JPH05260685A - Uninterruptible power supply equipment - Google Patents

Uninterruptible power supply equipment

Info

Publication number
JPH05260685A
JPH05260685A JP4053679A JP5367992A JPH05260685A JP H05260685 A JPH05260685 A JP H05260685A JP 4053679 A JP4053679 A JP 4053679A JP 5367992 A JP5367992 A JP 5367992A JP H05260685 A JPH05260685 A JP H05260685A
Authority
JP
Japan
Prior art keywords
power supply
voltage
inverter
component
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4053679A
Other languages
Japanese (ja)
Inventor
Takeshi Shioda
剛 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP4053679A priority Critical patent/JPH05260685A/en
Publication of JPH05260685A publication Critical patent/JPH05260685A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To make the efficient use of an inverter by making an inverter equipped in an uninterruptible power supply equipment perform the suppression of the higher harmonic current of load at normality of an AC power source and the charge and voltage suppression of the DC part of an inverter, and the voltage constant control of a load input terminal, and work as an uninterruptible power supply equipment the time of service interruption. CONSTITUTION:A first switch 2, in series with an AC power source 1, a second switch 3, in parallel with the output end of the first switch 2, and an inverter 7, in series with load 5, are provided, respectively. An inverter detects a power current IS, power voltage VS, and load input end voltage VL, respectively, and generates higher harmonic voltage proportionate to the higher harmonic component of the power supply current, its fundamental wave component, effective component voltage by the in-phase and the orthogonal component, and the fundamental wave voltage of reactive component voltage, and performs the control at the time of normal AC voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子計算機等の負荷設
備に無停電で交流電力を供給するための無停電電源装置
に関し、特に交流電源給電時はインバータを充電しなが
ら負荷設備への交流電圧を一定に保つと共に、負荷設備
高調波電流の交流電源側への抑制装置として動作させる
無停電電源装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an uninterruptible power supply device for supplying AC power to load equipment such as a computer without interruption, and particularly to AC to load equipment while charging an inverter when AC power is supplied. The present invention relates to an improvement in an uninterruptible power supply device that keeps the voltage constant and operates as a device that suppresses a load facility harmonic current to the AC power supply side.

【0002】[0002]

【従来の技術】従来、この種の無停電電源装置として
は、図7に示す方式(特公昭49-41733号公報参照)が公
知である。同図において、1は交流電源、2は第1開閉
器、9はリアクタンス回路、8は充電可能な蓄電池、7
はインバータ、5は負荷設備、6はリップル除去用フィ
ルタである。
2. Description of the Related Art Conventionally, as this type of uninterruptible power supply, a system shown in FIG. 7 (see Japanese Patent Publication No. 49-41733) is known. In the figure, 1 is an AC power supply, 2 is a first switch, 9 is a reactance circuit, 8 is a rechargeable storage battery, 7
Is an inverter, 5 is load equipment, and 6 is a ripple removal filter.

【0003】交流電源1が正常時は第1開閉器2がオン
であり、リアクタンス回路9を介して負荷設備5に交流
電力が送られる。一方、インバータ7は蓄電池8の直流
電力を受電し、交流電源1と同一周波数で、ほぼ同一電
圧の交流電圧をリップル除去用フィルタ6を介して出力
する。この時インバータ7の出力電圧と交流電源1の電
圧との間に位相差を持たせることにより、交流電源1よ
りインバータ7へ電力が流入し、インバータ7は充電器
として動作して蓄電池8を充電する。また、負荷設備5
が発生する高調波電流に対してはインバータは基本波と
なるために、リアクタンス回路9より高調波電流に対し
て低インピーダンスとなり、高調波電流がインバータ7
に流入し、交流電源1側に流入しない。交流電源1が停
電時は第1開閉器2がオフし、インバータ7は負荷設備
5に交流電力を送出する。
When the AC power supply 1 is normal, the first switch 2 is ON, and AC power is sent to the load equipment 5 via the reactance circuit 9. On the other hand, the inverter 7 receives the DC power of the storage battery 8 and outputs the AC voltage having the same frequency as the AC power supply 1 and having substantially the same voltage through the ripple removing filter 6. At this time, by providing a phase difference between the output voltage of the inverter 7 and the voltage of the AC power supply 1, electric power flows from the AC power supply 1 into the inverter 7, and the inverter 7 operates as a charger to charge the storage battery 8. To do. Also, load equipment 5
Since the inverter becomes a fundamental wave with respect to the harmonic current generated by, the reactance circuit 9 has a lower impedance with respect to the harmonic current, and the harmonic current becomes
To the AC power supply 1 side and not to the AC power supply 1 side. When the AC power supply 1 fails, the first switch 2 is turned off, and the inverter 7 sends out AC power to the load equipment 5.

