JPH0526148B2 - - Google Patents

Info

Publication number
JPH0526148B2
JPH0526148B2 JP58133251A JP13325183A JPH0526148B2 JP H0526148 B2 JPH0526148 B2 JP H0526148B2 JP 58133251 A JP58133251 A JP 58133251A JP 13325183 A JP13325183 A JP 13325183A JP H0526148 B2 JPH0526148 B2 JP H0526148B2
Authority
JP
Japan
Prior art keywords
frequency
signal
signal source
output
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58133251A
Other languages
Japanese (ja)
Other versions
JPS6024465A (en
Inventor
Tadatetsu Hatsutori
Yoshisuke Takahira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58133251A priority Critical patent/JPS6024465A/en
Publication of JPS6024465A publication Critical patent/JPS6024465A/en
Publication of JPH0526148B2 publication Critical patent/JPH0526148B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3607RF waveform generators, e.g. frequency generators, amplitude-, frequency- or phase modulators or shifters, pulse programmers, digital to analog converters for the RF signal, means for filtering or attenuating of the RF signal

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はパルスフーリエ変換型の核磁気共鳴装
置に係り、特に種々の核種の共鳴信号を励起、受
信するのに好適な核磁気共鳴装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a pulse Fourier transform type nuclear magnetic resonance apparatus, and particularly to a nuclear magnetic resonance apparatus suitable for exciting and receiving resonance signals of various nuclides.

〔発明の背景〕[Background of the invention]

周知の通り核磁気共鳴信号は核磁気共鳴装置の
直流磁場の強さが決まると、核種によつて核磁気
共鳴信号の周波数(以下、単に共鳴周波数と記
す。)が決まり、例えば2.1テスラーの直流磁場に
おいては第1図に示すように水素核90MHz、弗素
核84.6MHz、リン核36.4MHz、炭素核22.6MHz、
重水素核13.8MHz、窒素核9.2MHz、5.6MHzなど
と核種に応じて共鳴周波数は決まる。直流磁場が
変わればω0=γH0(但し、ω0は共鳴周波数、γは
磁気回転比、H0は直流磁場の強さである。)の関
係で直線的に共鳴周波数は変化する。第1図から
も判るように共鳴信号が現れる周波数帯域は大き
く二分され、5〜36MHzと84.6〜90MHzに分れる
がその帯域は極めて広い。
As is well known, when the strength of the DC magnetic field of the nuclear magnetic resonance apparatus is determined, the frequency of the nuclear magnetic resonance signal (hereinafter simply referred to as resonance frequency) is determined depending on the nuclide; for example, a DC of 2.1 Tesla. In the magnetic field, as shown in Figure 1, hydrogen nuclei are 90MHz, fluorine nuclei are 84.6MHz, phosphorus nuclei are 36.4MHz, carbon nuclei are 22.6MHz,
The resonance frequency is determined depending on the nuclide, such as 13.8MHz for deuterium nuclei, 9.2MHz for nitrogen nuclei, and 5.6MHz for nitrogen nuclei. When the DC magnetic field changes, the resonance frequency changes linearly according to the relationship ω 0 =γH 0 (where ω 0 is the resonance frequency, γ is the gyromagnetic ratio, and H 0 is the strength of the DC magnetic field). As can be seen from Figure 1, the frequency band in which the resonance signal appears is roughly divided into two, 5 to 36 MHz and 84.6 to 90 MHz, and this band is extremely wide.

一方、一般のパルスフーリエ変換型の核磁気共
鳴装置の構成は第2図に示す如く周波数の異なる
第1の交流信号源1と第2の交流信号源2の出力
信号を周波数ミキサ3で混合して共鳴周波数の信
号を作り、この信号をパルス電力増幅器4で高周
波パルスとして均一な直流磁場(図示せず)中に
配置されたブローブ5に印加する。
On the other hand, the configuration of a general pulsed Fourier transform type nuclear magnetic resonance apparatus is as shown in FIG. A pulse power amplifier 4 generates a signal at a resonant frequency, and the pulse power amplifier 4 applies this signal as a high-frequency pulse to a probe 5 placed in a uniform DC magnetic field (not shown).

そして高周波バルスの印加によりブローブに装
填された測定試料に共鳴現象を起こし、時間的に
減衰していく共鳴信号をブローブ5内に設けられ
た検出コイルにより検出(受信)し、高周波増幅
器6で増幅すると共に、周波数ミキサ7で第1の
交流信号源2の出力信号で周波数変換する。
The application of a high-frequency pulse causes a resonance phenomenon in the measurement sample loaded in the probe, and the resonance signal, which decays over time, is detected (received) by the detection coil installed in the probe 5 and amplified by the high-frequency amplifier 6. At the same time, the output signal of the first AC signal source 2 is frequency-converted by the frequency mixer 7 .

