JPH05264489A - Prospecting method for cavity of slope surface of covered body - Google Patents

Prospecting method for cavity of slope surface of covered body

Info

Publication number
JPH05264489A
JPH05264489A JP6261492A JP6261492A JPH05264489A JP H05264489 A JPH05264489 A JP H05264489A JP 6261492 A JP6261492 A JP 6261492A JP 6261492 A JP6261492 A JP 6261492A JP H05264489 A JPH05264489 A JP H05264489A
Authority
JP
Japan
Prior art keywords
cavity
slope
data
depth
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6261492A
Other languages
Japanese (ja)
Inventor
Eiko Sakamoto
英光 坂本
Tetsushi Matsunaga
徹志 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAITO KENSETSU KOGYO KK
NEC Avio Infrared Technologies Co Ltd
Original Assignee
DAITO KENSETSU KOGYO KK
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAITO KENSETSU KOGYO KK, NEC Avio Infrared Technologies Co Ltd filed Critical DAITO KENSETSU KOGYO KK
Priority to JP6261492A priority Critical patent/JPH05264489A/en
Publication of JPH05264489A publication Critical patent/JPH05264489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To capture the position and the depth of a cavity which is generated on the slope surface of a covered body such as a concrete mortar sprayed surface, etc. CONSTITUTION:In a slope surface where a covered body is formed on a naturally inclined surface, the surface temperature of the covered body is measured using infrared ray radiation thermometer and then the obtained temperature data and a visually judged data by observing the state of the slope surface of the covered body are combined. Both data are analyzed by a data processing device to obtain a discrimination function for detecting the state-changed part of the slope surface of the covered body and an estimation function of the depth of the cavity which exists between the naturally inclined surface and the covered body and then the position and the depth of the cavity which is generated between the naturally inclined surface and the covered body are prospected based on both functions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建造物、例えばコンク
リートモルタル等の被覆体法面に生じる空洞等を探査す
る被覆体法面の空洞探査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cavity exploration method for a covering slope for exploring cavities or the like formed on a covering slope of a building, such as concrete mortar.

【0002】[0002]

