21を接
続する。第3の隔離弁21の出口側は主排気筒11に接続す
る。
The first isolation valve 17 is connected to the pipe 16a extending from the upper side surface of the dry well 5a of the reactor containment vessel 4, and the second isolation valve 18 is connected to the pipe 16b extending from the upper side surface of the suppression chamber 5b. Connecting. The outlet side of the first and second isolation valves 17 and 18 is connected to the inlet side pipe 25 of the main exhaust pipe 11.
The third isolation valve 21 is connected to the outlet side of the inlet side pipe 25. The outlet side of the third isolation valve 21 is connected to the main exhaust pipe 11.

【0025】第1の隔離弁17と第2の隔離弁18との間に
位置した入口側配管25の途中に水位検出素子19を設け
る。この水位検出素子19を第1および第2の制御素子20
a,20bに接続する。第1の制御素子20aは第1の隔離
弁17に、第2の制御素子20bは第2の隔離弁18にそれぞ
れ電気的に接続している。
A water level detection element 19 is provided in the middle of the inlet side pipe 25 located between the first isolation valve 17 and the second isolation valve 18. The water level detection element 19 is replaced with the first and second control elements 20.
Connect to a and 20b. The first control element 20a is electrically connected to the first isolation valve 17, and the second control element 20b is electrically connected to the second isolation valve 18.

【0026】しかして本実施例の原子炉格納容器用ベン
ト装置はドライウェル5aおよびサプレッションチェン
バ5bからの配管16a,16b上に設置された遠隔操作可
能な第1および第2の隔離弁17,18、入口側配管25、こ
の入口側配管25の水平な部分に設置された水位検出素子
19、水位検出素子19からの信号を受け第1および第2の
隔離弁17,18の開・閉動作を制御する制御素子20a,20
b、配管16aと配管16bが合流した入口側配管25に設置
された遠隔操作可能な第3の隔離弁21および主排気筒11
から構成される。
However, the reactor containment vessel venting apparatus of this embodiment has the first and second isolation valves 17, 18 which can be operated remotely and which are installed on the pipes 16a, 16b from the dry well 5a and the suppression chamber 5b. , Inlet side pipe 25, water level detection element installed in the horizontal part of the inlet side pipe 25
19, control elements 20a, 20 for controlling the opening / closing operations of the first and second isolation valves 17, 18 by receiving signals from the water level detecting element 19
b, the remotely operable third isolation valve 21 and the main exhaust pipe 11 installed in the inlet side pipe 25 where the pipe 16a and the pipe 16b are joined.
Composed of.

【0027】次に本実施例の作用について説明する。図
2に示すように、第1の隔離弁17を閉鎖、第2の隔離弁
18を開としてサプレッションチェンバ5b内のガスをベ
ントし、かつ先に述べた原子炉格納容器の注水設備で冷
却水を原子炉格納容器4に注入するとサプレッションチ
ェンバ5bは満水状態となり、サプレッションチェンバ
側出口ノズル15から配管16bの中を水が上昇する。この
時、図2に示したように原子炉格納容器4内の水位22と
配管16b内の水位23の差は、ゲージ圧で表したドライウ
ェル5aの中の圧力を水頭に変換したものと等しくな
る。(例えばドライウェル内が1kg/cm2 g であれば水
位22と水位23の差は10mとなる)。
Next, the operation of this embodiment will be described. As shown in FIG. 2, the first isolation valve 17 is closed and the second isolation valve 17 is closed.
When 18 is opened to vent the gas in the suppression chamber 5b, and when the cooling water is injected into the reactor containment vessel 4 by the water injection facility of the reactor containment vessel described above, the suppression chamber 5b becomes full, and the suppression chamber side outlet. Water rises from the nozzle 15 into the pipe 16b. At this time, as shown in FIG. 2, the difference between the water level 22 in the reactor containment vessel 4 and the water level 23 in the pipe 16b is equal to that obtained by converting the pressure in the dry well 5a expressed in gauge pressure into the water head. Become. (For example, if the inside of the dry well is 1 kg / cm 2 g, the difference between the water level 22 and the water level 23 is 10 m).