更にこの周波数変換信号を中間周波増幅器8で
増幅し、この増幅信号を第2の交流信号源1の出
力信号により位相検波器9で位相検波して可聴周
波数領域の信号を取り出し、この位相検波出力を
可聴周波増幅器10で増幅して自由誘導減衰信号
を得る。そしてこの自由誘導減衰信号をデータ処
理装置(図示せず)でフーリエ変換して周波数領
域のスペクトルを得る。
Further, this frequency-converted signal is amplified by an intermediate frequency amplifier 8, and this amplified signal is phase-detected by a phase detector 9 using the output signal of the second AC signal source 1 to extract a signal in the audible frequency range. is amplified by an audio frequency amplifier 10 to obtain a free induction decay signal. This free induction attenuation signal is then Fourier transformed by a data processing device (not shown) to obtain a frequency domain spectrum.

一般にプローブ5に印加される励起パルスの振
幅は約50〜100ボルトであり、受信する共鳴信号
はマイクロボルトのオーダであるので、パルス電
力増幅器4からの僅かな高周波の洩れ込みも測定
に支障を来たすことになるので、中間周波増幅器
8で増幅する構成とする。よつて共鳴周波数と中
間周波増幅器の周波数は離れる必要がある。位相
検波器9で位相検波する場合、例えば多くの利点
をもつQuadrature Detection方法(以下、QD法
と略す)を採用すると、90°位相のずれた二つの
信号に位相検波するので中間周波増幅器の周波数
は低い方が扱い易い。
Generally, the amplitude of the excitation pulse applied to the probe 5 is about 50 to 100 volts, and the received resonance signal is on the order of microvolts, so even a small amount of high frequency leakage from the pulse power amplifier 4 will interfere with measurement. Therefore, the intermediate frequency amplifier 8 is used for amplification. Therefore, the resonant frequency and the frequency of the intermediate frequency amplifier need to be separated. When performing phase detection with the phase detector 9, for example, if the Quadrature Detection method (hereinafter abbreviated as QD method), which has many advantages, is adopted, phase detection is performed on two signals with a 90° phase shift, so the frequency of the intermediate frequency amplifier The lower the value, the easier it is to handle.

一方、第3図において既述した如く共鳴信号の
周波数帯域は大きくAとBに分かれ、一般に中間
周波増幅器の周波数として図中、f0,f1,f2の3
個が考えられるがf1とf2はQuadrature Detection
方法には適さない。
On the other hand, as already mentioned in Fig. 3, the frequency band of the resonant signal is broadly divided into A and B, and generally, the frequencies of the intermediate frequency amplifier are divided into the three frequencies of f 0 , f 1 , and f 2 in the figure.
f 1 and f 2 are Quadrature Detection
Not suitable for method.

またf0とf1は希望しないもう一方の側帯波成分
が飛び込み、S/Nの悪化となる(第3図に於い
て中間周波増幅器の周波数をf2に選んだ時Aの帯
域に対してはA′の帯域(希望しない帯域)をフ
イルタで減衰させた無関係にできるが、周波数が
f0とf1はそうはいかない。)ので中間周波増幅器
の周波数は高い方がよい。
Also, the other undesired sideband component jumps into f 0 and f 1 , deteriorating the S/N ratio (in Figure 3, when the frequency of the intermediate frequency amplifier is selected as f 2 , for the band A) can be made irrelevant by attenuating the A' band (unwanted band) with a filter, but if the frequency is
That's not the case with f 0 and f 1 . ) Therefore, the higher the frequency of the intermediate frequency amplifier, the better.

すなわち、側波帯成分は中間周波増幅器の周波
数をfiとすると、(ω0±fi)nに現れることが知
られている。但し、ω0は共鳴周波数、nは自然
数である。したがつて、fiを第3図のf2にすると、
側波帯成分はf2より高い帯域とAよりも低い帯域
に現れ、測定対象である帯域A,Bの領域には現
れないので、フイルタなどによりそれら側波帯成
分を除去するのは容易である。
That is, it is known that the sideband components appear at (ω 0 ±fi)n, where fi is the frequency of the intermediate frequency amplifier. However, ω 0 is a resonance frequency, and n is a natural number. Therefore, if fi is f 2 in Figure 3, then
Sideband components appear in bands higher than f2 and lower than A, and do not appear in the measurement target bands A and B, so it is easy to remove these sideband components with a filter etc. be.

