JPH05262553A - Production of ceramic molded product - Google Patents

Production of ceramic molded product

Info

Publication number
JPH05262553A
JPH05262553A JP6033692A JP6033692A JPH05262553A JP H05262553 A JPH05262553 A JP H05262553A JP 6033692 A JP6033692 A JP 6033692A JP 6033692 A JP6033692 A JP 6033692A JP H05262553 A JPH05262553 A JP H05262553A
Authority
JP
Japan
Prior art keywords
raw material
ceramic
fine powder
powder raw
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6033692A
Other languages
Japanese (ja)
Inventor
Mamoru Furuta
守 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6033692A priority Critical patent/JPH05262553A/en
Publication of JPH05262553A publication Critical patent/JPH05262553A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the shape-retaining property of a ceramic molded product in its molding process and further improve the strength of the molded product after its drying and calcining processes by subjecting the ceramic fine powder raw material to a dry crushing process when the ceramic molded product is produced from the ceramic powder raw material by a series of processes. CONSTITUTION:A dry crushing treatment is applied to a ceramic fine powder raw material 1 by either one or more of a ball mill method, a vibration mill method and a rubber press method in a period ranging from the time of the raw material to the time for kneading the raw material. Thereby, spaces 3 in blocks formed by the combination of the primary particles 2 at the time of the raw material are eliminated due to the dispersing of the coagulated primary particles 2, and such the increase in the production cost as by conventional techniques using the above-mentioned spray drying method is not caused.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックス微粉体を原
料としてセラミックス成形体を製造する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic compact using fine ceramic powder as a raw material.

【0002】[0002]

【従来の技術】従来、セラミックス成形体を製造する際
には、アルミナ、ゼオライト等の比表面積が20m2/gを越
えるミクロンまたはサブミクロンのセラミックス微粉体
を原料として用いることが多かった(ゼオライトを原料
として用いる従来技術は、特開昭61−171539号公報を参
照のこと)。そのようなセラミックス微粉体は、一次粒
子が凝集し易く、かつ一次粒子間に空隙が生じ易い性質
を有していることから、それをセラミックス成形体の製
造に用いる場合、以下の不具合が生じる。すなわち、セ
ラミックス微粉体原料に水を加えて混練する際に、凝集
した一次粒子を分散させるために多量の水を加える必要
があり、また、このように多量の水を加えると押出成形
時の保形性が劣化して所望の形状が得にくくなり、さら
に、成形体内部に多数の空隙が生じるため、乾燥後、焼
成後の強度不足を招く。
2. Description of the Related Art Conventionally, in the production of ceramics compacts, micron or submicron ceramic fine powder having a specific surface area of 20 m 2 / g or more, such as alumina or zeolite, has often been used as a raw material. For the conventional technique used as a raw material, see JP-A-61-171539). Since such a ceramic fine powder has a property that primary particles are easily aggregated and voids are easily generated between the primary particles, the following problems occur when it is used for producing a ceramic molded body. That is, it is necessary to add a large amount of water in order to disperse the agglomerated primary particles when adding water to the ceramic fine powder raw material and kneading. Since the formability is deteriorated, it becomes difficult to obtain a desired shape, and a large number of voids are formed inside the molded body, resulting in insufficient strength after drying and firing.

【0003】これら不具合を解消するため、アトライタ
ー等を用いて湿式により凝集したセラミックス微粉体原
料を均一分散させた後、雰霧乾燥法により乾燥する従来
技術が提案されている。
In order to solve these problems, there has been proposed a conventional technique of uniformly dispersing the finely divided ceramic raw material powder by using an attritor or the like and then drying it by an atmosphere mist drying method.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、セラミックス微粉体原料を乾燥する際に造
粒が生じ易いことから、一次粒子の凝集を十分に解消す
ることは困難であり、また微粉体原料を一旦スラリーに
してから乾燥するため、工数が増え、コストアップを招
く。
However, in the above-mentioned prior art, it is difficult to sufficiently eliminate the agglomeration of the primary particles because granulation easily occurs when the ceramic fine powder raw material is dried. Since the body raw material is once slurried and then dried, the number of steps is increased and the cost is increased.

【0005】本発明は、アルミナ、ゼオライト等ミクロ
ンまたはサブミクロンのセラミックス微粉体原料の比表
面積を確保しつつ該セラミックス微粉体原料中の空気を
除去する技術を提供し、この技術をもって、セラミック
ス成形体の成形時の保形性を向上させ、乾燥、焼成後の
強度を向上させることを目的とする。
The present invention provides a technique for removing the air from the ceramic fine powder raw material while ensuring the specific surface area of the fine or submicron ceramic fine powder raw material such as alumina or zeolite. The object is to improve the shape retention during molding and the strength after drying and firing.