【0028】その後も注水、ベントを続けると図3に示
したように水位23は水位検出素子19の設置高さと等しく
なる。この状態になると水位検出素子19からの信号によ
り第1の制御素子20aが動作し、それまでは閉状態であ
った第1の隔離弁17が開かれる。
If water injection and venting are continued thereafter, the water level 23 becomes equal to the installation height of the water level detecting element 19, as shown in FIG. In this state, the first control element 20a is operated by the signal from the water level detection element 19, and the first isolation valve 17 which was in the closed state until then is opened.

【0029】そうするとドライウェル5aのガスが配管
16aから放出されドライウェル5a内と等しい圧力が配
管16b内の水位23の表面に加わるため、水位23は図3の
状態から図4に示したように押し下げられドライウェル
5a内の水位22と配管16b内の水位23は等しい状態とな
る。
Then, the gas in the dry well 5a is piped.
Since the pressure released from 16a and equal to that in the dry well 5a is applied to the surface of the water level 23 in the pipe 16b, the water level 23 is pushed down from the state of FIG. 3 as shown in FIG. 4 and the water level 22 in the dry well 5a and the pipe. The water level 23 in 16b becomes equal.

【0030】図3に示した水位検出素子19が水位を捉え
た状態からこの図4に示した2つの水位(22と23)が一
致した状態となるまでの時間は約数秒〜1分間程度と考
えられるため水位検出素子19に接続されたタイマーを有
する第2の制御素子20bにより第2の隔離弁18を閉鎖す
る(図4)。
The time from the state where the water level detecting element 19 shown in FIG. 3 captures the water level to the state where the two water levels (22 and 23) shown in FIG. 4 coincide with each other is about several seconds to 1 minute. The second isolation valve 18 is closed by a second control element 20b, which has a timer connected to the water level detection element 19 to be considered (FIG. 4).

【0031】その後も続けてドライウェル5aに注水を
続けると図5に示すようにドライウェル5aの水位22が
配管16b内の水位23よりも高くなる。そして最終的には
図6に示したようにドライウェル5aの出口ノズル24に
水位が達したとき再び水位検出素子19のある点にまで水
が流れ込みその信号により注水を停止する等適切な操作
を実施する。
If water is continuously supplied to the dry well 5a after that, the water level 22 of the dry well 5a becomes higher than the water level 23 in the pipe 16b as shown in FIG. Finally, as shown in FIG. 6, when the water level reaches the outlet nozzle 24 of the dry well 5a, water again flows to a certain point of the water level detection element 19 and an appropriate operation such as stopping water injection according to the signal is performed. carry out.

【0032】なお以上の動作が問題なく行われるために
は配管16a,16b内に水が満たされる(空気のたまり部
ができない)必要があるため配管16a,16bは主排気筒
11側に下り勾配をもった配管構成となっていないことが
必要である。
The pipes 16a and 16b need to be filled with water (there cannot be a pool of air) in order for the above operation to be performed without problems, so the pipes 16a and 16b are used as main exhaust pipes.
It is necessary that the piping structure does not have a downward slope on the 11th side.

【0033】以上のように本実施例に係る原子炉格納容
器用ベント装置においては、主排気筒へ接続する入口側
配管内に水が入ってきた場合その水位を検知し隔離弁を
適切に動作させるため放射能を含む冷却水が原子炉格納
容器の外へ放出されることをより確実に防止することが
できる。
As described above, in the reactor containment vessel venting apparatus according to this embodiment, when water enters the inlet side pipe connected to the main exhaust pipe, the water level is detected and the isolation valve is operated appropriately. Therefore, it is possible to more reliably prevent the cooling water containing radioactivity from being discharged to the outside of the containment vessel.

【0034】[0034]

【発明の効果】本発明によれば、水位検出素子を主排気
筒に接続する入口側配管に設け、その素子の信号でドラ
イウェル側隔離弁とサプレッションチェンバ側隔離弁が
動作する構成となっているため、運転員の操作を必要と
することなくサプレッションチェンバからドライウェル
にベント元を切り替えることができる。
According to the present invention, the water level detecting element is provided in the inlet side pipe connecting to the main exhaust pipe, and the dry well side isolation valve and the suppression chamber side isolation valve are operated by the signal of the element. Therefore, the vent source can be switched from the suppression chamber to the dry well without requiring the operation of an operator.

