JPH0526334A - Controller of pump discharge pressure - Google Patents

Controller of pump discharge pressure

Info

Publication number
JPH0526334A
JPH0526334A JP20243891A JP20243891A JPH0526334A JP H0526334 A JPH0526334 A JP H0526334A JP 20243891 A JP20243891 A JP 20243891A JP 20243891 A JP20243891 A JP 20243891A JP H0526334 A JPH0526334 A JP H0526334A
Authority
JP
Japan
Prior art keywords
pressure
switching
valve
control valve
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20243891A
Other languages
Japanese (ja)
Other versions
JP3391355B2 (en
Inventor
Yoshiji Sato
佳司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Bosch Transmission Technology BV
Original Assignee
Fuji Heavy Industries Ltd
Van Doornes Transmissie BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd, Van Doornes Transmissie BV filed Critical Fuji Heavy Industries Ltd
Priority to JP20243891A priority Critical patent/JP3391355B2/en
Publication of JPH0526334A publication Critical patent/JPH0526334A/en
Application granted granted Critical
Publication of JP3391355B2 publication Critical patent/JP3391355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

PURPOSE: To reduce oil hammering and pressure drop by relaxing pressure change of a pressure control valve when a changeover valve communicating the delivery side with the suction side of an oil pump having a plurality of delivery openings is switched from interruption to communication. CONSTITUTION: An oil pump 2 is driven to rotate during engine operation to generate a predetermined secondary pressure Ps for uninterruptedly supplying oil to a secondary control valve 20 through a main port 3. With the secondary pressure Ps as the main pressure, a predetermined lubricating pressure Po is generated by a lubricating control valve 22 and a primary pressure Pp is generated by a primary control valve 24 in correspondence with transmission ratio i. At that time, a control unit 40 calculates, compares and determines the flow rate Qp of the main port and the total use flow rate Qs . When Qs is larger than Qp as in the case of acceleration during low speed running, a changeover control valve 12 interrupts the lubricating pressure Po and the oil from a sub- port 4 is interrupted by means of a changeover valve 10. The flow rate therefrom is smoothly increased with respect to the control valve 20 under the pressure reducing control by the control unit 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数個の吐出口を有す
るオイルポンプ手段を有してそのオイルポンプ手段を選
択的に運転するように制御する油圧源装置において、選
択切換時のポンプ吐出圧を滑らかに制御するポンプ吐出
圧の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic pressure source device having an oil pump means having a plurality of discharge ports and controlling the oil pump means so as to selectively operate the oil pump means. The present invention relates to a pump discharge pressure control device that smoothly controls pressure.

【0002】[0002]

【従来の技術】例えば、車両用のベルト式無段変速機で
は、エンジン動力により常に駆動して油圧を発生するオ
イルポンプを有しており、このポンプ吐出圧を調圧して
所定のセカンダリ圧を発生し、セカンダリ圧を元圧とし
てプライマリ圧,潤滑圧等を生じるように構成されてい
る。セカンダリ圧は、伝達トルク等に応じて広範囲に制
御されるものであり、このため特に高出力エンジンの車
両に搭載される場合は、オイルポンプ手段を複数個設け
てポンプ吐出容量を増大することが必要になる。一方、
オイルポンプ手段を複数化すると、必然的にセカンダリ
圧が低い場合のポンプ損失の増大が問題になるため、こ
の点を考慮して制御することが必要になる。
2. Description of the Related Art For example, a belt type continuously variable transmission for a vehicle has an oil pump which is always driven by engine power to generate hydraulic pressure. The pump discharge pressure is regulated to a predetermined secondary pressure. The secondary pressure is generated and the primary pressure, the lubricating pressure, and the like are generated. The secondary pressure is controlled in a wide range according to the transmission torque and the like. Therefore, particularly when it is mounted on a vehicle with a high output engine, a plurality of oil pump means may be provided to increase the pump discharge capacity. You will need it. on the other hand,
When a plurality of oil pump means are used, an increase in pump loss inevitably occurs when the secondary pressure is low, and therefore it is necessary to control in consideration of this point.