【従来の技術】地山等の自然斜面にコンクリートモルタ
ル(以下モルタルと云う)を吹き付けた法面では、昼夜
の温度変化による膨張・収縮の繰り返しや雨水等の浸透
作用によって、モルタル表面にひび割れが生じたり、地
山の風化等の変状が発生する。これが進行すると、風化
土砂が斜面下部方向に流れ出し、或はモルタル材が押し
出されてモルタル材と斜面の間に空洞が生じ、モルタル
が剥落して落下したり、斜面すべりを助長する等、防災
上極めて危険である。従来、斯かるモルタル部材と自然
斜面に生じた空洞の探査方法は、人間がモルタル表面を
ハンマー等で打撃し、その打撃音の高低で空洞の有無を
判断するものであった。また、ビル等の建築構造物のモ
ルタルやタイル等の外装物の浮き上がりや剥離により、
それらの裏側に生じた空洞を赤外線放射温度計で測定し
た空間的温度分布(温度差)から検出する方法が、特公
昭63ー61603に開示されている。この方法は、大
略以下のようなものである。即ち、温度上昇時において
は、太陽光や人工的照射熱が外装物に当たるとその一部
は反射され、残りは外装物に吸収される。更に、吸収さ
れたエネルギーは下地に伝導される。一般に固体、液
体、気体の順に熱伝導率が低下するので、外装物の剥離
或は空洞が存在すれば熱伝導率が低い分だけ、外装物に
畜熱され、剥離等の無い健全部に比べて相対的に高温と
なる。開示された検出方法は、建築構造物の表面温度を
赤外線放射温度計で測定し、その空間的分布及び時間的
分布の違いから、正常な健全部と剥離或は空洞が生じた
異常部とを判定するようにしたものである。斯かる方法
は、ビル等の外装物並びに下地等、構造物がほぼ均質に
形成されているものを検出・解析対象とする場合に有効
である。
2. Description of the Related Art On a slope where natural mortar (hereinafter referred to as mortar) is sprayed on a natural slope such as a natural ground, cracks are generated on the surface of the mortar due to repeated expansion and contraction due to temperature changes day and night and permeation of rainwater. Occurrence or deformation such as weathering of the ground occurs. As this progresses, weathered earth and sand flow out toward the bottom of the slope, or mortar material is pushed out to create cavities between the mortar material and the slope, which causes the mortar to peel off and fall, and to promote slope slippage, etc. It is extremely dangerous. Conventionally, such a method of exploring a mortar member and a cavity formed on a natural slope has been one in which a person hits the surface of the mortar with a hammer or the like, and determines the presence or absence of the cavity by the level of the hitting sound. Also, due to the rising and peeling of exteriors such as mortar and tiles of building structures such as buildings,
Japanese Patent Publication No. 63-61603 discloses a method for detecting the cavities formed on the back side of these cavities from the spatial temperature distribution (temperature difference) measured by an infrared radiation thermometer. This method is roughly as follows. That is, when the temperature rises and the sunlight or artificial irradiation heat hits the exterior, a part thereof is reflected and the rest is absorbed by the exterior. Further, the absorbed energy is conducted to the base. Generally, the thermal conductivity decreases in the order of solid, liquid, and gas, so if there is peeling or there is a cavity in the exterior, the heat is stored in the exterior as much as the heat conductivity is low and compared to a healthy part without peeling. Relatively high temperature. The disclosed detection method measures the surface temperature of a building structure with an infrared radiation thermometer, and from the difference in its spatial distribution and temporal distribution, normal sound parts and abnormal parts with peeling or cavities are detected. The judgment is made. Such a method is effective in the case of detecting and analyzing an object such as an exterior of a building or a base and a structure in which the structure is formed substantially uniformly.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た前者の探査方法、即ちハンマーでモルタルを打撃する
方法は、判定者の経験的な感に依存するためにその判断
基準を定量的に示すことが困難である。また、一般に斯
かるモルタル面は急斜面に形成されることが多いので、
探査作業は危険が伴うと共に、探査対象とするモルタル
面の全範囲を打撃する必要があり、作業効率が極めて悪
いと云う不都合点がある。また、後者の赤外線放射温度
計を使用したビル等の外装物の探査方法は、地山等と異
なり、比較的均質な建造物を探査対象としている。この
ため斯かる探査方法を単に自然斜面のモルタル探査に応
用しても、多量の測定誤差が含まれることになる。観測
対象を自然の地山とする場合、斯かる地山の斜面は、硬
岩、軟岩、風化岩或は土等種々の特質をもつ物質で構成
されている。従って、モルタル面を構成する場合、主と
して施工上の問題から実際に形成されるモルタル面は厚
さが不均一となる。更に、法面の表面には凹凸があり複
雑な曲面となっているため、太陽光を熱源とする場合に
は照射温度は不均一となる。従ってこれらの理由から、
単に表面温度が健全部と比べて高いから、或は温度上昇
率(夜間は下降率)が大きいからといって、これらのみ
を根拠にして空洞が存在すると判断することは出来な
い。さらに、広い面積にわたって法面の変状を探査する
場合、観測現場で赤外線放射温度計と斜面間の距離が地
形等により十分取れない時には、対象法面を分割(シー
ン)して観測することが少なくない。このため、各シー
ンの観測に時間的なズレが生じることになる。従って、
観測シーンが異なれば、例え同一温度で観測されたとし
ても、それらから得られる斜面状態の情報も異なる。そ
こで、地山の法面を分割して観測する場合、各観測シー
ン間の表面温度を統一的に取り扱えるように標準化する
必要がある。以上のように、地山の自然斜面を被覆した
モルタル吹き付け法面に関し、表面温度の空間的分布
(温度差)や表面温度の時間的変化からのみでは健全部
と異常部(空洞部)とを区別することは一般に困難であ
り、表面温度以外の上述した種々の要因を考慮して空洞
の有無を判断する必要がある。従って、本発明は上記従
来の不都合点を解決し、自然斜面に形成されたモルタル
面等の被覆体法面に生じた空洞を、定量的に判別し得る
被覆体法面の空洞探査方法を提供することを目的とす
る。
However, the former exploration method described above, that is, the method of hitting the mortar with a hammer, depends on the empirical feeling of the judge, and therefore the judgment criteria can be shown quantitatively. Have difficulty. In addition, since such mortar surface is often formed as a steep slope,
The exploration work is accompanied by danger, and it is necessary to hit the entire area of the mortar surface to be explored, which is a disadvantage that the work efficiency is extremely poor. Also, the latter method of exploring exteriors such as buildings using infrared radiation thermometers is targeted at relatively homogeneous structures, unlike the natural ground. Therefore, even if such an exploration method is simply applied to mortar exploration on a natural slope, a large amount of measurement error will be included. When observing natural rocks, the slopes of such rocks are composed of materials with various characteristics such as hard rocks, soft rocks, weathered rocks, and soil. Therefore, when forming the mortar surface, the thickness of the mortar surface actually formed is uneven mainly due to construction problems. Furthermore, since the surface of the slope is uneven and has a complicated curved surface, the irradiation temperature becomes uneven when sunlight is used as the heat source. So for these reasons,
Just because the surface temperature is higher than that of the sound part or the temperature rising rate (falling rate at night) is large, it is not possible to judge that the cavity exists based on these alone. Furthermore, when investigating the deformation of the slope over a wide area, if the distance between the infrared radiation thermometer and the slope is not sufficient at the observation site due to topography etc., the target slope can be divided (scene) for observation. Not a few. Therefore, there is a time lag in the observation of each scene. Therefore,
If the observation scenes are different, even if they are observed at the same temperature, the information on the slope state obtained from them is also different. Therefore, when dividing and observing the slope of the ground, it is necessary to standardize the surface temperature between each observation scene so that it can be handled uniformly. As described above, regarding the mortar spraying slope that covers the natural slope of the natural ground, a healthy part and an abnormal part (cavity) can be identified only by the spatial distribution of the surface temperature (temperature difference) and the temporal change of the surface temperature. It is generally difficult to make a distinction, and it is necessary to determine the presence or absence of a cavity in consideration of the above-mentioned various factors other than the surface temperature. Therefore, the present invention solves the above-mentioned conventional inconveniences, and provides a cavity exploration method of a covering slope capable of quantitatively determining a cavity generated in a covering slope such as a mortar surface formed on a natural slope. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】本発明の被覆体法面の空
洞探査方法は、例えば、図1に示す如く、自然斜面に被
覆体を形成した法面について、赤外線放射温度検出手段
1を用いて被覆体の表面温度を計測し、得られる温度デ
ータ及び被覆体法面状態を観測した目視判読データを組
合せ、これら両データをデータ処理手段5により解析し
て被覆体法面の変状部を検出する判別関数並びに自然斜
面と被覆体との間に存在する空洞の深さの推定関数とを
作成し、これら両関数に基づき空洞の位置及びその深さ
を求めるものである。
In the method for locating a cavity on a slope of a cover according to the present invention, for example, as shown in FIG. 1, infrared radiation temperature detecting means 1 is used for a slope having a cover formed on a natural slope. The surface temperature of the coated body is measured by combining the obtained temperature data and the visually readable data obtained by observing the state of the coated body slope surface, and both of these data are analyzed by the data processing means 5 to determine the deformed portion of the coated body slope surface. A discriminant function to be detected and an estimation function of the depth of the cavity existing between the natural slope and the cover are created, and the position of the cavity and its depth are obtained based on these two functions.