【0035】したがって、周辺環境へ放射能を含む冷却
水を放出してしまう危険性を低減することができ、原子
力発電プラントの信頼性の向上に大きく寄与するもので
ある。
Therefore, the risk of releasing cooling water containing radioactivity to the surrounding environment can be reduced, which greatly contributes to the improvement of the reliability of the nuclear power plant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子炉格納容器用ベント装置の一
実施例を示す配管系統図。
FIG. 1 is a piping system diagram showing an embodiment of a vent device for a containment vessel according to the present invention.

【図2】図1におけるベント装置の時間経過に伴った運
転状態を示す配管系統図。
FIG. 2 is a piping system diagram showing an operating state of the vent device in FIG. 1 over time.

【図3】図2の状態から水位検出素子が水位を捉えた状
態を示す配管系統図。
FIG. 3 is a piping system diagram showing a state in which the water level detecting element has captured the water level from the state of FIG.

【図4】図3の状態から2つの水位が一致した状態を示
す配管系統図。
FIG. 4 is a piping system diagram showing a state in which two water levels coincide with each other from the state of FIG.

【図5】図4の状態からドライウェルの水位が高くなっ
た状態を示す配管系統図。
FIG. 5 is a piping system diagram showing a state in which the water level of the dry well has increased from the state of FIG.

【図6】図5の状態からドライウェルの出口ノズルに水
位が達した状態を示す配管系統図。
FIG. 6 is a piping system diagram showing a state in which the water level reaches the outlet nozzle of the dry well from the state of FIG.

【図7】従来の原子炉格納容器用ヘッド装置を示す配管
系統図。
FIG. 7 is a piping system diagram showing a conventional reactor containment head device.

【符号の説明】[Explanation of symbols]

1…炉心、2…冷却水、3…原子炉圧力容器、4…原子
炉格納容器、5a…ドライウェル、5b…サプレッショ
ンチェンバ、6…冷却水、7…ポンプ、8…熱交換器、
9…配管、10a〜10c…隔離弁、11…主排気筒、12…外
部水源、13…給水ポンプ、14…ベント管、15…サプレッ
ションチェンバ側出口ノズル、16a,16b…配管、17…
第1の隔離弁、18…第2の隔離弁、19…水位検出素子、
20a,20b…制御素子、21…第3の隔離弁、22,23…水
位、24…ドライウェル側出口ノズル、25…入口側配管。
1 ... Reactor core, 2 ... Cooling water, 3 ... Reactor pressure vessel, 4 ... Reactor containment vessel, 5a ... Dry well, 5b ... Suppression chamber, 6 ... Cooling water, 7 ... Pump, 8 ... Heat exchanger,
9 ... Piping, 10a-10c ... Isolation valve, 11 ... Main exhaust pipe, 12 ... External water source, 13 ... Water supply pump, 14 ... Vent pipe, 15 ... Suppression chamber side outlet nozzle, 16a, 16b ... Piping, 17 ...
1st isolation valve, 18 ... 2nd isolation valve, 19 ... Water level detection element,
20a, 20b ... Control element, 21 ... Third isolation valve, 22, 23 ... Water level, 24 ... Drywell side outlet nozzle, 25 ... Inlet side piping.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子炉格納容器のドライウェルの上部側
面に第1の隔離弁が接続され、サプレッションチェンバ
の上部側面に第2の隔離弁が接続され、前記第1および
第2の隔離弁の出口側は主排気筒の入口側配管に接続さ
れ、前記入口側配管の出口側には第3の隔離弁が接続さ
れ、この第3の隔離弁の出口側は前記主排気筒に接続さ
れ、前記入口側配管に水位検出素子が設けられ、この水
位検出素子は第1および第2の制御素子に接続し、前記
第1の制御素子は前記第1の隔離弁に、前記第2の制御
素子は前記第2の隔離弁にそれぞれ電気的に接続してな
ることを特徴とする原子炉格納容器用ベント装置。
1. A first isolation valve is connected to an upper side surface of a dry well of a nuclear reactor containment vessel, and a second isolation valve is connected to an upper side surface of a suppression chamber. The outlet side is connected to the inlet side pipe of the main exhaust pipe, the outlet side of the inlet side pipe is connected to a third isolation valve, and the outlet side of the third isolation valve is connected to the main exhaust pipe, A water level detecting element is provided in the inlet side pipe, the water level detecting element is connected to first and second control elements, the first control element is provided in the first isolation valve, and the second control element is provided. Are electrically connected to the second isolation valves, respectively, and a vent device for a containment vessel.
JP4064729A 1992-03-23 1992-03-23 Vent device for reactor containment Pending JPH05264771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4064729A JPH05264771A (en) 1992-03-23 1992-03-23 Vent device for reactor containment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4064729A JPH05264771A (en) 1992-03-23 1992-03-23 Vent device for reactor containment

