JPH0526411B2 - - Google Patents

Info

Publication number
JPH0526411B2
JPH0526411B2 JP60243245A JP24324585A JPH0526411B2 JP H0526411 B2 JPH0526411 B2 JP H0526411B2 JP 60243245 A JP60243245 A JP 60243245A JP 24324585 A JP24324585 A JP 24324585A JP H0526411 B2 JPH0526411 B2 JP H0526411B2
Authority
JP
Japan
Prior art keywords
zero
ground fault
signal
relays
fault direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60243245A
Other languages
Japanese (ja)
Other versions
JPS62104423A (en
Inventor
Koji Kumita
Masahiko Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hikari Trading Co Ltd
Original Assignee
Hikari Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikari Trading Co Ltd filed Critical Hikari Trading Co Ltd
Priority to JP24324585A priority Critical patent/JPS62104423A/en
Publication of JPS62104423A publication Critical patent/JPS62104423A/en
Publication of JPH0526411B2 publication Critical patent/JPH0526411B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、地絡方向継電装置に係り、特に地絡
方向継電器を配電線に複数台直列的に設置された
ものの各地絡方向継電器の保護動作の協調及びバ
ツクアツプ動作を行わせる比種継電装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a ground fault directional relay device, and in particular to the protective operation of each fault directional relay when a plurality of ground fault directional relays are installed in series on a distribution line. The present invention relates to a differential relay device that performs coordination and backup operations.

従来の技術 地絡方向継電器は、地絡事故時に零相電圧と零
相電流を検出して、これらの電圧と電流の位相比
較を行ない、その事故が零相変流器を境にして電
源側か負荷側かの方向を判別して負荷側の地絡事
故のときに保護動作を行なう継電器である。この
地絡方向継電器は、一般に配電線に数台直列に設
置された各区間の地絡事故を検出して事故のあつ
た配電線の負荷側をしや断し、他の建全な区間に
影響を与えないような保護動作を行つている。
Conventional technology Ground fault directional relays detect zero-sequence voltage and zero-sequence current in the event of a ground fault, compare the phases of these voltages and currents, and detect whether the fault is connected to the power supply side by a zero-sequence current transformer. This is a relay that determines whether it is the load side or the load side, and performs a protective operation in the event of a ground fault on the load side. Generally, several ground fault relays are installed in series on a power distribution line to detect a ground fault in each section, cut off the load side of the faulty distribution line, and transfer the relay to other intact sections. Protective actions are being taken to avoid any impact.

以下、従来の保護動作を第8図によつて説明す
る。第8図は配電線に複数台(図では3台)地絡
方向継電器を設置した場合の配線図で、1は電源
側の変圧器、2はしや断器、3は電力供給元側に
設定された地絡方向継電器を示し、4,5,6は
配電線側の配電線に設けられたしや断器、7,
8,9は各しや断器4,5,6の負荷側に設けら
れた零相変流器、10,11,12は前記零相変
流器7,8,9に接続された地絡方向継電器で電
源側(上段)から負荷側(下段)に順次直列的に
設置され、前記しや断器4,5,6にしや断指令
を与える。13は零相電圧リレー等の零相電圧信
号発生器で、零相電圧Voをパルス状の信号
Vo′に変換しその信号を地絡方向継電器10,1
1,12に並列に印加する。次に動作を説明すれ
ば、今例えば零相変流器9の負荷側のE点に地絡
事故が発生すると、各零相変流器7,8,9に零
相電流が、また零相電圧信号発生器13から零相
電圧信号が発生して地絡方向継電器(以下、
DGRと略称する)10,11,12に入力され、
各DGR10,11,12を動作しようとする。
この場合、下段のDGR12のみが動作してしや
断器6をしや断し、電源側の配電線に影響を及ぼ
さないように各DGR10,11,12の間で動
作時間の協調を持たせている。この動作時間の協
調は、しや断器のしや断時間をも考慮して、一般
的には下段側のDGR12からDGR11、及び
DGR10と動作時間をそれぞれ0.2秒、0.5秒、
0.8秒と順次長く設定され、まづDGR12が動作
してしや断器6をしや断して事故区分の配電線を
切り離し上段のDGR11,10が動作しないよ
うにしている。
The conventional protection operation will be explained below with reference to FIG. Figure 8 is a wiring diagram when multiple (three in the figure) ground fault direction relays are installed on the distribution line, where 1 is the transformer on the power supply side, 2 is the disconnector, and 3 is the relay on the power supply side. The set earth fault direction relays are shown, 4, 5, 6 are the wire breakers installed on the distribution line on the distribution line side, 7,
8 and 9 are zero-phase current transformers provided on the load side of each sheath disconnector 4, 5, and 6, and 10, 11, and 12 are ground faults connected to the zero-phase current transformers 7, 8, and 9. The directional relays are installed in series from the power source side (upper stage) to the load side (lower stage), and give a shear disconnection command to the sheath disconnectors 4, 5, and 6. 13 is a zero-phase voltage signal generator such as a zero-phase voltage relay, which converts the zero-phase voltage Vo into a pulse-like signal.
Convert it to Vo′ and send the signal to the earth fault direction relay 10, 1
1 and 12 in parallel. Next, to explain the operation, if a ground fault occurs at point E on the load side of zero-phase current transformer 9, zero-phase current flows to each zero-phase current transformer 7, 8, and 9, and A zero-phase voltage signal is generated from the voltage signal generator 13, and a ground fault direction relay (hereinafter referred to as
(abbreviated as DGR) 10, 11, 12,
An attempt is made to operate each DGR 10, 11, and 12.
In this case, only the lower DGR 12 operates to quickly disconnect the insulation breaker 6, and the operating times are coordinated among each DGR 10, 11, and 12 so as not to affect the distribution line on the power supply side. ing. This coordination of operation time is generally done by taking into consideration the breakage time of the breakers, and generally from DGR12 to DGR11 on the lower stage, and
DGR10 and operation time are 0.2 seconds and 0.5 seconds, respectively.
The DGR 12 is set to 0.8 seconds and becomes longer in sequence, and the DGR 12 operates first to cut off the breaker 6, disconnecting the distribution line in the fault category and preventing the upper DGRs 11 and 10 from operating.