【0005】[0005]

【作用】自然斜面をモルタル等で被覆した法面の空洞を
探査する場合、法面の表面温度を計測し、斯かる表面温
度データに加えて、モルタル表面のひび割れ等の目視判
読データを取入れ、更にモルタル表面の凹凸の目視判読
データと分割された各観測シーン間の表面温度データを
標準化して取入れる。これらのデータより、モルタルの
変状部を検出する判別関数並びに自然斜面とモルタルと
の間に存在する空洞の深さを示す推定関数を演算して求
め、これら両関数に空洞の有無及びその深さが未知であ
る観測ポイントの目視データを加入することにより、空
洞の有無及びその深さを求めることが出来る。このよう
に従来経験的に行われていた被覆体の探査が、客観的に
定量的な基準により探査出来るので、空洞検出の信頼性
が高く、しかもその位置及び深さも演算できるため、探
査作業が高い効率で可能となり、被覆体の修繕・維持管
理に極めて有用なものとなる。
[Function] When exploring a cavity on a slope where natural slopes are covered with mortar, the surface temperature of the slope is measured, and in addition to such surface temperature data, visual interpretation data such as cracks on the mortar surface are imported. Furthermore, the visual interpretation data of the unevenness of the mortar surface and the surface temperature data between the divided observation scenes are standardized and incorporated. From these data, the discriminant function for detecting the deformed part of the mortar and the estimation function indicating the depth of the cavity existing between the natural slope and the mortar are calculated, and the presence or absence and the depth of the cavity in these functions are calculated. The presence or absence of a cavity and its depth can be obtained by adding the visual data of the observation points whose height is unknown. In this way, the exploration of the covering, which has been performed empirically in the past, can be performed objectively and quantitatively, so the cavity detection is highly reliable and the position and depth of the cavity can be calculated. It becomes possible with high efficiency, and is extremely useful for repair and maintenance of coatings.

【0006】[0006]