Publications (1)

Publication Number Publication Date
JPH05264771A true JPH05264771A (en) 1993-10-12

Family

ID=13266533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4064729A Pending JPH05264771A (en) 1992-03-23 1992-03-23 Vent device for reactor containment

Country Status (1)

Country Link
JP (1) JPH05264771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099205A (en) * 2014-11-20 2016-05-30 三菱重工業株式会社 Nuclear reactor containment maintenance facility and nuclear reactor containment maintenance method
CN109273110A (en) * 2018-08-17 2019-01-25 中广核工程有限公司 Fire-fighting system and its configuration method are used during a kind of npp safety shell bulge test
CN112908500A (en) * 2021-01-14 2021-06-04 中广核研究院有限公司 Volume control method for non-condensable gas at top of pressure container

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099205A (en) * 2014-11-20 2016-05-30 三菱重工業株式会社 Nuclear reactor containment maintenance facility and nuclear reactor containment maintenance method
CN109273110A (en) * 2018-08-17 2019-01-25 中广核工程有限公司 Fire-fighting system and its configuration method are used during a kind of npp safety shell bulge test
CN112908500A (en) * 2021-01-14 2021-06-04 中广核研究院有限公司 Volume control method for non-condensable gas at top of pressure container
CN112908500B (en) * 2021-01-14 2024-05-10 中广核研究院有限公司 Volume control method for non-condensable gas at top of pressure vessel

Similar Documents

Publication Publication Date Title
EP0418701B1 (en) Reactor core decay heat removing system in a pressurized water reactor
JPH02268295A (en) Heat removing system for containment vessel
JPS62187291A (en) Passive safety device for nuclear reactor
JP2009098035A (en) Nuclear power plant
US4692297A (en) Control of nuclear reactor power plant on occurrence of rupture in coolant tubes
JP6466704B2 (en) Fuel / coolant interaction impact mitigation system and nuclear power plant equipped with the same
US11355255B2 (en) System and method for reducing atmospheric release of radioactive materials caused by severe accident
JPH05264771A (en) Vent device for reactor containment
JPH0498198A (en) Core cooling facility for nuclear power plant
JPH04301795A (en) Passive fluid-pressure type vacuum breaker of nuclear reactor equipment
JP2963728B2 (en) Emission radioactivity reduction device
JP2823984B2 (en) Containment vessel cooling system
JPH08211184A (en) Reactor containment and its combustible gas concentration controlling method
JPH08201561A (en) Safety system reactor container
JP3903127B2 (en) Method and apparatus for protecting residual heat from nuclear power plant reactors
JPH09105795A (en) Reactor container spray system
JPH03246492A (en) Emergency condenser system
JPH0377096A (en) Vent device of reactor container
JPH08194087A (en) Nuclear reactor facility
JPH06235789A (en) Nuclear reactor
JPH0658421B2 (en) Primary vessel decompression device
JPH06194493A (en) Failure support system for nuclear power plant
JP2868819B2 (en) Reactor containment venting equipment
JPH07294680A (en) Reactor container cooling device
JPH04324396A (en) Vent command device for reactor containment