発明が解決しようとする問題点 電力供給元の電力会社等によつては電源側の
DGR3の動作時間が0.5秒に設定される場合があ
る。この場合、配電線側のDGR10,11,1
2は0.5秒より順次短い時間に設定しなければな
らないが、DGRの持つ慣性特性、しや断器の動
作時間等に必要な最小時間があり、短縮できる時
間には限界がある。特に容量の大きい配電線では
直列に3段又は4段構成となると動作時間の協調
は事実上取れないという問題点がある。
Problems to be solved by the invention Depending on the power supply company, etc., the power supply side
The operating time of DGR3 may be set to 0.5 seconds. In this case, DGR10, 11, 1 on the distribution line side
2 must be set to successively shorter times than 0.5 seconds, but there is a minimum time required for the inertial characteristics of the DGR, the operating time of the breaker, etc., and there is a limit to the time that can be shortened. Particularly in the case of large-capacity distribution lines, there is a problem in that when three or four stages are configured in series, it is virtually impossible to coordinate the operating times.

問題点を解決するための手段 本発明は零相電圧信号を従来の如く各DGR1
0,11,12に並列に与えるのではなく、下段
のDGR12から上段のDGR11,10に直列に
印加するようになし、下段のDGRが動作したと
き、この零相電圧信号を上段のDGRに供給しな
いようにロツクして上段のDGRの動作を不能と
する。このことによつて各DGR間の動作時間の
協調をとる必要がなく、しかも直列に設置される
DGRの設置台数に関係なく動作時間の短縮を図
れるようにする。
Means for Solving the Problems The present invention provides zero-phase voltage signals to each DGR1 as in the past.
Instead of applying it in parallel to DGRs 0, 11, and 12, it is applied in series from the lower DGR12 to the upper DGRs 11 and 10, and when the lower DGR operates, this zero-phase voltage signal is supplied to the upper DGR. The upper stage DGR is disabled by locking it so that it does not occur. This eliminates the need to coordinate operating times between each DGR, and moreover, DGRs can be installed in series.
To shorten operating time regardless of the number of DGRs installed.

実施例 第1図は本発明の配線図の一実施例で、第8図
と同じ符号は、同一又は同等の部分を示し、説明
を省略する。
Embodiment FIG. 1 is an embodiment of the wiring diagram of the present invention, and the same reference numerals as in FIG. 8 indicate the same or equivalent parts, and the explanation thereof will be omitted.

従来と異る点は、零相電圧信号Vo′の与え方
で、先づ零相電圧信号発生器13の出力の零相電
圧信号Vo′を最下段のDGR12に与え、該DGR
12の出力ロツク回路(後述)を介して上段の
DGR11,10と順次直列に与えるようにした
点にある。
The difference from the conventional method is the way the zero-phase voltage signal Vo' is given. First, the zero-phase voltage signal Vo' output from the zero-phase voltage signal generator 13 is given to the DGR 12 at the lowest stage, and then
12 output lock circuits (described later)
The point is that it is applied sequentially in series with DGRs 11 and 10.