【0003】そこで従来、上記複数個のオイルポンプ手
段を有する油圧源装置の制御に関しては、例えば特開昭
61−215853号公報の先行技術がある。ここで、
1つの駆動源で駆動される2つの油ポンプを有し、両油
ポンプの吐出側をチェック弁で連通する。また1つの油
ポンプに対してはリリーフ弁をバイパスして連通し、こ
のリリーフ弁を電気的に切換えてオイル不足の場合にの
み油ポンプを負荷運転してポンプ容量を増大し、動力消
費量を低減させることが示されている。
Conventionally, for example, Japanese Patent Laid-Open No. 61-215853 discloses a conventional technique for controlling a hydraulic power source device having a plurality of oil pump means. here,
It has two oil pumps driven by one drive source, and the discharge sides of both oil pumps are connected by a check valve. In addition, the relief valve is connected to one oil pump by bypass, and the relief valve is electrically switched to load the oil pump only when the oil is insufficient to increase the pump capacity and reduce the power consumption. It has been shown to reduce.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記先行技
術のものにあっては、オイル消費の状態に応じてリリー
フ弁により単に切換制御されるだけであるから、この切
換時に制御側の流量が大きく変化する。従って、流量制
御弁の流量応答が悪い場合は、制御側に油撃を生じた
り、圧力の落ち込みを招き、過負荷、耐久劣化、振動、
ショック、ベルト式無段変速機の場合はベルトスリップ
等の不具合を生じる。
By the way, in the above-mentioned prior art, since the switching is simply controlled by the relief valve according to the state of oil consumption, the flow rate on the control side is large at the time of this switching. Change. Therefore, if the flow rate response of the flow rate control valve is poor, oil hammer may occur on the control side or pressure may drop, resulting in overload, deterioration of durability, vibration,
In the case of shocks and belt type continuously variable transmissions, problems such as belt slip may occur.

【0005】本発明はかかる点に鑑みてなされたもの
で、その目的とするところは、複数個の吐出口を有する
オイルポンプ手段を選択的に運転するように切換える場
合の、油撃,圧力の落ち込みを低減することが可能なポ
ンプ吐出圧の制御装置を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to prevent oil hammer and pressure when switching the oil pump means having a plurality of discharge ports to selectively operate. It is an object of the present invention to provide a pump discharge pressure control device capable of reducing a drop.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明のポンプ吐出圧の制御装置は、複数個の吐出
口を有するオイルポンプ手段の一方の吐出側は、常に調
圧作用する圧力制御弁に連通し、他方の吐出側は、チェ
ック弁を介して圧力制御弁に連通すると共に、切換弁を
介して吸入側に連通する油圧源装置において、上記切換
弁の少なくとも遮断位置から連通位置への切換時に、一
時的に圧力制御弁の圧力変動を緩和する緩和手段を備え
るものである。
In order to achieve the above object, a pump discharge pressure control device according to the present invention is such that one discharge side of an oil pump means having a plurality of discharge ports is a pressure that constantly regulates pressure. In the hydraulic pressure source device that communicates with the control valve, and the other discharge side communicates with the pressure control valve through the check valve and also communicates with the suction side through the switching valve, at least from the shut-off position to the communication position of the switching valve. At the time of switching to, the pressure control valve is provided with a mitigating means for temporarily mitigating the pressure fluctuation of the pressure control valve.

【0007】[0007]

【作用】上記構成に基づき、複数個の吐出口を有するオ
イルポンプ手段の他方の切換弁を遮断位置に動作する
と、そのポンプ流量も加算されてポンプ容量が倍増し、
連通位置に動作すると無負荷運転状態になる。そして、
この少なくとも連通位置への切換時に緩和手段により、
圧力制御弁の圧力の落ち込み等が防止されて、滑らかに
変化するようになる。
According to the above construction, when the other switching valve of the oil pump means having a plurality of discharge ports is operated to the shut-off position, the pump flow rate is also added and the pump capacity is doubled.
When operated to the communication position, it becomes a no-load operation state. And
At least at the time of switching to the communication position by the mitigating means,
The pressure of the pressure control valve is prevented from dropping, and changes smoothly.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1において、本発明の第1の実施例としてポン
プ吐出圧を電子制御する場合について説明する。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, a case of electronically controlling the pump discharge pressure will be described as a first embodiment of the present invention.