【0006】[0006]

【課題を解決するための手段】この目的のため、本発明
のセラミックス成形体の製造方法は、セラミックス微粉
体原料に成形助剤および焼成助剤を添加して混合し、加
水後所定時間混練して坏土とし、該坏土を成形して乾燥
した後に焼成してセラミックス成形体を製造するに際
し、前記混練を行う前に、前記セラミックス微粉体原料
を乾式解砕することを特徴とするものである。
To this end, a method for producing a ceramic molded body of the present invention comprises a ceramic fine powder raw material to which a molding aid and a firing aid are added and mixed, followed by kneading for a predetermined time after water addition. When the kneaded material is molded, dried, and fired to produce a ceramic molded body, the ceramic fine powder raw material is dry-crushed before the kneading. is there.

【0007】[0007]

【作用】本発明方法によれば、一連の工程によってセラ
ミックス微粉体原料からセラミックス成形体を製造する
際に、成形助剤および焼成助剤を添加して混合した後の
セラミックス微粉体原料を乾式解碎する工程を加えたか
ら、前記雰霧乾燥法を用いる従来技術のようなコストア
ップを生じることなく、セラミックス成形体の成形時の
保形性を向上させ、乾燥、焼成後の強度を向上させるこ
とができる。なお、前記乾式解砕を、セラミックス微粉
体原料に成形助剤および焼成助剤を添加する前または後
に行ってもよく、その場合も上記と同様の作用効果が得
られる。
According to the method of the present invention, when the ceramic compact is manufactured from the ceramic fine powder raw material by a series of steps, the ceramic fine powder raw material after adding and mixing the molding aid and the firing aid is dry-processed. Since the step of scouring is added, it is possible to improve the shape retention during the molding of the ceramics molded body and to improve the strength after drying and firing without causing the cost increase as in the conventional technique using the above-mentioned mist drying method. You can The dry crushing may be performed before or after adding the molding aid and the firing aid to the ceramic fine powder raw material, and in that case, the same effect as above can be obtained.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づき詳細に
説明する。図1は本発明のセラミックス成形体の製造方
法を示すフローチャートである。まず、全体の流れを説
明すると、ステップ51でセラミックス微粉体原料を従来
通りの手法で製造し、ステップ52で該セラミックス微粉
体原料に対し本発明の要旨である乾式解碎を行い、ステ
ップ53で乾式解碎後のセラミックス微粉体原料に成形助
剤および焼成助剤を添加する調合を行い、ステップ54で
調合後のセラミックス微粉体原料を混合するとともに加
水後所定時間混練して坏土とし、ステップ55で該坏土を
所定形状に押出成形し、ステップ56で押出成形体を乾燥
し、ステップ57で仕上処理を施し、ステップ58で該押出
成形体を焼成してセラミックス成形体を製造するもので
ある。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a flow chart showing a method for manufacturing a ceramic molded body of the present invention. First, explaining the overall flow, in step 51, a ceramic fine powder raw material is manufactured by a conventional method, in step 52, the ceramic fine powder raw material is subjected to dry disintegration, which is the gist of the present invention, and in step 53. Mixing is performed by adding a molding aid and a firing aid to the ceramic fine powder raw material after dry defibration, and the ceramic fine powder raw material after mixing is mixed in step 54, and after kneading for a predetermined time, kneaded into a kneaded clay, and step In 55, the kneaded material is extrusion-molded into a predetermined shape, in step 56 the extrusion-molded body is dried, in step 57 a finishing treatment is applied, and in step 58 the extrusion-molded body is fired to produce a ceramics molded body. is there.

【0009】なお、上記においては、乾式解碎をセラミ
ックス微粉体原料の時点で行っているが、この乾式解碎
は坏土の粘性を低下させることを目的とすることから、
ステップ53で成形助剤および焼成助剤を添加する調合を
行ってから乾式解碎しても、ステップ54で調合後のセラ
ミックス微粉体原料を混合してから乾式解碎してもよ
く、要するに、混練を行う前であればよい。
In the above, the dry crushing is carried out at the time of the raw material of the ceramic fine powder, but since this dry crushing is intended to reduce the viscosity of the kneaded clay,
In step 53, it may be dry defibrated after the mixing by adding the molding aid and the firing aid, or in step 54, it may be dry defibrated after mixing the ceramic fine powder raw materials after the mixing, in short, It may be before kneading.