第2図及び第3図は夫々DGR12の内部結線
図及び動作を説明するためのタイムチヤート図
で、k、lは零相変流器9に接続される端子で、
零相電流Ioが入力される。20はフイルター、2
1は増巾器、22は波形整形回路で、第3図3,
4に示すように零相電流を矩形波状の零相電流信
号Io′に整形する。23はレベル検出回路で零相
電流信号Ioが一定レベル以上のときに出力信号を
出す。24は第1のアンド回路で、零相電流信号
Io′が入力され、その信号Io′が一定レベル以上の
場合に出力信号を出す。25は第2のアンド回路
で、第1のアンド回路24の出力信号と零相電圧
信号Vo′が入力され、両信号が同時に入力したと
きに出力信号を出す。26は零相電圧信号Vo′の
出力ロツク回路で、零相電圧入力端子M、Nから
零相電圧信号Vo′を入力し、出力端子m、nから
上段のDGR11に出力信号を送る。27,28
は夫々タイマーで、第2のアンド回路25の出力
信号で始動し、タイマー27はタイムT1後に出
力ロツク回路26に信号を送つて、零相電圧信号
Vo′をロツクし、出力端子m、nから出力信号が
出ないようにし、またタイマー28はタイムT2
後に出力信号を出してリレー29を付勢してしや
断器6(第1図)をしや断する。
2 and 3 are internal wiring diagrams and time charts for explaining the operation of the DGR 12, respectively, k and l are terminals connected to the zero-phase current transformer 9,
Zero-sequence current Io is input. 20 is a filter, 2
1 is an amplifier, 22 is a waveform shaping circuit, and
4, the zero-sequence current is shaped into a rectangular wave-like zero-sequence current signal Io'. 23 is a level detection circuit which outputs an output signal when the zero-phase current signal Io is above a certain level. 24 is the first AND circuit, which receives the zero-phase current signal.
Io' is input, and an output signal is output when the signal Io' is above a certain level. A second AND circuit 25 receives the output signal of the first AND circuit 24 and the zero-phase voltage signal Vo', and outputs an output signal when both signals are input simultaneously. Reference numeral 26 denotes an output lock circuit for the zero-phase voltage signal Vo', which inputs the zero-phase voltage signal Vo' from the zero-phase voltage input terminals M and N, and sends an output signal from the output terminals m and n to the upper stage DGR 11. 27, 28
are timers, which are started by the output signal of the second AND circuit 25, and the timer 27 sends a signal to the output lock circuit 26 after time T1 to output the zero-phase voltage signal.
Vo' is locked to prevent output signals from output terminals m and n, and the timer 28 is set at time T 2
Afterwards, an output signal is output to energize the relay 29 to disconnect the sheath breaker 6 (FIG. 1).

なお、タイマー27の動作タイムT1とタイマ
ー28の動作タイムT2とはT1<T2に設定されて
いる。
Note that the operating time T 1 of the timer 27 and the operating time T 2 of the timer 28 are set to satisfy T 1 <T 2 .

次に第3図に示すタイムチヤートによつて動作
を説明する。
Next, the operation will be explained with reference to the time chart shown in FIG.

なお、第3図において1は、零相電圧信号発生
器13の入力信号Vo、2はその出力信号Vo′を
示す。
In FIG. 3, 1 indicates the input signal Vo of the zero-phase voltage signal generator 13, and 2 indicates its output signal Vo'.