【実施例】実施例の説明に先立ち本発明に利用する数量
化理論について説明する。数量化理論とは、温度のよう
な量的変化だけでなく、例えばコンクリート等の被覆体
に生ずる凹凸或はひび割れの大小等の質に関するデータ
も数量で表し、各種の分析・推定等を行おうとするもの
である。本発明では数量化理論第II類及び第I類を利用
するもので、その概要を以下説明する。数量化理論第II
類は、上述した質的な情報(説明変量)に基づいて、質
的に測定された変量(外的基準)を分類しようとするも
のであり、本発明の場合、例えば被覆体の内側に存在す
る空洞の有無を外的基準とする。各サンプルは、k個の
分類から成る外的基準と、r個のアイテム(要因−説明
変量)のカテゴリー(アイテムの内容を分類したもの)
のいずれかに反応する。そこで本発明ではいずれかのカ
テゴゴリーに反応した場合は1を、そうでない場合は0
というダミー変数を付与する。従って、ダミー変数をδ
(jk)とすれば、以下のように表現できる。
EXAMPLES Prior to the description of the examples, the quantification theory used in the present invention will be described. The quantification theory represents not only quantitative changes such as temperature, but also data concerning the quality of irregularities or the size of cracks that occur in coatings such as concrete in terms of quantities, in order to perform various analyzes and estimations. To do. The present invention utilizes the quantification theory classes II and I, the outline of which will be described below. Quantification Theory II
The class is intended to classify a qualitatively measured variable (external criterion) based on the above-mentioned qualitative information (explanatory variable), and in the case of the present invention, for example, it exists inside the coating. The external reference is the presence or absence of a cavity to be used. Each sample has an external criterion consisting of k classifications and a category of r items (factors-explanatory variables) (categorized item contents).
React to any of. Therefore, in the present invention, 1 is reacted when any category is reacted, and 0 otherwise.
The dummy variable is added. Therefore, let the dummy variable be δ
If it is (jk), it can be expressed as follows.

【0007】[0007]

【数1】 [Equation 1]

【0008】この時、各サンプルに付与される値(サン
プルスコア)Yiαが以下に示すように、ダミー変数の
線形式で得られるものと仮定する。ここに、ajkは実数
であり、カテゴリースコアと呼ばれる。
At this time, it is assumed that the value (sample score) Yiα given to each sample is obtained in the dummy variable linear format as shown below. Here, a jk is a real number and is called a category score.

【0009】[0009]

【数2】 [Equation 2]

【0010】即ち、各サンプルに与えられたサンプルス
コアによりk個の群が最も良く判別されるように、即ち
相関比η2 (サンプルスコアの全分散に対する群間分散
の比)が最大になるように、後述する手順で作成される
サンプルポイントの各変量を用いてカテゴリースコアa
jkを算定すれば、判別関数を求めることが出来る。従っ
て、本発明では、この求められた判別関数に空洞の有無
が未知であるポイントの説明変数を代入すれば、即ち、
1つのサンプルポイントは1つのアイテムにおいていず
れか1つのカテゴリーに属するので、これらに対応する
カテゴリースコア(ajk)を加算することにより、サン
プルスコア(Yiα)を計算でき、この正負により空洞
の有無を判別できることになる。従って、外的基準の空
洞有りに対して2の値を、空洞無しに対して1の値を付
与して判別関数を求めた場合、零を閾値にして新たなポ
イントのサンプルスコアが正値であればそのポイントに
空洞があり、逆に負の値であれば空洞が無いと判別する
ことが出来る。
That is, the k groups are best discriminated by the sample score given to each sample, that is, the correlation ratio η 2 (the ratio of the group variance to the total variance of the sample score) is maximized. In addition, the category score a is calculated by using each variable of sample points created by the procedure described later.
If jk is calculated, the discriminant function can be obtained. Therefore, in the present invention, if the explanatory variable of the point where the presence or absence of a cavity is unknown is substituted into the obtained discriminant function, that is,
Since one sample point belongs to any one category in one item, the sample score (Yiα) can be calculated by adding the category score (a jk ) corresponding to these, and the presence or absence of a cavity can be calculated by this positive / negative. It will be possible to determine. Therefore, when the discriminant function is obtained by assigning a value of 2 to the external reference with a void and a value of 1 to the absence of a void, the sample score of a new point is a positive value with zero as the threshold. If there is a cavity at that point, on the contrary, if it is a negative value, it can be determined that there is no cavity.

【0011】一方、数量化理論第I類は質的な情報を説
明変量として、量的に測定された変量(外的基準)を推
定しようとするものであり、各サンプルに与えられるサ
ンプルスコアYi が数量化理論第II類と同様にダミー変
数の線形式で得られるものと仮定する。
On the other hand, the quantification theory class I attempts to estimate a quantitatively measured variable (external criterion) by using qualitative information as an explanatory variable, and a sample score Y given to each sample. It is assumed that i is obtained in the linear form of dummy variables as in the quantification theory class II.

【0012】[0012]

【数3】 [Equation 3]

【0013】上式は重回帰モデルと基本的に同等な構造
である。従って、本発明では後述する手順で得られるデ
ータを使って、各サンプルに与えられるサンプルスコア
i と外的基準である空洞深さの観測値yi の残差2乗
和が最小になるように、カテゴリースコアbjkを計算で
求め、この式に空洞深さが未知のポイントの説明変量を
代入すれば、空洞の深さが推定できることになる。
The above equation is basically the same structure as the multiple regression model. Therefore, in the present invention, the data obtained by the procedure described later is used to minimize the residual sum of squares of the sample score Y i given to each sample and the observed value y i of the cavity depth which is an external reference. Then, by obtaining the category score b jk by calculation and substituting the explanatory variable of the point where the cavity depth is unknown, the cavity depth can be estimated.