【0010】次に、上記乾式解碎について説明する。こ
こで乾式解碎を行う手法としては、例えばボールミル
法、振動ミル法、ラバープレス法の何れか1種または2
種以上を用いるものとする。この乾式解碎によって、セ
ラミックス微粉体原料1は、それを構成する1次粒子2
が乾式解碎前には図2(a) に示すように凝集して内部に
空隙3が形成される状態になっていたが、乾式解碎後に
は、同図(b) に示すように、凝集していた1次粒子2が
分散されて、1次粒子2が結合して生成するブロックの
大きさが乾式解碎前に比べて格段に小さくなり、したが
って空隙が生じなくなり、また比表面積を損なうことも
ない。なお、この乾式解碎法は、アトライター等を用い
て湿式により凝集したセラミックス微粉体原料を均一分
散させた後、雰霧乾燥法により乾燥する従来技術に比
べ、1次粒子を分散させる効果が格段に優れており、ま
たセラミックス微粉体原料を一旦スラリーにしてから乾
燥する必要がないため、コストダウンになる。
Next, the dry type crushing will be described. As a method for performing dry defibration, for example, any one of ball mill method, vibration mill method, and rubber press method or 2
More than one seed shall be used. By this dry defibration, the ceramic fine powder raw material 1 becomes the primary particles 2 constituting it.
Before dry defibration, they were in a state of agglomeration to form voids 3 inside as shown in Fig. 2 (a), but after dry defibration, as shown in Fig. 2 (b), The aggregated primary particles 2 are dispersed, and the size of the block generated by the binding of the primary particles 2 is significantly smaller than that before dry crushing, so that voids are not generated and the specific surface area is reduced. There is no loss. In addition, this dry disintegration method has the effect of dispersing primary particles as compared with the conventional technique in which the ceramic fine powder raw material that has been agglomerated by a wet method using an attritor or the like is uniformly dispersed and then dried by an atmosphere mist drying method. It is remarkably excellent, and the ceramic fine powder raw material does not need to be once slurried and then dried, so that the cost is reduced.

【0011】次に本発明方法をアルミナ微粉体原料に適
用した実施例1について比較例とともに説明する。実施
例1は、比表面積20m2/gのα‐アルミナ微粉体原料をポ
ットミルに収容し、重量比で3倍量の15φウレタンボー
ルを用いて12時間乾式解碎し、解碎粉末に成形助剤およ
び焼成助剤を加えて混合した後、21〜25Wt%の水を加え
て所定時間混練して坏土とし、外径8.5 〜10φの管状成
形体に押出成形したものである。この記実施例1につい
て各種測定を実施したところ、表1に示す結果が得られ
た。なお、焼成体の抗折強度はレオメータによって測定
し、比表面積はBET 法によって測定した。
Next, Example 1 in which the method of the present invention is applied to an alumina fine powder raw material will be described together with a comparative example. In Example 1, the raw material of α-alumina fine powder having a specific surface area of 20 m 2 / g was placed in a pot mill, and dry defibration was performed for 12 hours using 15φ urethane balls in an amount three times the weight ratio, to aid in forming a defibration powder. After adding and mixing the agent and the firing aid, 21-25 Wt% of water is added, and the mixture is kneaded for a predetermined time to obtain a kneaded clay, which is extruded into a tubular molded body having an outer diameter of 8.5-10φ. When various measurements were performed on this Example 1, the results shown in Table 1 were obtained. The bending strength of the fired body was measured by a rheometer, and the specific surface area was measured by the BET method.

【0012】[0012]

【表1】 [Table 1]

【0013】すなわち、実施例1においては、焼成体の
抗折強度は例えば12時間解碎の場合45〜60Kg/mm2という
高い値を示し、製造された管状成形体は、押出成形時の
変形のない、保形性に優れたものになった。一方、乾式
解碎を実施しなかったことを除き同一条件で同時実施し
た比較例においては、押出成形に適した組成にするため
に混練時に多量の水(例えば36Wt%)を必要とすること
から、焼成体の抗折強度は30Kg/mm2以下に低下し、製造
された管状成形体は、押出成形時の変形が生じ易い、保
形性の劣るものになった。
That is, in Example 1, the bending strength of the fired body shows a high value of 45 to 60 kg / mm 2 in the case of crushing for 12 hours, and the manufactured tubular molded body is deformed during extrusion molding. It has excellent shape retention. On the other hand, in the comparative example simultaneously performed under the same conditions except that dry defibration was not performed, a large amount of water (for example, 36 Wt%) was required at the time of kneading in order to obtain a composition suitable for extrusion molding. The bending strength of the fired body was reduced to 30 kg / mm 2 or less, and the produced tubular molded body was liable to be deformed during extrusion molding and had poor shape retention.