今、第1図において零相変流器9の負荷側のE
点において地絡事故が発生したとすると、第2図
の各DGR10,11,12の入力端子k、lに
零相電流Ioが、また端子M、Nに零相電圧信号
Vo′が夫々入力され、その零相電流Ioが一定レベ
ル以上であれば、整形されて第1のアンド回路2
4から第3図のIo′の如く波形整形され、第2の
アンド回路25に出力される。このアンド回路2
5で零相電流と零相電圧信号の位相判別が行わ
れ、地絡事故が零相変流器の負荷側であるとき
は、第3図に示すように、4のIo′と5のVo′の信
号が一致して動作条件が成立し、アンド回路25
から7の出力信号が出されタイマー27と28に
与えられる。そしてタイムT1後にタイマー27
が動作して出力ロツク回路26に信号を送つて該
ロツク回路26の出力をロツクする。この出力が
ロツクされると、第3図に示すようにタイムT1
後はDGR12からの零相電圧信号Vo′の出力は6
のように無くなり、上段のDGR11,10には
零相電圧信号Vo′が印加されない。従つて上段の
DGR11,10は不動作状態となり、DGR12
のみが動作状態にあつてタイムT2後タイマー2
8が動作しリレー29を介してしや断器6をしや
断し地絡している配電線を切り離す。
Now, in Fig. 1, E on the load side of the zero-phase current transformer 9
If a ground fault occurs at the point, a zero-sequence current Io is applied to the input terminals k and l of each DGR 10, 11, and 12 in Fig. 2, and a zero-sequence voltage signal is applied to the terminals M and N.
Vo′ is respectively input, and if the zero-sequence current Io is above a certain level, it is shaped and the first AND circuit 2
4 to Io' in FIG. 3, and output to the second AND circuit 25. This AND circuit 2
The phase of the zero-sequence current and zero-sequence voltage signals is determined in step 5, and if the ground fault is on the load side of the zero-sequence current transformer, Io' in 4 and Vo in 5 are determined as shown in Figure 3. ' signals match, the operating condition is established, and the AND circuit 25
An output signal of 7 is outputted from and applied to timers 27 and 28. And after time T 1 , timer 27
operates and sends a signal to the output lock circuit 26 to lock the output of the lock circuit 26. When this output is locked, the time T 1
After that, the output of zero-phase voltage signal Vo′ from DGR12 is 6
The zero-phase voltage signal Vo' is not applied to the DGRs 11 and 10 in the upper stage. Therefore, the upper
DGR11 and 10 are inactive, and DGR12
Timer 2 after time T 2 when only is in operating condition
8 operates to disconnect the shingle breaker 6 via the relay 29, disconnecting the power distribution line that has a ground fault.

次に零相変流器8と9の間の配電線に地絡事故
が発生した場合は、DGR12は電源側の事故で
あるから動作せず、従つて出力ブロツク回路26
も動作しないため零相電圧信号Vo′は上段のDGR
11,12に与えられ、上述と同様にDGR11
はタイムT1後出力ロツク回路26の出力をロツ
クして上段のDGR10への零相電圧信号Vo′の送
信を止め、タイムT2後にしや断5をしや断する。
Next, if a ground fault occurs in the distribution line between zero-phase current transformers 8 and 9, the DGR 12 will not operate because the fault is on the power supply side, and the output block circuit 26 will not operate.
also does not operate, so the zero-phase voltage signal Vo′ is connected to the upper stage DGR.
11, 12, and DGR11 as above
After time T1, the output of the output lock circuit 26 is locked to stop the transmission of the zero-phase voltage signal Vo' to the upper stage DGR 10, and after time T2 , the serpentine 5 is cut off.

このように各DGR10,11,12が負荷側
の地絡事故時に動作して電源側のDGRを不動作
とするので、電力供給元のDGR3の動作時間が
例えば0.5秒に設定されても、各DGR10,1
1,12のすべての動作時間を0.3秒に設定すれ
ばよいので、動作時間の協調を取る必要がない。
従つて配電線に設定される地絡方向継電器の段数
がいかに多数であつてもよい。
In this way, each DGR 10, 11, and 12 operates in the event of a ground fault on the load side and disables the DGR on the power supply side, so even if the operating time of DGR 3 on the power supply source is set to 0.5 seconds, each DGR10,1
Since all the operation times of 1 and 12 can be set to 0.3 seconds, there is no need to coordinate the operation times.
Therefore, the number of stages of ground fault directional relays installed on the power distribution line may be as large as possible.

次にバツクアツプ保護について説明する。 Next, backup protection will be explained.