【0014】以下図1〜図4を参照して、本発明の被覆
体法面の空洞探査方法の一実施例について説明する。図
1のフローチャートにより、本実施例について説明す
る。赤外線放射温度計1により測定を開始し、対象とす
るコンクリートモルタル法面の表面温度の空間分布(温
度差)並びに時間的変化を測定する。この時、調査対象
とする法面を1つの観測シーン(1区画)で補足出来な
い場合には、対象とする法面を分割して観測し、これら
の温度情報をデータ収録装置2の記憶媒体に保持してお
く(ステップS1)。他方人間の目視により、コンクリ
ートモルタル表面のひび割れ及び凹凸状態を判読して3
〜4段階に分類し、その位置と程度を記録する(ステッ
プS2)。例えばこれらの分類は、説明変量として以下
に示す表の如く分類される。この表中、左欄の質的情報
を示す夫々のアイテム(説明変量)に対して、右欄のカ
テゴリー(外的基準)の如く判別基準を所要とする数個
の段階に分けて付与する。
With reference to FIGS. 1 to 4, an embodiment of the method for detecting a cavity on the surface of a coated body of the present invention will be described below. This embodiment will be described with reference to the flowchart of FIG. The measurement is started by the infrared radiation thermometer 1, and the spatial distribution (temperature difference) of the surface temperature of the target concrete mortar slope and the temporal change are measured. At this time, when the slope to be surveyed cannot be supplemented with one observation scene (one section), the slope to be surveyed is divided and observed, and these temperature information are stored in the storage medium of the data recording device 2. (Step S1). On the other hand, by visually observing cracks and irregularities on the surface of concrete mortar,
~ Classify into 4 stages and record the position and degree (step S2). For example, these classifications are classified as explanatory variables as shown in the table below. In this table, each item (explanatory variable) indicating the qualitative information in the left column is given in several required stages such as a category (external criterion) in the right column.

【0015】[0015]

【表1】 [Table 1]

【0016】次にいくつかの所要の観測シーン(サンプ
ルシーン)を選択し、更にこれら観測シーン中のサンプ
ルポイントを複数個選定する(ステップS3)。選定さ
れた複数のサンプルポイントについて、ステップS1で
収録した温度情報から表面温度及びその時間的変化のデ
ータを抽出する(ステップS4)。この場合、異なる観
測シーンの表面温度は後述する式(4)により、補正し
た表面温度の値を採用する。また、表面温度の時間的変
化は、各観測シーンとも温度上昇時に観測時間を一定に
して観測した温度データから得られる温度差を採用する
ものとする。さらに、複数のサンプルポイントについ
て、ハンマーで打撃して空洞の有無を判定し、或はドリ
ル等でモルタル面に例えば直径数センチ程度の孔を開
け、空洞の有無及び空洞の深さを手作業により測定する
(ステップS5)。赤外線放射温度計1による表面温度
の計測及び目視による観測が終了したら、ステップS2
〜S5で得られたデータをデータ処理装置5に入力し、
前述した(2)式により空洞の有無を表す判別関数と、
(3)式により空洞の深さを示す推定関数を演算して求
める(ステップS6)。求められた判別及び推定関数の
精度を検証し、即ちステップS5の手作業により測定し
たサンプルポイントの空洞の有無及びその深さのデータ
と、演算された両関数による空洞の有無及びその深さの
データとを比較し、その結果が満足するものであれば次
のステップS8へ進むが、満足しない場合はステップS
3 へ戻り、満足する結果が得られるまで繰り返される
(ステップS7)。次にステップS1においてデータ収
録装置2の記録媒体に収録されたモルタル表面の温度情
報から、調査対象とする法面全体の表面温度及び表面温
度変化データを抽出し、これらのデータにステップS2
で求めた目視判読データを組合せ、説明変量として数値
データに変換する。更に後述するが、複数の異なる観測
シーンの表面温度を標準化するための補正を加える(ス
テップS8)。これらの説明変量及び補正された表面温
度データを、ステップS6で求めた空洞有無の判別関数
及びステップS5で観測した空洞深さの手作業の観測値
と共にステップS6で求めた空洞深さの推定関数に代入
して演算すれば、対象とする法面の空洞の位置と深さが
求められる(ステップS9)。対象とする全法面に以上
の処理を行い、測定を終了する。
Next, some required observation scenes (sample scenes) are selected, and a plurality of sample points in these observation scenes are selected (step S3). For the selected plurality of sample points, the surface temperature and its temporal change data are extracted from the temperature information recorded in step S1 (step S4). In this case, as the surface temperature of different observation scenes, the value of the corrected surface temperature is adopted by the equation (4) described later. As for the temporal change of the surface temperature, the temperature difference obtained from the temperature data obtained by observing the observation time with a constant observation time is used for each observation scene. Furthermore, for a plurality of sample points, hammering is used to determine the presence or absence of cavities, or a hole such as a few centimeters in diameter is made on the mortar surface with a drill, etc., and the presence or absence of cavities and the depth of cavities are manually determined. Measure (step S5). When the measurement of the surface temperature by the infrared radiation thermometer 1 and the visual observation are completed, step S2
~ Input the data obtained in S5 to the data processing device 5,
A discriminant function representing the presence or absence of a cavity by the above-mentioned equation (2),
An equation (3) is used to calculate and obtain an estimation function indicating the depth of the cavity (step S6). The accuracy of the obtained discrimination and estimation function is verified, that is, the presence / absence of the cavity and its depth at the sample point measured manually in step S5, and the presence / absence of the cavity and the depth of the computed both functions. If the result is compared with the data and the result is satisfied, the process proceeds to the next step S8, but if not satisfied, the step S8 is performed.
It returns to 3 and is repeated until a satisfactory result is obtained (step S7). Next, in step S1, surface temperature and surface temperature change data of the entire slope to be investigated are extracted from the temperature information of the mortar surface recorded in the recording medium of the data recording device 2, and these data are used in step S2.
The visually readable data obtained in step 1 are combined and converted into numerical data as explanatory variables. Further, as will be described later, a correction for standardizing the surface temperatures of a plurality of different observation scenes is added (step S8). These explanatory variables and the corrected surface temperature data are used together with the discriminant function of the presence / absence of the cavity obtained in step S6 and the manually observed value of the cavity depth observed in step S5, and the estimation function of the cavity depth obtained in step S6. Then, the position and depth of the cavity on the target slope are obtained (step S9). The above processing is performed on all the target slopes, and the measurement is completed.