【0014】以上のような測定を繰り返してデータを採
取してまとめると、アルミナ微粉体原料について図3〜
5に示す特性が得られた。すなわち、焼成体の抗折強度
については、図3に示すように、解碎時間を増やすほど
焼成体の抗折強度が向上する傾向が示され、かさ比重に
ついては、図4に示すように、解碎開始当初は解碎時間
にほぼリニアに追従してかさ比重が増加するが約10時間
経過後はほぼ一定値に収束する傾向が示され、さらに混
練水分については、図5に示すように、かさ比重が増え
るほど混練水分が減少する傾向が示されている。
The above measurement is repeated to collect data and summarize them.
The characteristics shown in No. 5 were obtained. That is, regarding the bending strength of the fired body, as shown in FIG. 3, the bending strength of the fired body tends to improve as the unraveling time increases, and regarding the bulk specific gravity, as shown in FIG. At the beginning of crushing, the bulk specific gravity increases almost linearly with the crushing time, but after about 10 hours, it tends to converge to a constant value. It is shown that the kneading water content decreases as the bulk specific gravity increases.

【0015】次に本発明方法をゼオライト微粉体原料に
適用した実施例2について比較例とともに説明する。実
施例2は、比表面積560 m2/gのゼオライト微粉体原料を
ポットミルに収容し、重量比で4〜5倍量の15φアルミ
ナボールを用いて20時間乾式解碎し、解碎粉末に成形助
剤および焼成助剤を加えて混合した後、50〜55Wt%の水
を加えて所定時間混練して坏土とし、押出成形機によっ
て外形50mm角のハニカム成形体に押出成形したものであ
る。この記実施例2について各種測定を実施したとこ
ろ、表2に示す結果が得られた。なお、焼成体の抗折強
度はレオメータによって測定し、比表面積はBET 法によ
って測定した。
Next, Example 2 in which the method of the present invention is applied to a zeolite fine powder raw material will be described together with a comparative example. In Example 2, the zeolite fine powder raw material having a specific surface area of 560 m 2 / g was placed in a pot mill, and dry defibration was carried out for 20 hours using 15 to 5 times the weight ratio of 15φ alumina balls to form a defibration powder. After the auxiliary agent and the firing auxiliary agent are added and mixed, 50 to 55 Wt% of water is added and kneaded for a predetermined time to obtain a kneaded material, which is extrusion-molded by an extruder into a honeycomb molded body having an outer shape of 50 mm square. When various measurements were performed on this Example 2, the results shown in Table 2 were obtained. The bending strength of the fired body was measured by a rheometer, and the specific surface area was measured by the BET method.

【0016】[0016]

【表2】 [Table 2]

【0017】すなわち、実施例2においては、焼成体の
圧縮強度は例えば20時間解碎の場合10〜15Kg/cm2という
高い値を示し、製造された管状成形体は、押出成形時の
変形のない、保形性に優れたものになった。一方、乾式
解碎を実施しなかったことを除き同一条件で同時実施し
た比較例においては、押出成形に適した組成にするため
に混練時に多量の水(例えば80Wt%)を必要とすること
から、焼成体の圧縮強度は1Kg/cm2以下に低下し、製造
されたハニカム成形体は、押出成形時の変形が生じ易
い、保形性の劣るものになり、結局使用に耐えられない
ものになった。
That is, in Example 2, the compressive strength of the fired body shows a high value of 10 to 15 kg / cm 2 in the case of crushing for 20 hours, for example, and the produced tubular molded body exhibits deformation during extrusion molding. It has excellent shape retention. On the other hand, in the comparative example simultaneously performed under the same conditions except that dry defibration was not performed, a large amount of water (for example, 80 Wt%) was required at the time of kneading in order to obtain a composition suitable for extrusion molding. The compressive strength of the fired body was reduced to 1 kg / cm 2 or less, and the manufactured honeycomb molded body was liable to be deformed during extrusion molding and was inferior in shape retention and eventually could not be used. became.