上記の例で零相変流器9の負荷側のE点に地絡
事故が発生し、DGR12が作動したにもかかわ
らず、何等かの事由でリレー29からしや断信号
が出なかつたり、またしや断信号が出てもしや断
器6がしや断しなかつた場合は、一定時間後に次
の上段のDGR11を動作させて、電源側への波
及を最小に食止めなければならない。第4図はか
かるバツクアツプ保護機能をもつたDGR11,
12の結線図で、第2図のタイマー28と並列
に、バツクアツプ回路30を設けたものである。
このバツクアツプ回路30は、タイマー28のタ
イムT2より長いT3時間後も引続き零相電流信号
Io′が流れ続けていることを条件に、タイムT3
にリレー29に動作信号を与える回路で、地絡事
故が負荷側で第2のアンド回路25の出力が出て
いるときだけ出力信号を出すバツクアツプの動作
準備回路31と、該動作準備回路31の出力信号
で始動し、設定時間T3以上この信号がある場合
に出力信号を出すタイマー32及び第3のアンド
回路33とより構成されている。なお、タイマー
32に動作準備回路31の機能を持たせれば該動
作準備回路31は省略してもよい。
In the above example, a ground fault occurred at point E on the load side of the zero-phase current transformer 9, and even though the DGR 12 was activated, for some reason the relay 29 did not output a mustard disconnection signal. If a disconnection signal is issued and the disconnector 6 does not disconnect immediately, the next upper stage DGR 11 must be operated after a certain period of time to minimize the influence on the power supply side. Figure 4 shows a DGR11 with such a backup protection function.
12, a backup circuit 30 is provided in parallel with the timer 28 of FIG.
This backup circuit 30 continues to output the zero-phase current signal even after time T3 , which is longer than time T2 of the timer 28.
This circuit provides an operating signal to the relay 29 after time T 3 on the condition that Io' continues to flow, and outputs an output signal only when a ground fault occurs on the load side and the output of the second AND circuit 25 is output. It consists of a backup operation preparation circuit 31 that outputs a backup, a timer 32 that is started by the output signal of the operation preparation circuit 31, and outputs an output signal when this signal is present for a set time T 3 or more, and a third AND circuit 33. There is. Note that if the timer 32 has the function of the operation preparation circuit 31, the operation preparation circuit 31 may be omitted.

次にバツクアツプ動作を第5図のタイムチヤー
トによつて説明する。今DGR12が動作したに
もかかわらずしや断器6がしや断しなかつた場合
は、上段のDGR11,10は第5に示すように、
タイムT1後は零相電圧信号Vo′は零相電圧出力ロ
ツク回路26によつてロツクされているので動作
し得ない状態となつている。しかも地絡事故が発
生してタイムT1までは上段のDGR11にも零相
電圧信号Vo′が印加されていて動作条件が成立し
ているので、そのときバツクアツプ動作準備回路
31は出力信号を出しタイマー32を始動させタ
イムT3後に第3のアンド回路33に信号を送る。
このとき、しや断器6がしや断されておらず零相
電流が流れていれば、零相電流信号Io′は存在し
ているのでアンド回路33から出力信号が出てリ
レー29を付勢し、しや断器5をしや断してバツ
クアツプ保護を行なう。以上のバツクアツプ動作
は、DGR10についても同条件であるから該
DGR10も動作する可能性があるが、バツクア
ツプ保護を必要とする場合は極く極くまれな異常
時であるから、この場合の過保護動作もやむを得
ない。
Next, the backup operation will be explained with reference to the time chart shown in FIG. If the insulator breaker 6 does not disconnect immediately even though the DGR 12 is activated, the upper DGRs 11 and 10 will operate as shown in the fifth diagram.
After time T1 , the zero-phase voltage signal Vo' is locked by the zero-phase voltage output lock circuit 26, and therefore is in an inoperable state. Furthermore, until time T1 after the occurrence of a ground fault, the zero-phase voltage signal Vo' is applied to the upper stage DGR 11, and the operating conditions are met, so at that time the backup operation preparation circuit 31 outputs an output signal. The timer 32 is started and a signal is sent to the third AND circuit 33 after time T3 .
At this time, if the breaker 6 is not disconnected and the zero-sequence current is flowing, the zero-sequence current signal Io' is present, so an output signal is output from the AND circuit 33 and the relay 29 is connected. The breaker 5 is then energized and the breaker 5 is energized to provide backup protection. The above backup operation applies to DGR10 as well, as the same conditions apply.
There is a possibility that the DGR 10 will also operate, but since backup protection is required only in very rare abnormal situations, overprotection operation in this case is unavoidable.