一方、fiをf0又はf1にすると、側波帯成分が帯
域A,Bの領域に現れ、測定しようとする共鳴周
波数ω0と混在してしまうので、一津にフイルタ
などにより除去することができずS/N比が悪化
するのである。
On the other hand, if fi is set to f 0 or f 1 , sideband components will appear in the regions of bands A and B and will be mixed with the resonant frequency ω 0 to be measured, so it must be removed using a filter etc. Therefore, the S/N ratio deteriorates.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、中間周波増幅器の周波数を
QD法の位相検波に適した低い周波数にでき、し
かも広い周波数帯域にわたる多核種測定に際し、
側波帯成分の影響を排除して所望の共鳴信号の
S/N比の悪化を防止し得る核磁気共鳴装置を提
供することにある。
The purpose of the present invention is to increase the frequency of the intermediate frequency amplifier.
It can be used at a low frequency suitable for phase detection using the QD method, and when measuring multiple nuclides over a wide frequency band.
It is an object of the present invention to provide a nuclear magnetic resonance apparatus that can prevent deterioration of the S/N ratio of a desired resonance signal by eliminating the influence of sideband components.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するため、周波数の
異なる第1の交流信号源と第2の交流信号源の出
力信号を混合して核磁気共鳴周波数の信号を作
り、これをパルス増幅して直流磁場中に配置され
たプローブに印加し、その共鳴信号を検出コイル
で受信して高周波増幅器により増幅すると共に、
この増幅信号を第1のミキサにより第1の交流信
号源の出力信号と混合し、これを前記第2の交流
信号源の出力信号の周波数を同調周波数とする第
1の中間周波増幅器により増幅し、更に第2の交
流信号源の出力信号源の出力信号でQD法により
位相検波して可聴周波数の自由誘導減衰信号を
得、この自由誘導減衰信号をデータ処理装置でフ
ーリエ変換してスペクトルを得る核磁気共鳴装置
において、前記第2の交流信号源の出力信号の周
波数を前記QD法による位相検波に適した低い周
波数に設定し、前記第1の交流信号源を多核種の
核磁気共鳴周波数の範囲に対応させて出力信号の
周波数を広範囲に調整可能に形成し、前記高周波
増幅器の出力側に帯域フイルタを挿入し、この帯
域フイルタの通過周波数帯域を前記多核種の核磁
気共鳴周波数の範囲を複数に分割してなる複数の
帯域に対応させて複数設定すると共にその通過周
波数帯域を切換可能に形成し、前記第1の交流信
号源の周波数と前記帯域フイルタの通過周波数帯
域とを測定対象の核種に対応させて切り換える帯
域制御部を設けたことを特徴とする。
In order to achieve the above object, the present invention mixes the output signals of a first alternating current signal source and a second alternating current signal source with different frequencies to create a signal at the nuclear magnetic resonance frequency, pulse-amplifies the signal, and generates a direct current. A magnetic field is applied to a probe placed in the magnetic field, and the resonance signal is received by a detection coil and amplified by a high frequency amplifier.
This amplified signal is mixed with the output signal of the first AC signal source by a first mixer, and this is amplified by a first intermediate frequency amplifier whose tuning frequency is the frequency of the output signal of the second AC signal source. , Furthermore, phase detection is performed using the QD method using the output signal of the output signal source of the second AC signal source to obtain a free induction attenuation signal of an audio frequency, and this free induction attenuation signal is Fourier-transformed by a data processing device to obtain a spectrum. In the nuclear magnetic resonance apparatus, the frequency of the output signal of the second alternating current signal source is set to a low frequency suitable for phase detection by the QD method, and the first alternating current signal source is set to a low frequency suitable for phase detection using the QD method. The frequency of the output signal is formed to be adjustable over a wide range in accordance with the range, a bandpass filter is inserted on the output side of the high frequency amplifier, and the pass frequency band of the bandpass filter is set to correspond to the range of nuclear magnetic resonance frequencies of the multinuclides. The frequency band of the first AC signal source and the frequency band of the band filter are set to correspond to a plurality of divided bands, and the pass frequency band is switchable. It is characterized by providing a band control section that switches according to the nuclide.

このように、多核種の測定に係る広い範囲の測
定周波数帯域を複数に分割し、これにに合わせて
帯域フイルタの通過周波数帯域を複数設定し、帯
域制御部により測定対象の核種の共鳴周波数に対
応して帯域フイルタの通過周波数帯域を切り換え
るようにし、この帯域フイルタを高周波増幅器の
出力側(すなわち、第1の中間周波増幅器の入力
側)に設けたことから、測定対象の共鳴周波数に
係る側波帯成分が中間周波数増幅器に飛び込む確
立を大幅に減少できる。つまり、測定対象の共鳴
周波数に係る側波帯成分は、中間周波増幅器の同
調周波数を対象軸として対称的に現れるから、帯
域フイルタの通過周波数帯域を狭い範囲に設定す
ることにより、その側波帯成分を除去できる。
In this way, the wide range of measurement frequency bands involved in the measurement of multiple nuclides is divided into multiple bands, the pass frequency bands of the bandpass filters are set in accordance with this, and the band control unit adjusts the resonant frequency of the nuclides to be measured. Correspondingly, the pass frequency band of the band filter is switched, and this band filter is provided on the output side of the high frequency amplifier (that is, on the input side of the first intermediate frequency amplifier). The probability that waveband components will jump into the intermediate frequency amplifier can be greatly reduced. In other words, the sideband components related to the resonant frequency of the measurement target appear symmetrically with respect to the tuning frequency of the intermediate frequency amplifier as the target axis, so by setting the pass frequency band of the bandpass filter to a narrow range, the sideband components Components can be removed.

その結果、中間周波増幅器の周波数をQD法の
位相検波に適した低い周波数に設定でき、しかも
広い周波数帯域にわたる多核種測定に際し、側波
帯成分の影響を排除して所望の共鳴信号のS/N
比の悪化を防止し得る。
As a result, the frequency of the intermediate frequency amplifier can be set to a low frequency suitable for phase detection using the QD method, and when measuring multiple nuclides over a wide frequency band, the influence of sideband components can be eliminated to obtain the desired S/ N
This can prevent deterioration of the ratio.