【0009】例えば、ベルト式無段変速機の油圧制御系
について説明すると、符号1は油圧源装置であり、ロー
ラベーン式で吸入,吐出口を複数組有する可変容量型の
オイルポンプ2が、エンジン動力により常に駆動するよ
うに設けられる。オイルポンプ2は、ベーンを備えたロ
ータの回転方向に、1組の吸入口3aと吐出口3bを有
するメインポート3が、同様の吸入口4aと吐出口4b
を有するサブポート4が形成されており、両吸入口3
a,4aが油路5によりオイルパン6に連通する。メイ
ンポート3の吐出口3bは、油路7を介しセカンダリ制
御弁20に連通して常にオイル供給しており、サブポー
ト4の吐出口4bの油路8は、切換弁10を介して吸入
側に連通すると共に、チェック弁9を介して上記油路7
に連通している。
For example, a hydraulic control system for a belt type continuously variable transmission will be described. Reference numeral 1 is a hydraulic source device, and a variable displacement type oil pump 2 of a roller vane type having a plurality of suction and discharge ports is an engine power source. It is provided so as to be always driven by. The oil pump 2 has a main port 3 having a pair of suction ports 3a and a discharge port 3b in the rotational direction of a rotor provided with vanes, and a similar suction port 4a and a discharge port 4b.
And a sub-port 4 is formed which has both suction ports 3
The oil passages 5a, 4a communicate with the oil pan 6. The discharge port 3b of the main port 3 communicates with the secondary control valve 20 via the oil passage 7 to constantly supply oil, and the oil passage 8 of the discharge port 4b of the subport 4 is connected to the suction side via the switching valve 10. In addition to communicating with each other, the oil passage 7 is connected via a check valve 9.
Is in communication with.

【0010】切換弁10は、ON・OFFしてサブポー
ト4からの多量のオイルを還流して無負荷運転し、また
は遮断して負荷運転することでチェック弁9を介しセカ
ンダリ制御弁20にオイル供給するものであり、この切
換弁10の制御側に、油路11を介して切換制御弁12
が連通する。また、セカンダリ制御弁20のドレン側
は、油路21を介して潤滑制御弁22に連通し、潤滑及
びその他に使用する一定の潤滑圧Poを発生しており、
この潤滑圧Poが油路13により切換制御弁12に導か
れる。切換制御弁12は3方弁であり、制御ユニット4
0からの電気信号により潤滑圧Poを切換弁10に作用
し、または切換弁10の作動側をドレンする。
The switching valve 10 is turned on / off to recirculate a large amount of oil from the sub-port 4 for no load operation, or shut off for load operation to supply oil to the secondary control valve 20 via the check valve 9. The switching control valve 12 is provided on the control side of the switching valve 10 via the oil passage 11.
Communicate with each other. Further, the drain side of the secondary control valve 20 communicates with the lubrication control valve 22 via the oil passage 21, and generates a constant lubrication pressure Po used for lubrication and other purposes,
This lubricating pressure Po is guided to the switching control valve 12 by the oil passage 13. The switching control valve 12 is a three-way valve, and the control unit 4
An electric signal from 0 acts on the switching valve 10 with the lubricating pressure Po or drains the operating side of the switching valve 10.

【0011】なお、セカンダリ制御弁20は、電気信号
により調圧してセカンダリ圧Psを広範囲に制御する。
このセカンダリ圧Psは、油路23によりプライマリ制
御弁24に導かれて流量制御されることで、プライマリ
圧Ppを生じるように構成される。
The secondary control valve 20 regulates the pressure by an electric signal to control the secondary pressure Ps in a wide range.
The secondary pressure Ps is configured to generate the primary pressure Pp by being guided to the primary control valve 24 by the oil passage 23 and flow rate controlled.

【0012】次に電子制御系について説明すると、エン
ジン回転数Ne,アクセル開度,油温To等を検出する
エンジン回転数センサ30,アクセル開度センサ32,油
温センサ33及び変速比iの算定部31を有して、これ
らのセンサ及び変速比算定部31の信号が制御ユニット
40に入力する。
Next, the electronic control system will be explained. Calculation of the engine speed sensor 30, the accelerator opening sensor 32, the oil temperature sensor 33, and the gear ratio i for detecting the engine speed Ne, the accelerator opening, the oil temperature To and the like. With the unit 31, signals from these sensors and the gear ratio calculation unit 31 are input to the control unit 40.