【0018】以上のような測定を繰り返してデータを採
取してまとめると、ゼオライト微粉体原料について図6
〜8に示す特性が得られた。すなわち、焼成体の圧縮強
度については、図6に示すように、解碎時間を増やすほ
ど焼成体の抗折強度が向上する傾向が示され、かさ比重
については、図7に示すように、解碎開始当初は解碎時
間の増加に応じてかさ比重が増加するが約10時間経過後
はほぼ一定値に収束する傾向が示され、さらに混練水分
については、図8に示すように、かさ比重が増えるほど
混練水分が減少する傾向が示されている。
By repeating the above-mentioned measurement and collecting and collecting data, the zeolite fine powder raw material is shown in FIG.
The characteristics shown in to 8 were obtained. That is, regarding the compressive strength of the fired body, as shown in FIG. 6, the bending strength of the fired body tends to improve as the unraveling time increases, and regarding the bulk specific gravity, as shown in FIG. At the beginning of the bowl, the bulk specific gravity increases with an increase in the unraveling time, but after about 10 hours, the bulk specific gravity tends to converge to a constant value. It is shown that the kneading water content decreases as the water content increases.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
一連の工程によってセラミックス微粉体原料からセラミ
ックス成形体を製造する際に、セラミックス微粉体原料
に対し、原料の時点から混練を実施する時点までの間
に、乾式解碎を実施するから、前記雰霧乾燥法を用いる
従来技術のようなコストアップを生じることなく、セラ
ミックス成形体の成形時の保形性を向上させ、乾燥、焼
成後の強度を向上させることができる。
As described above, according to the present invention,
When a ceramic compact is manufactured from a ceramic fine powder raw material by a series of steps, dry fine smashing is performed on the ceramic fine powder raw material from the time of the raw material to the time of kneading. It is possible to improve the shape retention during molding of a ceramics molded body and improve the strength after drying and firing without increasing the cost as in the conventional technique using the drying method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセラミックス成形体の製造方法を示す
フローチャートである。
FIG. 1 is a flowchart showing a method for manufacturing a ceramic molded body of the present invention.

【図2】(a) 、(b) は、上記セラミックス成形体の製造
方法に用いる乾式解碎の作用を説明するための図であ
る。
FIGS. 2 (a) and 2 (b) are views for explaining the action of dry crushing used in the method for manufacturing a ceramic molded body.

【図3】上記セラミックス成形体の製造方法をアルミナ
微粉体原料に適用した第1実施例の抗折強度特性を示す
図である。
FIG. 3 is a view showing the transverse rupture strength characteristics of the first embodiment in which the method for producing a ceramics compact is applied to an alumina fine powder raw material.

【図4】上記セラミックス成形体の製造方法をアルミナ
微粉体原料に適用した第1実施例のかさ比重特性を示す
図である。
FIG. 4 is a diagram showing the bulk specific gravity characteristics of the first embodiment in which the method for producing a ceramic compact described above is applied to an alumina fine powder raw material.

【図5】上記セラミックス成形体の製造方法をアルミナ
微粉体原料に適用した第1実施例の混練水分特性を示す
図である。
FIG. 5 is a diagram showing a kneading water characteristic of the first example in which the method for producing a ceramic compact is applied to an alumina fine powder raw material.

【図6】上記セラミックス成形体の製造方法をゼオライ
ト微粉体原料に適用した第2実施例の圧縮強度特性を示
す図である。
FIG. 6 is a diagram showing the compressive strength characteristics of the second embodiment in which the method for producing a ceramic compact described above is applied to a zeolite fine powder raw material.

【図7】上記セラミックス成形体の製造方法をゼオライ
ト微粉体原料に適用した第2実施例のかさ比重特性を示
す図である。
FIG. 7 is a diagram showing the bulk specific gravity characteristics of a second embodiment in which the method for producing a ceramics compact is applied to a zeolite fine powder raw material.

【図8】上記セラミックス成形体の製造方法をゼオライ
ト微粉体原料に適用した第2実施例の混練水分特性を示
す図である。
FIG. 8 is a diagram showing a kneading water characteristic of a second example in which the method for producing a ceramic molded body is applied to a zeolite fine powder raw material.