ところが、上記発明において、測定対象の共鳴
周波数が第1の中間周波増幅器の同調周波数に近
い場合は、帯域フイルタの通過周波数帯域にその
同調周波数が入つてしまうから、測定対象の共鳴
周波数の側波帯成分を帯域フイルタでは除去でき
ないことになる。
However, in the above invention, if the resonant frequency of the object to be measured is close to the tuning frequency of the first intermediate frequency amplifier, the tuning frequency will be included in the pass frequency band of the bandpass filter, so that the side waves of the resonant frequency of the object to be measured will be This means that the band component cannot be removed by a band filter.

そこで、本発明の他の発明は、上記の発明の構
成に加え、更に前記第2の交流信号源と周波数が
異なる第3の交流信号源と、この第3の交流信号
源と前記第1の交流信号源の出力信号を混合する
第2のミキサと、前記帯域フイルタの出力信号と
前記第3の交流信号源の出力とを混合する第3の
ミキサと、この第3のミキサの出力信号の周波数
を同調周波数としてこの第3のミキサの出力を増
幅する第2の中間周波増幅器と、この第2の中間
周波増幅器の出力信号と前記第2のミキサの出力
信号とを混合する第4のミキサと、前記第1の中
間周波増幅器に入力する前記第1のミキサの出力
信号を前記第4のミキサの出力信号に切り換える
切換スイツチとを設け、前記帯域制御部に、測定
対象の共鳴周波数が前記第1の中間周波増幅器の
同調周波数の含まれる前記帯域フイルタの通過周
波数帯域に属するか否かを判定し、この判定が肯
定のときに前記切換スイツチを前記第4のミキサ
側に切り換える指令を出力する手段を設けたこと
を特徴とする。
Therefore, another invention of the present invention provides, in addition to the configuration of the above invention, a third AC signal source having a different frequency from the second AC signal source, and a third AC signal source and the first AC signal source. a second mixer that mixes the output signal of the AC signal source, a third mixer that mixes the output signal of the bandpass filter and the output of the third AC signal source, and a third mixer that mixes the output signal of the third AC signal source; a second intermediate frequency amplifier that amplifies the output of the third mixer using a tuning frequency; and a fourth mixer that mixes the output signal of the second intermediate frequency amplifier and the output signal of the second mixer. and a changeover switch for switching the output signal of the first mixer input to the first intermediate frequency amplifier to the output signal of the fourth mixer, and the band control section is provided with a switch that switches the resonant frequency of the measurement target to the output signal of the fourth mixer. Determine whether or not it belongs to the pass frequency band of the band filter that includes the tuning frequency of the first intermediate frequency amplifier, and when this determination is affirmative, output a command to switch the changeover switch to the fourth mixer side. The invention is characterized in that it has a means for doing so.

すなわち、第2の中間周波増幅器系により、異
なる同調周波数で増幅する構成として、側波帯成
分の帯域を測定対象の共鳴周波数から遠ざけて、
S/N比の悪化を防止しようというものである。
この場合、第2の中間周波増幅器の出力はQD法
による位相検波の最適周波数から離れるので、本
発明の他の発明では、更に第1の中間周波増幅器
を通して周波数変換をして、最適周波数により
QD法による検波を行わせるようにしているので
ある。
That is, the second intermediate frequency amplifier system is configured to amplify at a different tuning frequency, and the band of the sideband component is moved away from the resonant frequency of the measurement target.
This is intended to prevent deterioration of the S/N ratio.
In this case, the output of the second intermediate frequency amplifier deviates from the optimal frequency for phase detection using the QD method, so in another invention of the present invention, the output is further converted through the first intermediate frequency amplifier to obtain the optimal frequency.
The QD method is used for detection.

〔発明の実施例〕[Embodiments of the invention]

本発明に係る核磁気共鳴装置の要部の構成を第
4図に示す。第5図に示すように本実施例では共
鳴周波数の帯域をA1〜A4、Bの5帯域に分割し、
中間周波増幅器の同調周波数をA2の帯域に設定
するものとする。
FIG. 4 shows the configuration of the main parts of the nuclear magnetic resonance apparatus according to the present invention. As shown in FIG. 5, in this example, the resonance frequency band is divided into five bands A 1 to A 4 and B.
Assume that the tuning frequency of the intermediate frequency amplifier is set to the band A2 .