【0013】制御ユニット40は、エンジン回転数N
e,油温Toが入力するメインポート流量算出部41を
有し、これらの要素によりメインポート3で各運転状態
に応じて発生するポート流量Qpを算出する。またエン
ジン回転数Ne,変速比i,アクセル開度等が入力する
使用流量算出部42を有し、伝達トルクに応じたセカン
ダリ圧Ps,変速比iに応じたプライマリ圧Pp,潤滑
流量等から無段変速機油圧制御系の全体で使用する使用
流量Qsを算出する。これらの両流量Qp,Qsの信号
は切換判定部43に入力し、両者を比較してQp<Qs
+Qmの場合に切換OFF可能を判断し、Qp≧Qsの
場合に切換ON可能を判断する。ここで、使用流量Qs
が減少して切換ON判断されメインポート3のみの運転
に切換わる場合は、流量が半減することで圧力の落ち込
みを生じ易く、これを防止するには予めセカンダリ圧P
sを上昇すれば良い。
The control unit 40 controls the engine speed N
e, the main port flow rate calculation unit 41 to which the oil temperature To is input is provided, and the port flow rate Qp generated in the main port 3 according to each operating state is calculated by these elements. Further, it has a use flow rate calculation unit 42 for inputting the engine speed Ne, the gear ratio i, the accelerator opening degree, etc. The used flow rate Qs used in the entire gear transmission hydraulic control system is calculated. The signals of these two flow rates Qp and Qs are input to the switching determination unit 43, and the two are compared and Qp <Qs
When + Qm, it is determined that switching can be turned off, and when Qp ≧ Qs, it is determined that switching can be turned on. Here, the used flow rate Qs
When the switching is judged to be ON and the operation is switched to only the main port 3, the flow rate is halved and the pressure is likely to drop. To prevent this, the secondary pressure P is set in advance.
You can increase s.

【0014】そこで上記制御原理に基づいて、切換ON
信号はセカンダリ加圧設定部44に入力して、流量Q
p,Qs,セカンダリ圧Ps,油温To等の要素によ
り、所定の増圧量+Psを算出する。上記切換ON,増
圧量+Psの信号はタイミング設定部45に入力し、切
換時点toに先立つ増圧開始時点t1,切換時点後の増
圧終了時点t2を、上述の要素,増圧量+Psから設定
する。そしてこの増圧時点t1,t2で増圧信号をセカ
ンダリ制御部46に出力し、切換時点toで切換信号を
駆動部47を介して切換制御弁12に出力する。一方、
切換OFF信号に対しては、セカンダリ減圧設定部48
とタイミング設定部49を有し、同様にして所定の減圧
量−Ps,切換時点toに対する減圧開始,終了の時点
t1,t2を設定する。そして所定のタイミングでこの
減圧信号をセカンダリ制御部46に、切換信号を切換制
御弁12に出力するように構成される。
Therefore, based on the above control principle, switching ON
The signal is input to the secondary pressurization setting unit 44 and the flow rate Q
The predetermined pressure increase amount + Ps is calculated from factors such as p, Qs, secondary pressure Ps, and oil temperature To. The signal of the switching ON and the pressure increase amount + Ps is input to the timing setting unit 45, and the pressure increase start time t1 prior to the change time to and the pressure increase end time t2 after the change time are calculated from the above-mentioned factors, pressure increase amount + Ps. Set. Then, the pressure increasing signal is output to the secondary control unit 46 at the pressure increasing times t1 and t2, and the switching signal is output to the switching control valve 12 via the driving unit 47 at the switching time to. on the other hand,
For the switching OFF signal, the secondary pressure reduction setting unit 48
And a timing setting unit 49, which similarly sets a predetermined pressure reduction amount -Ps and pressure reduction start and end times t1 and t2 with respect to the switching time point to. The pressure reducing signal is output to the secondary controller 46 and the switching signal is output to the switching control valve 12 at a predetermined timing.

【0015】次いで、この実施例の作用を、図2のフロ
ーチャート,図3のタイムチャートを用いて説明する。
Next, the operation of this embodiment will be described with reference to the flow chart of FIG. 2 and the time chart of FIG.

【0016】先ず、エンジン運転時にその動力により油
圧源装置1のオイルポンプ2が回転駆動し、メインポー
ト3により常にセカンダリ制御弁20にオイル供給され
て所定のセカンダリ圧Psを生じる。また、このセカン
ダリ圧Psを元圧として潤滑制御弁22で一定の潤滑圧
Poと、プライマリ制御弁24で変速比iに応じたプラ
イマリ圧Ppとを生じている。このとき、制御ユニット
40ではメインポート3のポート流量Qpと全体の使用
流量Qsとが算出され、且つ両者が比較判断されてい
る。
First, when the engine is in operation, the oil pump 2 of the hydraulic power source device 1 is rotationally driven by its power, and the main port 3 constantly supplies oil to the secondary control valve 20 to generate a predetermined secondary pressure Ps. Further, with the secondary pressure Ps as a source pressure, the lubricating control valve 22 produces a constant lubricating pressure Po and the primary control valve 24 produces a primary pressure Pp according to the gear ratio i. At this time, in the control unit 40, the port flow rate Qp of the main port 3 and the total used flow rate Qs are calculated, and both are compared and judged.