【符号の説明】[Explanation of symbols]

1 セラミックス微粉体原料 2 1次粒子 3 空隙 1 Ceramic Fine Powder Raw Material 2 Primary Particle 3 Void

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス微粉体原料に成形助剤およ
び焼成助剤を添加して混合し、加水後所定時間混練して
坏土とし、該坏土を成形して乾燥した後に焼成してセラ
ミックス成形体を製造するに際し、 前記混練を行う前に、前記セラミックス微粉体原料を乾
式解砕することを特徴とする、セラミックス成形体の製
造方法。
1. A ceramics powder is formed by adding a molding aid and a firing aid to a ceramics fine powder raw material, mixing the mixture, kneading the mixture for a predetermined period of time to obtain a kneaded material, molding the kneaded material, drying it, and then firing it. A method for producing a ceramic molded body, which comprises dry-crushing the ceramic fine powder raw material before the kneading in producing the body.
【請求項2】 前記乾式解砕を、セラミックス微粉体原
料に成形助剤および焼成助剤を添加する前または後に行
うことを特徴とする、請求項1記載のセラミックス成形
体の製造方法。
2. The method for producing a ceramic molded body according to claim 1, wherein the dry crushing is performed before or after adding a molding aid and a firing aid to the ceramic fine powder raw material.
JP6033692A 1992-03-17 1992-03-17 Production of ceramic molded product Pending JPH05262553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6033692A JPH05262553A (en) 1992-03-17 1992-03-17 Production of ceramic molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6033692A JPH05262553A (en) 1992-03-17 1992-03-17 Production of ceramic molded product

Publications (1)

Publication Number Publication Date
JPH05262553A true JPH05262553A (en) 1993-10-12

Family

ID=13139226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6033692A Pending JPH05262553A (en) 1992-03-17 1992-03-17 Production of ceramic molded product

Country Status (1)

Country Link
JP (1) JPH05262553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304819B1 (en) * 1998-07-28 2001-11-30 권혁이 Process for screen printing on tiles with printing powders

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137863A (en) * 1983-12-22 1985-07-22 松下電器産業株式会社 Manufacture of extrusion forming raw material
JPS6153009A (en) * 1984-08-22 1986-03-15 松下電器産業株式会社 Manufacture of ceramic molded shape

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137863A (en) * 1983-12-22 1985-07-22 松下電器産業株式会社 Manufacture of extrusion forming raw material
JPS6153009A (en) * 1984-08-22 1986-03-15 松下電器産業株式会社 Manufacture of ceramic molded shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304819B1 (en) * 1998-07-28 2001-11-30 권혁이 Process for screen printing on tiles with printing powders

Similar Documents

Publication Publication Date Title
DE60005096T2 (en) Monolithic honeycomb structure made of porous ceramic material, and use as a particle filter
AT389882B (en) METHOD FOR PRODUCING A MICROCRYSTALLINE ABRASIVE MATERIAL
CN101309882A (en) Method of producing porous ceramic supports of controlled microstructure
US4293514A (en) Method of producing honeycomb structural bodies consisting of barium titanate series ceramics having a positive temperature coefficient of electric resistance
DE3001640C2 (en) Process for the production of thermal shock-resistant ceramic honeycomb bodies made of cordierite
JPS6110026A (en) High solid content gel and manufacture
EP1203758B1 (en) Method for producing honeycomb ceramic structure
JPH05262553A (en) Production of ceramic molded product
DE102017204609A1 (en) A method for predicting a molded body density and method for producing a ceramic fired body
US2631353A (en) Stabilized alumina peebles
AT501587A1 (en) RAW MATERIAL GRANULES FOR REFRACTORY PRODUCTS AND METHOD FOR THE PRODUCTION AND USE OF RAW MATERIAL GRANULES
US5061421A (en) Moldings composed of cordierite and a process for producing them
EP0716908B1 (en) Process and apparatus for the production of ceramic products
US3121640A (en) Alumina refractories
EP0573029B1 (en) Use of refractory, oxide micropowder for making ceramic masses and bodies
EP0610848A2 (en) Method of making dense sintered ceramic parts of silicon nitride having high mechanical strength
JPS5817833A (en) Production of honeycomb structural body consisting essentially of zeolite for adsorption of moisture in gas
JP2720123B2 (en) Method for producing piezoelectric ceramic microspheres for piezoelectric elastomer
JP2000169201A (en) Production of admixture for cement and composition using the admixture
JP2002537217A (en) Kaolinite clay treatment
JPH0258206B2 (en)
JPH0822731B2 (en) Dental material Ca -4 below P-2 below O-9 below Powder manufacturing method
WO2005051530A2 (en) High strength alumina cements
DE10300043B4 (en) Process for the production of molded and fired foam clay components
JPH05310465A (en) Production of extruded molded article of ceramics