【0017】尚、被覆体4を複数の観測シーンに分割し
て測定を行う場合、時間的なズレを考慮して各観測シー
ン間の表面温度を統一的に取り扱えるように、異なる観
測シーンの表面温度を標準化する必要がある。このため
測定された表面温度に以下に示す補正を加える。
When the coating 4 is divided into a plurality of observation scenes for measurement, the surfaces of different observation scenes are treated so that the surface temperature between the observation scenes can be treated in a unified manner in consideration of the time lag. Temperature needs to be standardized. Therefore, the following correction is added to the measured surface temperature.

【0018】[0018]

【数4】 [Equation 4]

【0019】ここで、tijは測定温度、Mi は観測シー
ンiの最低温度及びMは法面全体の最低温度である。
Here, t ij is the measured temperature, M i is the minimum temperature of the observation scene i, and M is the minimum temperature of the entire slope.

【0020】このようにして、従来経験的に行われてい
た空洞探査法に比べて、客観的に、且つ定量的な基準で
空洞探査が可能になる。
In this way, it becomes possible to carry out the cavity exploration on an objective and quantitative basis as compared with the cavity exploration method which has been conventionally conducted empirically.

【0021】図2は図1の実施例を実現する装置の構成
を示す概略図である。1は赤外線放射温度計で、例えば
地山3の傾斜面に吹き付けられたコンクリートモルタル
等の被覆体4の表面温度を測定し、得られた温度データ
に基づき被覆体4の裏側に生じた空洞a等の異常部等を
探査する。2はデータ収録装置で、赤外線放射温度計1
により検出される温度データを、例えばフロッピーディ
スク等の記録媒体に記憶保持する。5は赤外線放射温度
計1により検出された温度データ及び被覆体4の目視デ
ータ等を取り込み種々の演算・解析を行う、例えばパー
ソナルコンピュータ等のデータ処理装置、6はデータ処
理装置5から出力されるデータより作図或は印字等を行
うプリンタ/プロッタである。
FIG. 2 is a schematic diagram showing the structure of an apparatus for realizing the embodiment shown in FIG. Reference numeral 1 denotes an infrared radiation thermometer, which measures the surface temperature of a coating body 4 such as concrete mortar sprayed on the inclined surface of the ground 3, and a cavity a formed on the back side of the coating body 4 based on the obtained temperature data. Search for abnormal areas such as. 2 is a data recording device, 1 infrared thermometer
The temperature data detected by is stored and retained in a recording medium such as a floppy disk. Reference numeral 5 is a data processing device such as a personal computer, for example, which receives temperature data detected by the infrared radiation thermometer 1 and visual data of the covering 4, and performs various calculations and analysis. 6 is output from the data processing device 5. A printer / plotter for drawing or printing from data.