第4図において出力信号の周波数を広範囲に可
変できる第1の交流信号源2(周波数F1)と固
定周波数の第2の交流信号源(周波数F2)1の
出力信号を周波数ミキサ3で混合して共鳴周波数
(F1−F2)の信号を作り、該信号を帯域フイルタ
12を介してパルス電力増幅器4で増幅して均一
な直流磁場(図示せず)中に配置されたプローブ
5に印加する。そしてプローブ5内に装填された
試料に共鳴現象を起させ、その共鳴信号(F1
F2)を高周波増幅器6で増幅し、帯域フイルタ
13を介して周波数ミキサ7で周波数変換する
(周波数変換された信号の周波数はF2)。更にこ
の周波数変換信号を第1の中間周波増幅器(同調
周波数はF2)8で増幅し、この増幅信号を第2
の交流信号源1の出力信号により位相検波器9で
位相検波して可聴周波数領域の信号を取り出し、
この位相検波出力を可聴波増幅器10で増幅して
自由誘導減衰信号を得る。また、上記の帯域フイ
ルタ12,13はそれぞれの通過周波数帯域が、
多核種の核磁気共鳴周波数の範囲を複数に分割し
てなる複数の帯域に対応させて、第5図に示す
A1〜A4とBの複数の帯域に分割設定され、かつ
その通過周波数帯域を切換可能に形成されてい
る。
In Fig. 4, the output signals of a first AC signal source 2 (frequency F 1 ) whose output signal frequency can be varied over a wide range and a second AC signal source (frequency F 2 ) 1 with a fixed frequency are mixed by a frequency mixer 3. to generate a signal at the resonant frequency (F 1 −F 2 ), which is amplified by the pulse power amplifier 4 via the bandpass filter 12 and sent to the probe 5 placed in a uniform DC magnetic field (not shown). Apply. Then, a resonance phenomenon is caused in the sample loaded in the probe 5, and the resonance signal (F 1
F2 ) is amplified by the high frequency amplifier 6, and frequency-converted by the frequency mixer 7 via the bandpass filter 13 (the frequency of the frequency-converted signal is F2 ). Furthermore, this frequency-converted signal is amplified by a first intermediate frequency amplifier (tuned frequency is F 2 ), and this amplified signal is amplified by a second intermediate frequency amplifier (tuned frequency is F 2 ).
A phase detector 9 performs phase detection using the output signal of the AC signal source 1 to extract a signal in the audible frequency range.
This phase detection output is amplified by an audio amplifier 10 to obtain a free induction attenuation signal. In addition, each of the bandpass filters 12 and 13 has a passing frequency band of
The range of nuclear magnetic resonance frequencies of multiple nuclides is divided into multiple bands, as shown in Figure 5.
It is divided into a plurality of bands A 1 to A 4 and B, and the pass frequency band is switchable.

ここで共鳴周波数(F1−F2)の帯域と第1の
中間周波増幅器8の同調周波数が一致する場合に
は、共鳴信号(F1−F2)を高周波増幅器6で増
幅し、帯域フイルタ13を介して周波数ミキサ1
6で第3の交流信号源14の出力信号(周波数
F3)で周波数変換する(周波数変換された信号
の周波数はF1−F2+F3)。
Here, if the band of the resonance frequency (F 1 -F 2 ) and the tuning frequency of the first intermediate frequency amplifier 8 match, the resonance signal (F 1 -F 2 ) is amplified by the high frequency amplifier 6 and then passed through the band filter. Frequency mixer 1 through 13
6, the output signal of the third AC signal source 14 (frequency
F 3 ) (the frequency of the frequency-converted signal is F 1 −F 2 +F 3 ).

そしてこの周波数変換信号を第2の中間周波増
幅器(同調周波数はF1−F2+F3)17で増幅し、
更に周波数ミキサ18で第1の交流信号源2(周
波数F1)と第3の交流信号源(F3)の出力信号
を混合して得られる信号(周波数はF1+F3)で
周波数変換する。そしてこの周波数変換信号は帯
域制御部11により制御される切替スイツチ19
を介して中間周波増幅器8に入力され、既述した
ように位相検波器9、可聴周波増幅器10を介し
て自由誘導減衰信号を得る。
This frequency-converted signal is then amplified by a second intermediate frequency amplifier (tuned frequency is F 1 −F 2 +F 3 ) 17,
Further, the frequency mixer 18 performs frequency conversion using a signal obtained by mixing the output signals of the first AC signal source 2 (frequency F 1 ) and the third AC signal source (F 3 ) (frequency is F 1 +F 3 ). . This frequency converted signal is then transferred to a changeover switch 19 controlled by the band control section 11.
The signal is input to the intermediate frequency amplifier 8 via the phase detector 9 and the audio frequency amplifier 10 to obtain a free induction attenuation signal as described above.

帯域制御部11は試料の測定核種の決定により
得られる共鳴周波数に対応する帯域フイルタ1
2,13の周波数帯域と第1の交流信号源2の周
波数の設定を行い、共鳴周波数の帯域と第1の中
間周波増幅器8の同調周波数とが一致した場合に
切替スイツチ19を周波数ミキサ18側に切換え
るように制御する。
The band control unit 11 includes a band filter 1 corresponding to the resonance frequency obtained by determining the measurement nuclide of the sample.
The frequency bands 2 and 13 and the frequency of the first AC signal source 2 are set, and when the resonance frequency band and the tuning frequency of the first intermediate frequency amplifier 8 match, the changeover switch 19 is set to the frequency mixer 18 side. control to switch to

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、次の効
果が得られる。
As explained above, according to the present invention, the following effects can be obtained.