第6図は、バツクアツプ機能を備えた他の実施
例を示すDGRの結線図で、第4図の実施例にお
いては、事故発生後タイムT3後に零相電流の存
在を条件にバツクアツプ動作を行わせたのに対
し、第6図の実施例は第7図に示すように、零相
電圧ロツク回路46を一定のタイムT1′後にロツ
クを解除して上段のDGR11への零相電圧信号
Vo′を回復させて、タイムT3′後零相電圧信号と
零相電流信号によつて事故が継続していることを
確認してバツクアツプしや断を行わせるようにし
たものである。即ち、各DGR10,11,12
の零相電圧出力ロツク回路46は第7図に示すよ
うに零相電圧信号Vo′をタイムT1ブロツクした
後、所定時間のタイムT1後にロツクを解除して
再び出力信号を出すようにし、上段のDGR10,
11にはタイマー28と並列にバツクアツプ動作
準備回路41,タイマ42及び第3のアンド回路
43から成るバツクアツプ回路40を設けたもの
である。従つて第7図に示すようにタイムT2
も事故が継続している場合は、この第3のアンド
回路43より信号が出され、リレー29を介して
しや断器5をしや断してバツクアツプ保護を行な
う。この実施例では、事故を再確認するのでより
正確なバツクアツプ保護を行うことができる。
Fig. 6 is a wiring diagram of a DGR showing another embodiment equipped with a backup function. In the embodiment of Fig. 4, the backup operation is performed on the condition that a zero-sequence current exists after time T3 after the occurrence of an accident. On the other hand, as shown in FIG. 7, the embodiment shown in FIG .
Vo' is restored, and after time T 3 ' it is confirmed by the zero-sequence voltage signal and zero-sequence current signal that the fault continues, and backup or disconnection is performed. That is, each DGR10, 11, 12
As shown in FIG. 7, the zero-phase voltage output lock circuit 46 blocks the zero-phase voltage signal Vo' for a time T1 , releases the lock after a predetermined time T1 , and outputs an output signal again. Upper DGR10,
11 is provided with a backup circuit 40 consisting of a backup operation preparation circuit 41, a timer 42, and a third AND circuit 43 in parallel with the timer 28. Therefore, if the accident continues after time T2 as shown in FIG. to perform backup protection. In this embodiment, since accidents are reconfirmed, more accurate backup protection can be performed.

発明の効果 本発明は以上のように、配電線のどの箇所で地
絡事故が発生しても地絡事故のすぐ上段の地絡方
向継電器だけが所定の時間T2で確実に動作する
ことができるので、複数段の地絡方向継電器の動
作時間を下段から上段側へ順次づらせて協調をと
る必要がないため、地絡方向継電器を直列に何段
設置しても確実に事故箇所だけをしや断すること
ができる。
Effects of the Invention As described above, the present invention ensures that no matter where a ground fault occurs on a distribution line, only the ground fault direction relay immediately above the ground fault will operate within a predetermined time T2 . Therefore, there is no need to coordinate the operating times of multiple stages of ground fault relays from the lower stage to the upper stage, so no matter how many stages of ground fault direction relays are installed in series, it is possible to ensure that only the fault location is detected. Can be severed.

更に各地絡方向継電器間の時間協調をとる必要
がないため、多数段設置されたもののバツクアツ
プ動作を行わせる場合でも各地絡方向継電器を電
力供給元側の各地絡方向継電器の動作時間よりも
早い時間T3でバツクアツプ動作を行わせること
ができ、電力供給源側への事故波及を無くするこ
とができる。
Furthermore, since there is no need to coordinate the time between each fault direction relay, even when performing backup operation of multiple stages installed, each fault direction relay can be operated at a time earlier than the operation time of each fault direction relay on the power supply side. Backup operation can be performed at T3 , and the spread of the accident to the power supply source can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す地絡方向継電
装置の配置図、第2図は本発明の一実施例たる地
絡方向継電器の結線図、第3図は、第2図の説明
のためのタイムチヤート図、第4図は、バツクア
ツプしや断機能を備えた本発明の一実施例たる地
絡方向継電器の結線図、第5図は第4図の説明の
ためのタイムチヤート図、第6図はバツクアツプ
しや断機能を備えた他の実施例たる結線図、第7
図は第6図の説明のためのタイムチヤート図、第
8図は従来の地絡方向継電装置の配線図を示す。 図において、4,5,6はしや断器、7,8,
9は零相変流器、3,10,11,12は地絡方
向継電器、20はフイルター、21は増幅、22
は波形整形回路、23はレベル検出回路、24
は、第1アンド回路、25は第2アンド回路、2
6,46は零相電圧出力ロツク回路、27,28
はタイマー、29はリレー、30,40はバツク
アツプ回路を示す。
Fig. 1 is a layout diagram of a ground fault direction relay device showing one embodiment of the present invention, Fig. 2 is a wiring diagram of a ground fault direction relay device which is an embodiment of the present invention, and Fig. 3 is a diagram of a ground fault direction relay device showing an embodiment of the present invention. FIG. 4 is a wiring diagram of a ground fault directional relay which is an embodiment of the present invention and is equipped with a backup/shutdown function. FIG. 5 is a time chart for explaining FIG. 4. Figure 6 is a wiring diagram of another embodiment equipped with backup and disconnection functions, and Figure 7 is
The figure shows a time chart for explaining FIG. 6, and FIG. 8 shows a wiring diagram of a conventional ground fault direction relay device. In the figure, 4, 5, 6 bridges and disconnectors, 7, 8,
9 is a zero-phase current transformer, 3, 10, 11, 12 are earth fault direction relays, 20 is a filter, 21 is an amplification, 22
23 is a waveform shaping circuit, 23 is a level detection circuit, and 24 is a waveform shaping circuit.
is the first AND circuit, 25 is the second AND circuit, 2
6, 46 are zero-phase voltage output lock circuits, 27, 28
is a timer, 29 is a relay, and 30 and 40 are backup circuits.