【0022】次に図3及び図4により本発明の妥当性に
ついて説明する。図3は3つの観測シーン(A)、
(B)及び(C)における判別関数による空洞探査の的
中率を示すものである。図3において、(A)は観測シ
ーン1、(B)は観測シーン2及び(C)は観測シーン
3の結果を夫々示している。この場合、夫々のシーンの
各サンプルポイントのサンプルスコアを横軸に取ったも
のである。各サンプルポイントについてサンプルスコア
が正であれば“空洞あり”、負であれば“空洞なし”と
判別され、x印は空洞あり、○印は空洞なしと確認され
たことを表している。判別の的中率を全サンプル数に対
する誤判別のサンプル数の百分率(的中率)で表せば、
(A)及び(B)の観測シーン1及び2は夫々約97
%、及び(C)の観測シーン3は100%となり、
(A)及び(B)の観測シーン1及び2においては中央
部で若干の誤判別が見られるが、ほぼ満足し得る結果が
得られた。
Next, the validity of the present invention will be described with reference to FIGS. 3 and 4. Figure 3 shows three observation scenes (A),
It shows the hit rate of cavity exploration by the discriminant function in (B) and (C). In FIG. 3, (A) shows the results of observation scene 1, (B) shows the results of observation scene 2, and (C) shows the results of observation scene 3. In this case, the horizontal axis represents the sample score of each sample point of each scene. For each sample point, if the sample score is positive, it is determined that there is a void, and if it is negative, it is determined that there is a void, and x is a void and O is a void. Expressing the accuracy rate of discrimination as a percentage of the number of misclassification samples to the total number of samples (precision rate),
Observation scenes 1 and 2 in (A) and (B) are about 97, respectively.
%, And the observation scene 3 in (C) is 100%,
In the observation scenes 1 and 2 of (A) and (B), some misjudgment was observed in the central portion, but almost satisfactory results were obtained.

【0023】図4は空洞の深さに関する測定値(横軸)
と推定値(縦軸)を比較したものである。この例におい
ても、実際の測定値と推定値が大きな差がなく、ほぼ良
好な推定値が得られることを示している。
FIG. 4 shows the measured values relating to the depth of the cavity (horizontal axis).
And the estimated value (vertical axis) are compared. In this example as well, there is no large difference between the actual measured value and the estimated value, indicating that a substantially good estimated value can be obtained.

【0024】このようにして、従来経験的に行われてい
た空洞探査法に比べて、客観的に、且つ定量的な基準で
被覆体に生じた空洞探査が可能になる。
In this way, it becomes possible to objectively and quantitatively search for cavities generated in the covering body, as compared with the conventional cavitation method that has been empirically performed.

【0025】尚、本発明は上述の実施例に限ることな
く、本発明の要旨を逸脱することなくその他種々の構成
を取り得ることは勿論である。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、従
来経験的に行われていたモルタル法面等の被覆体の空洞
探査に対し、空洞の有無を定量的な基準で捕らえること
が出来るようにしたので、探査の信頼性を著しく高める
ことが出来る。また、空洞が検出された場合、その位置
と共に深さの検出、即ち3次元的情報を検出することが
出来る。しかも、対象法面の一部の詳細データから得ら
れる空洞の有無の判別関数及び空洞の深さの推定関数に
より、他の部分の空洞の位置と深さを計算出来るので、
探査作業が高能率、低コストで可能となり、被覆体法面
の修繕或は維持管理上、極めて有効となる利点を有す
る。
As described above, according to the present invention, it is possible to detect the presence or absence of a cavity on a quantitative basis in the cavity exploration of a coating such as a mortar slope, which has been conventionally conducted. As a result, the reliability of exploration can be significantly increased. Further, when a cavity is detected, it is possible to detect the depth together with the position thereof, that is, three-dimensional information. Moreover, since the discriminant function of the presence or absence of a cavity and the estimation function of the cavity depth obtained from the detailed data of a part of the target slope can calculate the position and depth of the cavity of the other part,
It has the advantage that exploration work can be performed with high efficiency and low cost, and is extremely effective in repairing or maintaining the slope of the covering.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の被覆体法面の探査方法の処理を示すフ
ローチャートである。
FIG. 1 is a flowchart showing a process of a method for exploring a covered slope of the present invention.

【図2】図1の方法を実施するための構成を示す概略図
である。
FIG. 2 is a schematic diagram showing a configuration for performing the method of FIG.

【図3】本発明の判別関数による空洞の有無の的中率を
示すグラフである。
FIG. 3 is a graph showing the hit rate of the presence / absence of cavities according to the discriminant function of the present invention.

【図4】本発明の空洞深さの推定値と測定値を比較した
グラフである。
FIG. 4 is a graph comparing estimated and measured cavity depths of the present invention.