【0017】そこで、低速走行での加速時のようにポー
ト流量Qpに比べて使用流量Qsのほうが多くなると、
切換OFF判断されて、所定の切換時点toで切換信号
が切換制御弁12に出力する。このため、切換制御弁1
2は潤滑圧Poを遮断して、切換弁10を遮断位置に動
作し、サブポート4からのオイルを遮断し、その流量を
チェック弁9を介しセカンダリ制御弁20等に加算して
供給するように、サブポート4も負荷運転するようにな
る。こうして、ポート流量Qpは倍増して、各部に不足
無く供給される。
Therefore, when the used flow rate Qs becomes larger than the port flow rate Qp as in the case of acceleration at low speed running,
When the switching OFF is determined, a switching signal is output to the switching control valve 12 at a predetermined switching time point to. Therefore, the switching control valve 1
2 shuts off the lubricating pressure Po, operates the switching valve 10 to the shut-off position, shuts off the oil from the sub-port 4, and adds the flow rate to the secondary control valve 20 and the like via the check valve 9 and supplies it. , The sub-port 4 is also operated under load. In this way, the port flow rate Qp is doubled and supplied to each part without any shortage.

【0018】一方、このとき、図2のフローチャートの
S1からS2,S3に進んで実行され、セカンダリ圧P
sの減圧量−Psと減圧開始,終了の時点t1,t2が
設定される。そして図3(b)のように、上記切換時点
to前の減圧開始時点t1で減圧信号がセカンダリ制御
部46に出力し、セカンダリ制御弁20を上記減圧量−
Psだけ予め減圧制御する。そこで、この減圧状態で上
述のサブポート流量の増量が行われて、増量時の一点鎖
線のような油撃が吸収緩和され、セカンダリ圧Psは実
線のように滑らかに変化する。
On the other hand, at this time, the process proceeds from S1 to S2 and S3 in the flowchart of FIG.
The depressurized amount of s-Ps and the time points t1 and t2 at which the depressurization starts and ends are set. Then, as shown in FIG. 3B, a pressure reduction signal is output to the secondary control unit 46 at the pressure reduction start time point t1 before the switching time point to, and the secondary control valve 20 is caused to have the pressure reduction amount-
Pressure reduction control is performed in advance for Ps. Therefore, the sub-port flow rate is increased in the depressurized state, the oil hammer as indicated by the one-dot chain line at the time of increase is absorbed and mitigated, and the secondary pressure Ps changes smoothly as shown by the solid line.

【0019】また高速での定常走行時にポート流量Qp
の方が多くなると、切換ON判断され、この場合は、切
換制御弁12が潤滑圧Poを切換弁10に導入して連通
位置に動作して、サブポート4の吐出流量を吸入側に戻
して無負荷運転する。このため、ポート流量Qpは半減
して、ポート負荷が低減される。
Also, during steady running at high speed, the port flow rate Qp
When it becomes larger, it is judged that the switching is ON. In this case, the switching control valve 12 introduces the lubricating pressure Po to the switching valve 10 and operates to the communication position to return the discharge flow rate of the sub-port 4 to the suction side and not to operate. Drive under load. Therefore, the port flow rate Qp is halved, and the port load is reduced.

【0020】一方、このとき、図2のフローチャートの
S1からS4,S5に進んで実行され、セカンダリ圧P
sの増圧量+Psと増圧開始,終了の時点t1,t2が
設定される。
On the other hand, at this time, the process proceeds from S1 to S4 and S5 in the flowchart of FIG.
The pressure increase amount of s + Ps and time points t1 and t2 at which pressure increase starts and ends are set.