まず、帯域フイルタの通過周波数帯域を測定対
象の共鳴周波数の範囲に複数設定し、帯域制御部
により測定対象の核種の共鳴周波数に対応して帯
域フイルタの通過周波数帯域を切り換えるように
し、この帯域フイルタを第1の中間周波増幅器の
入力側に設けたことから、測定対象の共鳴周波数
に係る側波帯成分が中間周波数増幅器に飛び込む
確率を大幅に減少できる。これにより、中間周波
増幅器の周波数をQD法の位相検波に適した低い
周波数に設定でき、しかも広い周波数帯域にわた
る多核種測定に際し、側波帯成分の影響を排除し
て所望の共鳴信号のS/N比の悪化を防止し得
る。
First, a plurality of pass frequency bands of the band filter are set in the range of the resonance frequency of the measurement target, and the band control unit switches the pass frequency band of the band filter in accordance with the resonance frequency of the nuclide to be measured. Since it is provided on the input side of the first intermediate frequency amplifier, it is possible to significantly reduce the probability that sideband components related to the resonant frequency of the measurement object will jump into the intermediate frequency amplifier. As a result, the frequency of the intermediate frequency amplifier can be set to a low frequency suitable for phase detection using the QD method, and when measuring multiple nuclides over a wide frequency band, the influence of sideband components can be eliminated to obtain the desired S/ Deterioration of the N ratio can be prevented.

また、上記において、測定対象の共鳴周波数が
第1の中間周波増幅器の同調周波数に近い場合
は、帯域フイルタの通過周波数帯域にその同調周
波数が入つてしまうから、測定対象の共鳴周波数
の側波帯成分を帯域フイルタでは除去できない場
合がある。この場合は、本発明の他の発明のよう
に、第2の中間周波増幅器系を設け、異なる同調
周波数で増幅する構成として、側波帯成分の帯域
を測定対象の共鳴周波数から遠ざけて、S/N比
の悪化を防止することができる。
In addition, in the above, if the resonance frequency of the measurement target is close to the tuning frequency of the first intermediate frequency amplifier, the tuning frequency will be included in the pass frequency band of the bandpass filter, so the sideband of the resonance frequency of the measurement target will be Components may not be removed by a bandpass filter. In this case, as in other inventions of the present invention, a second intermediate frequency amplifier system is provided to amplify at a different tuning frequency, and the sideband component band is moved away from the resonant frequency of the measurement target. /N ratio can be prevented from deteriorating.

更に全ての交流信号源、帯域フイルタ、高周波
増幅器、中間周波増幅器等が扱う信号の周波数が
同程度であるので回路構成が簡単になる。特に従
来装置の構成内容を大幅に変更することなく、容
易に他核種測定用の回路構成に変更することが可
能である。
Furthermore, since the frequencies of signals handled by all AC signal sources, band filters, high frequency amplifiers, intermediate frequency amplifiers, etc. are approximately the same, the circuit configuration is simplified. In particular, it is possible to easily change the circuit configuration for measuring other nuclides without significantly changing the configuration of the conventional device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は種々の原子核の共鳴周波数を示す図、
第2図は従来の核磁気共鳴装置の要部の構成を示
すブロツク図、第3図は共鳴信号の受信系の帯域
と中間周波増幅器の同調周波数との関係を示す
図、第4図は本発明に係る核磁気共鳴装置の一実
施例の要部の構成を示すブロツク図、第5図は本
発明に適用される共鳴周波数の帯域分割の一例を
示す図である。 1,2,14……交流信号源、3,7,15,
16,18……周波数ミキサ、4……パルス電力
増幅器、5……プローブ、6……高周波増幅器、
8,17……中間周波増幅器、9……位相検波
器、10……可聴周波増幅器、11……帯域制御
部、12,13……帯域フイルム、19……切替
スイツチ。
Figure 1 is a diagram showing the resonance frequencies of various atomic nuclei,
Figure 2 is a block diagram showing the configuration of the main parts of a conventional nuclear magnetic resonance apparatus, Figure 3 is a diagram showing the relationship between the resonance signal reception system band and the tuning frequency of the intermediate frequency amplifier, and Figure 4 is the main part of the present invention. FIG. 5 is a block diagram showing the configuration of a main part of an embodiment of the nuclear magnetic resonance apparatus according to the invention, and FIG. 5 is a diagram showing an example of band division of the resonance frequency applied to the invention. 1, 2, 14... AC signal source, 3, 7, 15,
16, 18... Frequency mixer, 4... Pulse power amplifier, 5... Probe, 6... High frequency amplifier,
8, 17... Intermediate frequency amplifier, 9... Phase detector, 10... Audio frequency amplifier, 11... Bandwidth control section, 12, 13... Bandwidth film, 19... Changeover switch.