Claims (1)

【特許請求の範囲】 1 配電線の電源側の上段から負荷側の下段に複
数の地絡方向継電器を直列的に設置し、これら各
地絡方向継電器に前記の配電線から検出した零相
電圧信号と零相電流信号とを与え、この両信号の
位相比較によつて地絡方向を判別し、動作条件が
成立したときしや断信号を送出して保護動作を行
わせるようにした地絡方向継電装置において、前
記複数の各地絡方向継電器に、零相電圧信号を入
力し、しや断信号送出前に出力をロツクするロツ
ク回路を設け、前記零相電圧信号を前記地絡方向
継電器の最下段から上段に順次ロツク回路を介し
て直列的に与えるようになし、これら地絡方向継
電器のうち動作条件の成立している地絡方向継電
器によつてその動作前に上段の地絡方向継電器に
与えられる零相電圧信号をロツクするようにした
ことを特徴とする地絡方向継電装置。 2 配電線の電源側の上段から負荷側の下段に複
数の地絡方向継電器を直列的に設置し、これら各
地絡方向継電器に前記の配電線から検出した零相
電圧信号と零相電流信号とを与え、この両信号の
位相比較によつて地絡方向を判別し、動作条件が
成立したときしや断信号を送出して保護動作を行
わせるようにした地絡方向継電装置において、前
記複数の各地絡方向継電器に、零相電圧信号を入
力し、しや断信号送出前に出力をロツクするロツ
ク回路を設け、前記零相電圧信号を前記地絡方向
継電器の最下段から上段に順次ロツク回路を介し
て直列的に与えるようになし、これら地絡方向継
電器のうち動作条件の成立している地絡方向継電
器によつてその動作前に上段の地絡方向継電器に
与えられる零相電圧信号をロツクと共にこのロツ
クされた地絡方向継電器をロツクした地絡方向継
電器の動作時間後の所定時刻に前記零相電流の存
在を条件にバツクアツプ動作を行わせるようにし
たことを特徴とする地絡方向継電装置。 3 配電線の電源側の上段から負荷側の下段に複
数の地絡方向継電器を直列的に設置し、これら各
地絡方向継電器に前記の配電線から検出した零相
電圧信号と零相電流信号とを与え、この両信号の
位相比較によつて地絡方向を判別し、動作条件が
成立したときしや断信号を送出して保護動作を行
わせるようにした地絡方向継電装置において、前
記複数の各地絡方向継電器に、零相電圧信号を入
力し、しや断信号送出前に出力をロツクするロツ
ク回路を設け、前記零相電圧信号を前記地絡方向
継電器の最下段から上段に順次ロツク回路を介し
て直列的に与えるようになし、これら地絡方向継
電器のうち動作条件の成立している地絡方向継電
器によつてその動作前に上段の地絡方向継電器に
与えられる零相電圧信号をロツクと共に動作時間
後所定の時刻にこのロツクを解除し、前記ロツク
された地絡方向継電器が前記零相電圧信号及び零
相電流信号の存在を条件にバツクアツプ動作を行
わせるようにしたことを特徴とする地絡方向継電
装置。
[Scope of Claims] 1. A plurality of ground fault direction relays are installed in series from the upper stage on the power supply side to the lower stage on the load side of the distribution line, and a zero-phase voltage signal detected from the distribution line is transmitted to each of these fault direction relays. and a zero-sequence current signal, the direction of the ground fault is determined by comparing the phases of these two signals, and when the operating conditions are met, a protection operation is performed by sending out a signal or disconnection signal. In the relay device, a lock circuit is provided for inputting a zero-sequence voltage signal to each of the plurality of fault-direction relays and locking the output before sending out a break signal, and transmitting the zero-sequence voltage signal to each of the ground-fault direction relays. The ground fault relays are applied in series from the lowest stage to the upper stage through lock circuits, and the ground fault direction relays for which operating conditions have been established are used to connect the upper stage ground fault direction relays before operation. 1. A ground fault directional relay device, characterized in that it locks a zero-phase voltage signal applied to a ground fault direction relay device. 2 A plurality of ground fault direction relays are installed in series from the upper stage on the power supply side to the lower stage on the load side of the distribution line, and each of these fault direction relays receives the zero-sequence voltage signal and zero-sequence current signal detected from the distribution line. In the earth fault direction relay device, the earth fault direction is determined by comparing the phases of these two signals, and when the operating conditions are met, the earth fault direction relay device is configured to transmit a protection operation by sending out a signal of disconnection. A lock circuit is provided for inputting a zero-sequence voltage signal to each of the plurality of fault-direction relays and locking the output before sending out a break signal, and sequentially transmitting the zero-sequence voltage signal from the bottom to the top of the ground-fault direction relays. The zero-sequence voltage is applied in series through a lock circuit, and the zero-sequence voltage is applied to the upper ground fault directional relay before operation by the ground fault directional relay whose operating conditions are satisfied among these ground fault directional relays. The ground fault relay is characterized in that the signal is locked and the locked ground fault direction relay is caused to perform a backup operation at a predetermined time after the operating time of the locked ground fault direction relay, on the condition that the zero-sequence current exists. Folding direction relay device. 3 A plurality of ground fault direction relays are installed in series from the upper stage on the power supply side to the lower stage on the load side of the distribution line, and the zero-sequence voltage signal and zero-sequence current signal detected from the distribution line are transmitted to each of these fault direction relays. In the earth fault direction relay device, the earth fault direction is determined by comparing the phases of these two signals, and when the operating conditions are met, the earth fault direction relay device is configured to transmit a protection operation by sending out a signal of disconnection. A lock circuit is provided for inputting a zero-sequence voltage signal to each of the plurality of fault-direction relays and locking the output before sending out a break signal, and sequentially transmitting the zero-sequence voltage signal from the bottom to the top of the ground-fault direction relays. The zero-sequence voltage is applied in series through a lock circuit, and the zero-sequence voltage is applied to the upper ground fault directional relay before operation by the ground fault directional relay whose operating conditions are satisfied among these ground fault directional relays. The signal is locked and the lock is released at a predetermined time after the operating time, so that the locked earth fault direction relay performs a backup operation on the condition that the zero-sequence voltage signal and the zero-sequence current signal are present. A ground fault directional relay device characterized by:
JP24324585A 1985-10-30 1985-10-30 Grounding directional relay Granted JPS62104423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24324585A JPS62104423A (en) 1985-10-30 1985-10-30 Grounding directional relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24324585A JPS62104423A (en) 1985-10-30 1985-10-30 Grounding directional relay