【0021】そして図3(a)のように、上記切換時点
to前の増圧開始時点t1に増圧信号がセカンダリ制御
部46に出力し、セカンダリ制御弁20を上記増圧量+
Psだけ予め増圧制御する。そこで、この増圧状態で上
述のサブポート流量の減量が行われて、減量時の一点鎖
線のような圧力の落ち込みが吸収緩和され、同様にセカ
ンダリ圧Psは実線のように滑らかに変化する。
Then, as shown in FIG. 3A, a pressure increase signal is output to the secondary control section 46 at the pressure increase start time t1 before the switching time to, and the secondary control valve 20 is made to have the pressure increase amount +
The pressure increase control is performed by Ps in advance. Therefore, in the increased pressure state, the sub-port flow rate is reduced, and the pressure drop as indicated by the one-dot chain line during the reduction is absorbed and alleviated. Similarly, the secondary pressure Ps changes smoothly as indicated by the solid line.

【0022】図4の本発明の第2の実施例について説明
すると、この場合は、チェック弁9がスプリング9aの
チェックボール9bと反対側に圧力室9cを有し、セッ
ト荷重可変式に構成される。そしてこのチェック弁9の
圧力室9cが、絞り14を有する油路15により切換制
御弁12と切換弁10の油路11に連通して構成され
る。
A second embodiment of the present invention shown in FIG. 4 will be described. In this case, the check valve 9 has a pressure chamber 9c on the side opposite to the check ball 9b of the spring 9a, and the set load is variable. It The pressure chamber 9c of the check valve 9 is configured to communicate with the switching control valve 12 and the oil passage 11 of the switching valve 10 by the oil passage 15 having the throttle 14.

【0023】そこでこの実施例では、切換ON時に切換
制御弁12により潤滑圧Poが切換弁10に導入する場
合に、その潤滑圧Poがチェック弁9の圧力室9cにも
導入して、その閉方向のセット荷重を増大する。そこで
チェック弁9を先に閉じて、油路7のセカンダリ圧Ps
を確保した後に、サブポート4の吐出流量が抜けて無負
荷運転状態になるのであり、これによりセカンダリ圧P
sの落ち込みが低減される。
Therefore, in this embodiment, when the switching control valve 12 introduces the lubricating pressure Po into the switching valve 10 at the time of switching ON, the lubricating pressure Po is also introduced into the pressure chamber 9c of the check valve 9 and is closed. Increase the set load in the direction. Therefore, the check valve 9 is closed first, and the secondary pressure Ps of the oil passage 7 is set.
After securing the pressure, the discharge flow rate of the sub-port 4 is released and the operation is in a no-load operation state.
The drop of s is reduced.

【0024】図5の本発明の第3の実施例について説明
すると、この場合は、切換弁10において例えばスプー
ル10aのドレンポート10bを開くランド10cに切
欠き10dが形成され、図6のように切換弁10の開き
始めの開口面積が小さく設定される。
A third embodiment of the present invention shown in FIG. 5 will be described. In this case, in the switching valve 10, for example, a notch 10d is formed in a land 10c for opening the drain port 10b of the spool 10a, and as shown in FIG. The opening area of the switching valve 10 at the beginning of opening is set small.

【0025】そこでこの実施例では、切換ON時に切換
弁10によりサブポート4の吐出流量を抜く際に、オイ
ルが切欠き10dにより徐々に抜かれて同様にセカンダ
リ圧Psの落ち込みを低減するようになる。
Therefore, in this embodiment, when the discharge flow rate of the sub-port 4 is drained by the switching valve 10 when the switching is turned on, the oil is gradually drained by the notch 10d, and the drop of the secondary pressure Ps is similarly reduced.

【0026】以上、本発明の実施例について説明した
が、これのみに限定されない。例えば切換制御弁12に
与えられる切換信号自体を、圧力変動を低減するように
変化しても良い。また、油圧源装置として独立したオイ
ルポンプを複数個有する場合にも、同様に適応できる。
The embodiment of the present invention has been described above, but the present invention is not limited to this. For example, the switching signal itself provided to the switching control valve 12 may be changed so as to reduce the pressure fluctuation. Further, the invention can be similarly applied to the case where a plurality of independent oil pumps are provided as the hydraulic power source device.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
複数個の吐出口を有するオイルポンプ手段の少なくとも
1つを吸入側に連通または遮断するように切換えて、ポ
ンプ容量を可変制御するポンプ吐出圧の制御において、
ポンプ容量切換え時に油撃や圧力の落ち込みを低減する
ように制御されるので、過負荷、耐久劣化、騒音、ショ
ックの発生が防止され、無段変速機の場合のベルトやク
ラッチのスリップ等も防止することができる。
As described above, according to the present invention,
In the control of pump discharge pressure for variably controlling the pump capacity, by switching at least one of the oil pump means having a plurality of discharge ports so as to communicate with or cut off from the suction side,
Controlled to reduce oil hammer and pressure drop when switching pump capacity, prevent overload, deterioration of durability, noise and shock, and also prevent slipping of belt and clutch in case of continuously variable transmission. can do.