Claims (1)

【特許請求の範囲】 1 周波数の異なる第1の交流信号源と第2の交
流信号源の出力信号を混合して核磁気共鳴周波数
の信号を作り、これをパルス増幅して直流磁場中
に配置されたプローブに印加し、その共鳴信号を
検出コイルで受信して高周波増幅器により増幅す
ると共に、この増幅信号を第1の交流信号源の出
力信号と混合し、これを前記第2の交流信号源の
出力信号の周波数を同調周波数とする中間周波増
幅器により増幅し、更に第2の交流信号源の出力
信号源の出力信号でQD法により位相検波して可
聴周波数の自由誘導減衰信号を得、この自由誘導
減衰信号をデータ処理装置でフーリエ変換してス
ペクトルを得る核磁気共鳴装置において、前記第
2の交流信号源の出力信号の周波数を前記QD法
による位相検波に適した低い周波数に設定し、前
記第1の交流信号源を多核種の核磁気共鳴周波数
の範囲に対応させて出力信号の周波数を広範囲に
調整可能に形成し、前記高周波増幅器の出力側に
帯域フイルタを挿入し、この帯域フイルタの通過
周波数帯域を前記多核種の核磁気共鳴周波数の範
囲を複数に分割してなる複数の帯域に対応させて
複数設定すると共にその通過周波数帯域を切換可
能に形成し、前記第1の交流信号源の周波数と前
記帯域フイルタの通過周波数帯域とを測定対象の
核種に対応させて切り換える帯域制御部を設けた
ことを特徴とする核磁気共鳴装置。 2 周波数の異なる第1の交流信号源と第2の交
流信号源の出力信号を混合して核磁気共鳴周波数
の信号を作り、これをパルス増幅して直流磁場中
に配置されたプローブに印加し、その共鳴信号を
検出コイルで受信して高周波増幅器により増幅す
ると共に、この増幅信号を第1のミキサにより第
1の交流信号源の出力信号と混合し、この第1の
ミキサの出力信号を前記第2の交流信号源の出力
信号の周波数を同調周波数とする第1の中間周波
増幅器により増幅し、更に第2の交流信号源の出
力信号源の出力信号でQD法により位相検波して
可聴周波数の自由誘導減衰信号を得、この自由誘
導減衰信号をデータ処理装置でフーリエ変換して
スペクトルを得る核磁気共鳴装置において、前記
第2の交流信号源の出力信号の周波数を前記QD
法による位相検波に適した低い周波数に設定し、
前記第1の交流信号源を多核種の核磁気共鳴周波
数の範囲に対応させて出力信号の周波数を広範囲
に調整可能に形成し、前記高周波増幅器の出力側
に帯域フイルタを挿入し、この帯域フイルタの通
過周波数帯域を前記多核種の核磁気共鳴周波数の
範囲を複数に細分してなる複数の帯域に対応させ
て複数設定すると共にその通過周波数帯域を切換
可能に形成し、前記第1の交流信号源の周波数と
前記帯域フイルタの通過周波数帯域とを測定対象
の核種に対応させて切り換える帯域制御部を設
け、更に前記第2の交流信号源と周波数が異なる
第3の交流信号源と、この第3の交流信号源と前
記第1の交流信号源の出力信号を混合する第2の
ミキサと、前記帯域フイルタの出力信号と前記第
3の交流信号源の出力とを混合する第3のミキサ
と、この第3のミキサの出力信号の周波数を同調
周波数としこの第3のミキサの出力を増幅する第
2の中間周波増幅器と、この第2の中間周波増幅
器の出力信号と前記第2のミキサの出力信号とを
混合する第4のミキサと、前記第1の中間周波増
幅器に入力する前記第1のミキサの出力信号を前
記第4のミキサの出力信号に切り換える切換スイ
ツチとを設け、前記帯域制御部に、測定対象の共
鳴周波数が前記第1の中間周波増幅器の同調周波
数の含まれる前記帯域フイルタの通過周波数帯域
に属するか否かを判定し、この判定が肯定のとき
に前記切換スイツチを前記第4のミキサ側に切り
換える指令を出力する手段を設けたことを特徴と
する核磁気共鳴装置。
[Claims] 1. Mixing the output signals of a first AC signal source and a second AC signal source with different frequencies to create a signal at the nuclear magnetic resonance frequency, which is pulse amplified and placed in a DC magnetic field. The resonant signal is received by a detection coil and amplified by a high frequency amplifier, and this amplified signal is mixed with the output signal of the first AC signal source, and this is applied to the second AC signal source. The frequency of the output signal of the second AC signal source is amplified by an intermediate frequency amplifier with a tuning frequency, and the output signal of the output signal source of the second AC signal source is phase-detected by the QD method to obtain a free induction attenuation signal of an audio frequency. In a nuclear magnetic resonance apparatus in which a spectrum is obtained by Fourier transforming a free induction decay signal using a data processing device, the frequency of the output signal of the second AC signal source is set to a low frequency suitable for phase detection by the QD method, The first alternating current signal source is made to correspond to the range of nuclear magnetic resonance frequencies of multiple nuclides so that the frequency of the output signal can be adjusted over a wide range, and a bandpass filter is inserted on the output side of the high frequency amplifier, and the bandpass filter A plurality of pass frequency bands are set corresponding to a plurality of bands obtained by dividing the nuclear magnetic resonance frequency range of the multi-nuclide into a plurality of bands, and the pass frequency bands are configured to be switchable, and the first alternating current signal 1. A nuclear magnetic resonance apparatus, comprising: a band controller for switching a source frequency and a pass frequency band of the band filter in accordance with a nuclide to be measured. 2. Mix the output signals of the first AC signal source and the second AC signal source with different frequencies to create a signal at the nuclear magnetic resonance frequency, pulse amplify this signal, and apply it to a probe placed in a DC magnetic field. , the resonance signal is received by a detection coil and amplified by a high frequency amplifier, and this amplified signal is mixed with the output signal of the first AC signal source by a first mixer, and the output signal of this first mixer is The frequency of the output signal of the second AC signal source is amplified by a first intermediate frequency amplifier that has a tuning frequency, and the output signal of the output signal source of the second AC signal source is further phase-detected by the QD method to obtain an audible frequency. In a nuclear magnetic resonance apparatus in which a free induction attenuation signal of the QD is obtained and a spectrum is obtained by Fourier transforming the free induction attenuation signal in a data processing device, the frequency of the output signal of the second AC signal source is
Set to a low frequency suitable for phase detection using
The first alternating current signal source is made to correspond to the range of nuclear magnetic resonance frequencies of multiple nuclides so that the frequency of the output signal can be adjusted over a wide range, and a bandpass filter is inserted on the output side of the high frequency amplifier, and the bandpass filter A plurality of pass frequency bands are set corresponding to a plurality of bands obtained by subdividing the nuclear magnetic resonance frequency range of the multi-nuclide species, and the pass frequency bands are switchable, and the first AC signal A band control unit is provided for switching the frequency of the source and the pass frequency band of the bandpass filter in accordance with the nuclide to be measured, and further includes a third AC signal source having a frequency different from that of the second AC signal source, and the second AC signal source. a second mixer that mixes the output signal of the third AC signal source and the first AC signal source; and a third mixer that mixes the output signal of the bandpass filter and the output of the third AC signal source. , a second intermediate frequency amplifier that uses the frequency of the output signal of the third mixer as a tuning frequency and amplifies the output of the third mixer; and a second intermediate frequency amplifier that amplifies the output of the third mixer; a fourth mixer for mixing the output signal and a changeover switch for switching the output signal of the first mixer input to the first intermediate frequency amplifier to the output signal of the fourth mixer; In the step, it is determined whether or not the resonant frequency of the measurement object belongs to the pass frequency band of the bandpass filter that includes the tuning frequency of the first intermediate frequency amplifier, and when this determination is affirmative, the changeover switch is A nuclear magnetic resonance apparatus comprising means for outputting a switching command to a fourth mixer side.
JP58133251A 1983-07-21 1983-07-21 Nuclear magnetic resonance apparatus Granted JPS6024465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58133251A JPS6024465A (en) 1983-07-21 1983-07-21 Nuclear magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133251A JPS6024465A (en) 1983-07-21 1983-07-21 Nuclear magnetic resonance apparatus