Publications (2)

Publication Number Publication Date
JPS62104423A JPS62104423A (en) 1987-05-14
JPH0526411B2 true JPH0526411B2 (en) 1993-04-16

Family

ID=17100996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24324585A Granted JPS62104423A (en) 1985-10-30 1985-10-30 Grounding directional relay

Country Status (1)

Country Link
JP (1) JPS62104423A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638692B2 (en) * 1987-06-09 1994-05-18 光商工株式会社 Ground fault direction relay and equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141921A (en) * 1979-04-18 1980-11-06 Nissin Electric Co Ltd Multiple selection breaker device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141921A (en) * 1979-04-18 1980-11-06 Nissin Electric Co Ltd Multiple selection breaker device

Also Published As

Publication number Publication date
JPS62104423A (en) 1987-05-14

Similar Documents

Publication Publication Date Title
US4477855A (en) Protecting system for transmission lines
JP3284589B2 (en) Transmission line protection method and protection relay device
US5574611A (en) Service interruption minimizing system for power distribution line
JP7218497B2 (en) Ground fault protection relay system
JP2728398B2 (en) Spot network power receiving substation protection device
JPH0526411B2 (en)
JP3480671B2 (en) Bus protection system for spot network power receiving equipment
JPH06276672A (en) Method for sensing and isolating groud fault
JP4006138B2 (en) Lock coordination control circuit and protective relay device
JP3328365B2 (en) Islanding detection device
JPH01157218A (en) Protecting system of electric power system
JP3170011B2 (en) Transmission line protection relay
SU1138874A1 (en) Device for protecting against earth leakage in isolated neutral system
JPH0531369B2 (en)
JP2009022063A (en) Power transmission line protection system, and protection relay device
JPS6285636A (en) Grounding protecting system
JP3169849B2 (en) Spot network substation protection equipment
JPH0112510Y2 (en)
JP2898555B2 (en) Current differential protection relay
JPH102925A (en) Fault-point locating system
JPH1014100A (en) Ground self-breaking type automatic section switch
JPH0510512Y2 (en)
JP2592138B2 (en) Abnormality countermeasure circuit for loop system protection relay
JPS59169326A (en) Ground-fault detector of power distributing system
JPH08317550A (en) Spot network power receiving equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term