【0028】第1の実施例では、切換弁の切換時を電気
的に判断し、且つ圧力制御弁を所定のタイミングで増圧
または減圧して、圧力の落ち込みまたは油撃を吸収緩和
するように制御するので、圧力変動を適確に緩和するこ
とができる。また第2,第3の実施例では、機械的な簡
単な構成で、圧力の落ち込みを防止できる。
In the first embodiment, the switching time of the switching valve is electrically judged, and the pressure control valve is pressure-increased or decompressed at a predetermined timing so as to absorb the pressure drop or the oil hammer. Since it is controlled, the pressure fluctuation can be appropriately mitigated. Further, in the second and third embodiments, the pressure drop can be prevented with a simple mechanical structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のポンプ吐出圧の制御装置の第1の実施
例の構成図
FIG. 1 is a configuration diagram of a first embodiment of a pump discharge pressure control device of the present invention.

【図2】ポンプ容量切換時の作用のフローチャートFIG. 2 is a flowchart of the operation when switching the pump capacity.

【図3】(a),(b)はポンプ容量切換時のタイムチ
ャート
3 (a) and 3 (b) are time charts when switching the pump capacity.

【図4】本発明の第2の実施例の構成図FIG. 4 is a configuration diagram of a second embodiment of the present invention.

【図5】本発明の第3の実施例を示す図FIG. 5 is a diagram showing a third embodiment of the present invention.

【図6】切換弁の特性を示す図FIG. 6 is a diagram showing characteristics of a switching valve.

【符号の説明】[Explanation of symbols]

1 油圧源装置 2 オイルポンプ 3 メインポート 4 サブポート 9 チェック弁 10 切換弁 12 切換制御弁 20 セカンダリ制御弁 40 制御ユニット 1 Hydraulic power source device 2 oil pump 3 main ports 4 sub ports 9 check valves 10 switching valve 12 Switching control valve 20 Secondary control valve 40 control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 佳司 東京都新宿区西新宿一丁目7番2号 富士 重工業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor, Koji Sato             1-7-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Fuji             Heavy Industry Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数個の吐出口を有するオイルポンプ手
段の一方の吐出側は、常に調圧作用する圧力制御弁に連
通し、他方の吐出側は、チェック弁を介して圧力制御弁
に連通すると共に、切換弁を介して吸入側に連通する油
圧源装置において、上記切換弁の少なくとも遮断位置か
ら連通位置への切換時に、一時的に圧力制御弁の圧力変
動を緩和する緩和手段を備えることを特徴とするポンプ
吐出圧の制御装置。
1. An oil pump means having a plurality of discharge ports has one discharge side communicated with a pressure control valve which constantly regulates pressure, and the other discharge side communicated with a pressure control valve via a check valve. In addition, in the hydraulic power source device that communicates with the suction side through the switching valve, a mitigating means for temporarily mitigating the pressure fluctuation of the pressure control valve at the time of switching the switching valve from at least the cut-off position to the communication position is provided. A pump discharge pressure control device.
【請求項2】 上記緩和手段は、制御ユニットで切換弁
の遮断位置と連通位置の一方から他方の切換を電気的に
判断し、この切換時に圧力制御弁の圧力を予め増圧また
は減圧制御することを特徴とする請求項1記載のポンプ
吐出圧の制御装置。
2. The mitigating means electrically determines whether the switching valve is switched from one of the shut-off position and the communication position to the other in the control unit, and the pressure of the pressure control valve is preliminarily increased or reduced at this switching time. The pump discharge pressure control device according to claim 1, wherein:
【請求項3】 上記制御ユニットは、増圧量または減圧
量,切換時点の前後の増圧等の開始と終了の時点を種々
の要素により電気的に設定することを特徴とする請求項
2記載のポンプ吐出圧の制御装置。
3. The control unit electrically sets, by various elements, a start time point and a finish time point of the pressure increase amount or the pressure decrease amount, the pressure increase before and after the switching time, and the like. Pump discharge pressure control device.
【請求項4】 上記緩和手段は、チェック弁をセット荷
重可変式に構成し、切換弁の遮断位置から連通位置への
切換時に切換弁に作用する作動圧を、チェック弁にも作
用して予め閉じるように構成することを特徴とする請求
項1記載のポンプ吐出圧の制御装置。
4. The mitigating means comprises a check valve of a variable set load type, and the working pressure acting on the switching valve when the switching valve is switched from the cut-off position to the communication position is also applied to the check valve in advance. The pump discharge pressure control device according to claim 1, wherein the control device is configured to be closed.
【請求項5】 上記緩和手段は、切換弁のスプールとポ
ートの一方に、切換初期の流量を小さく設定する切欠き
を設けることを特徴とする請求項1記載のポンプ吐出圧
の制御装置。
5. The pump discharge pressure control device according to claim 1, wherein the mitigating means is provided with a notch for setting the flow rate at the initial stage of switching to a small value on one of the spool and the port of the switching valve.
JP20243891A 1991-07-17 1991-07-17 Control device for pump discharge pressure Expired - Lifetime JP3391355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20243891A JP3391355B2 (en) 1991-07-17 1991-07-17 Control device for pump discharge pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20243891A JP3391355B2 (en) 1991-07-17 1991-07-17 Control device for pump discharge pressure