Publications (2)

Publication Number Publication Date
JPS6024465A JPS6024465A (en) 1985-02-07
JPH0526148B2 true JPH0526148B2 (en) 1993-04-15

Family

ID=15100237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133251A Granted JPS6024465A (en) 1983-07-21 1983-07-21 Nuclear magnetic resonance apparatus

Country Status (1)

Country Link
JP (1) JPS6024465A (en)

Also Published As

Publication number Publication date
JPS6024465A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
US5170123A (en) Magnetic resonance imager with digital transmitter/receiver
US4739266A (en) MR tomography method and apparatus for performing the method
JPS59644A (en) Measuring device for nuclear magnetic resonance to nmr tomography
US3530371A (en) Internal field-frequency control for impulse gyromagnetic resonance spectrometers
JPS5938636A (en) Nuclear magnetic resonance apparatus
JP2898317B2 (en) Magnetic resonance equipment
US5248943A (en) Multi-view coil bandpass filter array system
JPH0337043A (en) Method for magnetic resonance imaging
JPH06105824A (en) Apparatus and method for processing magnetic resonance signal
US4502008A (en) Method and apparatus for nuclear magnetic resonance spectroscopy
Sternlicht et al. Modification of the Varian XL‐100 NMR Spectrometer for Fourier Transform Operation
US3085195A (en) Gyromagnetic resonance methods and apparatus
JPH0526148B2 (en)
CA1263703A (en) Determination of spectral distribution of nuclear magnetization in a limited volume
JPS63246147A (en) Method and apparatus for measuring spectrum distribution of nuclear magnetization in prescribed volume region
JP2007003458A (en) Digital orthogonal lock-in detecting method and device
JPH09264940A (en) Apparatus for excitation and detection of magnetic resonance
IL129471A (en) Magnetic resonance apparatus having reduced "dead time"
Dorn et al. A simple spectrometer modification for multinuclide FT operation
US3124741A (en) primas
JPS6159248A (en) Nuclear magnetic resonance apparatus
JP2008122203A (en) Nuclear magnetic resonance device and its operating method
JPH01259847A (en) Magnetic resonance spectral diffraction method
JPS62221342A (en) Method and apparatus for determining spectrum distribution of nuclear magnetization in limited volume
JPH10165392A (en) Magnetic resonance imaging apparatus