【符号の説明】[Explanation of symbols]

1 赤外線放射温度計(赤外線放射温度検出手段) 2 データ収録装置 4 コンクリートモルタル(被覆体) 5 データ処理装置(データ処理手段) a 空洞 1 Infrared radiation thermometer (infrared radiation temperature detecting means) 2 Data recording device 4 Concrete mortar (cover) 5 Data processing device (data processing means) a Cavity

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】自然斜面に被覆体を形成した法面におい
て、赤外線放射温度検出手段を用いて上記被覆体の表面
温度を計測し、得られる温度データ及び上記被覆体法面
の状態を観測した目視判読データを組合せ、これら両デ
ータをデータ処理手段により解析して上記被覆体法面の
変状部を検出する判別関数並びに上記自然斜面と上記被
覆体との間に存在する空洞の深さの推定関数とを作成
し、これら両関数に基づき上記空洞の位置及びその深さ
を求めることを特徴とする被覆体法面の空洞探査方法。
1. The surface temperature of the coated body is measured by using infrared radiation temperature detecting means on the slope formed with the coated body on a natural slope, and the obtained temperature data and the state of the coated body slope are observed. A combination of the visually readable data, a discriminant function for detecting the deformed portion of the covering slope by analyzing both of these data by the data processing means, and the depth of the cavity existing between the natural slope and the covering. A method for locating a cavity on a slope of a covering body, characterized by creating an estimation function and determining the position and depth of the cavity based on these functions.
JP6261492A 1992-03-18 1992-03-18 Prospecting method for cavity of slope surface of covered body Pending JPH05264489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6261492A JPH05264489A (en) 1992-03-18 1992-03-18 Prospecting method for cavity of slope surface of covered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6261492A JPH05264489A (en) 1992-03-18 1992-03-18 Prospecting method for cavity of slope surface of covered body

Publications (1)

Publication Number Publication Date
JPH05264489A true JPH05264489A (en) 1993-10-12

Family

ID=13205372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6261492A Pending JPH05264489A (en) 1992-03-18 1992-03-18 Prospecting method for cavity of slope surface of covered body

Country Status (1)

Country Link
JP (1) JPH05264489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448553B1 (en) * 2009-01-29 2010-04-14 光弘 和田 Deformation detection method of concrete surface layer by passive infrared method
CN103512663A (en) * 2013-09-13 2014-01-15 华中科技大学 Calculation method for undulating lunar surface microwave radiation brightness temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448553B1 (en) * 2009-01-29 2010-04-14 光弘 和田 Deformation detection method of concrete surface layer by passive infrared method
JP2010197371A (en) * 2009-01-29 2010-09-09 Mitsuhiro Wada Method for detecting modified part of concrete surface layer part by passive infrared method
CN103512663A (en) * 2013-09-13 2014-01-15 华中科技大学 Calculation method for undulating lunar surface microwave radiation brightness temperature

Similar Documents

Publication Publication Date Title
Akay et al. Using LiDAR technology in forestry activities
Cafaro et al. Large sample spacing in evaluation of vertical strength variability of clayey soil
Karlsson et al. Tracing the depth of the Holocene ice in North Greenland from radio-echo sounding data
Strass Measuring sea ice draft and coverage with moored upward looking sonars
JP2018004494A (en) Method for predicting geological boundary surface or fault surface
Schoefs et al. Optimal embedded sensor placement for spatial variability assessment of stationary random fields
Lupogo Characterization of blast damage in rock slopes: an integrated field-numerical modeling approach
Meyendorf et al. Structural health monitoring for aircraft, ground transportation vehicles, wind turbines and pipes-prognosis
Bonneville et al. Heat flow over Reunion hot spot track: Additional evidence for thermal rejuvenation of oceanic lithosphere
AU7220200A (en) An infrared detecting method for detecting positions of concealed fire source points of spontaneous combustion of coal in a coal road
Tran et al. Inversion of first-arrival time using simulated annealing
Mok et al. A lidar study of the atmospheric entrainment zone and mixed layer over Hong Kong
JP2000002769A (en) Method and device for predicting the spatial distribution of geological structure to prepare geological map
JPH05264489A (en) Prospecting method for cavity of slope surface of covered body
JP3247334B2 (en) Structure deformation diagnosis system and diagnosis method using thermal image
Facciorusso et al. Stratigraphic profiling by cluster analysis and fuzzy soil classification from mechanical cone penetration tests
CN115930852A (en) Method and device for estimating thickness of active layer, storage medium and electronic device
CN115839772A (en) Tunnel stress infrared monitoring method and device for solving wind flow influence
Lohou et al. Spatial and temporal characteristics of horizontal rolls and cells in the atmospheric boundary layer based on radar and in situ observations
Nguyen et al. Gaussian mixture marginal distributions for modelling remaining metallic pipe wall thickness
US20070064536A1 (en) Ground information processing method, ground information processing system, and earth resources system
JP6869601B2 (en) Ground penetrating method, ground penetrating device, ground penetrating program, and ground penetrating data display method
JP2003178334A (en) Surface stability evaluation data generating system
Admassu Digital surface model-aided quantitative geologic rockfall rating system (QG-RRS)
Becerra et al. Groundwater characterization and modelling in natural and open pit rock slopes