Publications (2)

Publication Number Publication Date
JPH0526334A true JPH0526334A (en) 1993-02-02
JP3391355B2 JP3391355B2 (en) 2003-03-31

Family

ID=16457528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20243891A Expired - Lifetime JP3391355B2 (en) 1991-07-17 1991-07-17 Control device for pump discharge pressure

Country Status (1)

Country Link
JP (1) JP3391355B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337502A (en) * 2004-05-26 2005-12-08 Zahnradfab Friedrichshafen Ag Hydraulic circuit for oil supply to automatic transmission for automobile
WO2014156309A1 (en) * 2013-03-25 2014-10-02 ジヤトコ株式会社 Continuously variable transmission control device and control method
JP2016023688A (en) * 2014-07-17 2016-02-08 アイシン・エィ・ダブリュ株式会社 Automatic transmission hydraulic control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337502A (en) * 2004-05-26 2005-12-08 Zahnradfab Friedrichshafen Ag Hydraulic circuit for oil supply to automatic transmission for automobile
WO2014156309A1 (en) * 2013-03-25 2014-10-02 ジヤトコ株式会社 Continuously variable transmission control device and control method
JP2016023688A (en) * 2014-07-17 2016-02-08 アイシン・エィ・ダブリュ株式会社 Automatic transmission hydraulic control device

Also Published As

Publication number Publication date
JP3391355B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
EP0228817B1 (en) Hydraulic control apparatus for stepless transmission
JP4372388B2 (en) Shift control device for continuously variable transmission
JP3122348B2 (en) Engine lubrication oil supply device
KR20010110075A (en) Device for hydraulically controlling a continuously variable transmission
JPH0557464B2 (en)
JP2757304B2 (en) Transmission hydraulic control device
JP3970322B2 (en) Hydraulic emergency control device for changing hydraulic oil pressure in relation to gear ratio in hydraulic conical pulley axial adjustment device of continuously variable transmission
JPH0554576B2 (en)
JPH05263770A (en) Oil pump
JP3468439B2 (en) Pulley side pressure control device for belt type continuously variable transmission
JP2975082B2 (en) Hydraulic control device for V-belt continuously variable transmission
JPH11280643A (en) Hydraulic pump unit for automatic transmission
JP3717146B2 (en) Hydraulic oil supply device
JPH0526334A (en) Controller of pump discharge pressure
US6682451B1 (en) Hydraulic control for a continuously variable transmission
EP0313415B1 (en) Control apparatus for hydraulic continuously variable speed transmission
JP2003328959A (en) Oil pump
JP5480042B2 (en) Power transmission device for vehicle
JP3213976B2 (en) Hydraulic control device for continuously variable transmission
JP3660543B2 (en) Capacity switching type hydraulic oil supply device
JP4616995B2 (en) Hydraulic controller for continuously variable transmission
JP4326347B2 (en) Stepless transmission
JPH0242560Y2 (en)
KR100369190B1 (en) Shift ratio control system for cvt
JP3166544B2 (en) Hydraulic control device for automatic transmission

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120124

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9