【0004】[0004]

【発明が解決しようとする課題】この従来例では、リア
クタンス回路9に使用されるリアクトルは商用周波数で
動作するように設計する必要があり、大きさ、重量とも
大きくなると言う欠点があった。また、インバータ7を
充電器として動作させるために交流電源1の基本波電圧
をE1、インバータ7の出力基本波電圧をE2、リアクタン
ス回路のリアクタンスをx、交流電源1とインバータ8
の電圧位相差をθとした時、式(1) で表される交流電源
1よりリアクタンス回路9を経てインバータ7に流入す
る電力Wを制御する必要があるが、式(1) からも明らか
なように sin-1の値を求めねばならず、制御が複雑とな
っている。
In this conventional example, the reactor used in the reactance circuit 9 needs to be designed so as to operate at a commercial frequency, and there is a drawback that both the size and the weight increase. Further, in order to operate the inverter 7 as a charger, the fundamental wave voltage of the AC power source 1 is E1, the output fundamental wave voltage of the inverter 7 is E2, the reactance of the reactance circuit is x, the AC power source 1 and the inverter 8
When the voltage phase difference of is expressed as θ, it is necessary to control the electric power W flowing into the inverter 7 from the AC power source 1 represented by the formula (1) through the reactance circuit 9, but it is clear from the formula (1). As described above, the value of sin -1 has to be obtained, which makes the control complicated.

【数1】 W=E1・(E2/x)・sin θ (1) [Equation 1] W = E1 ・ (E2 / x) ・ sin θ (1)

【0005】更に、負荷設備5の高調波電流の交流電源
1側への流入を抑制するために、交流電源側のインピー
ダンスとインバータ7側のインピーダンスとの差を利用
しているが、インバータ7側にもリップル除去用フィル
タ6が接続されるために、高調波抑制効果は充分なもの
ではなかった。
Further, in order to suppress the inflow of the harmonic current of the load equipment 5 into the AC power source 1 side, the difference between the impedance on the AC power source side and the impedance on the inverter 7 side is used. However, since the ripple removing filter 6 is connected, the effect of suppressing harmonics is not sufficient.

【0006】更に、電源電圧Vs が変動した時、それを
補正する機能がなかった。
Further, when the power supply voltage V s fluctuates, there is no function of correcting it.

【0007】[0007]

【課題を解決するための手段】本発明による無停電電源
装置は、交流電源と負荷との間に直列に設けられる無停
電電源装置であって、交流電源に直列に接続された第1
の開閉器と、該第1の開閉器の出力側に並列に接続され
たリップル除去用フィルタと、前記第1の開閉器と直列
に接続されたインバータと、該インバータの直流側に接
続された蓄電池と、前記インバータを制御する制御装置
とを具え、該制御装置は電源電流と交流電源電圧とを検
出しその基本波成分と高調波成分とを検出する手段と、
該電源電流高調波成分をゲインK倍して高調波電圧指令
を出力する手段と、前記蓄電池の直流電圧指令と前記蓄
電池の直流電圧との差と前記電源電流基本波成分とを入
力し前記電源電流基本波成分と同相又は逆相の有効分電
圧指令を出力する手段と、前記高調波分電圧指令と前記
有効分電圧指令とを入力しそれらのベクトル合成値と三
角波との比較により正常時ゲートパルスを出力する手段
と、負荷電圧指令を入力し前記インバータ出力が交流電
圧となるように停電時ゲートパルスを出力する手段と、
該停電時ゲートパルスと前記正常時ゲートパルスと交流
電源電圧とを入力とし交流電源正常時は前記第1の開閉
器をオンし前記第2の開閉器をオフにし前記正常時ゲー
トパルスを前記インバータに出力し交流電源停電時は前
記第1の開閉器をオフし前記第2の開閉器をオンにし前
記停電時ゲートパルスをインバータに出力することを特
徴とする。
An uninterruptible power supply device according to the present invention is an uninterruptible power supply device that is provided in series between an AC power supply and a load, the first uninterruptible power supply being connected in series to an AC power supply.
Switch, a ripple removal filter connected in parallel to the output side of the first switch, an inverter connected in series with the first switch, and a DC side of the inverter. A storage battery; and a control device for controlling the inverter, the control device detecting a power supply current and an AC power supply voltage, and detecting a fundamental wave component and a harmonic component thereof,
Means for multiplying the power source current harmonic component by a gain K to output a harmonic voltage command; and a difference between the DC voltage command of the storage battery and the DC voltage of the storage battery and the power supply current fundamental wave component for inputting the power supply. A means for outputting an effective component voltage command having the same phase or a reverse phase as the current fundamental wave component, and the normal-time gate by inputting the harmonic component voltage command and the effective component voltage command and comparing their vector composite value and the triangular wave. Means for outputting a pulse, means for inputting a load voltage command, and outputting a gate pulse during a power failure so that the inverter output becomes an AC voltage,
The gate pulse at power failure, the gate pulse at normal time, and the AC power supply voltage are input, and when the AC power supply is normal, the first switch is turned on and the second switch is turned off, and the gate pulse at normal time is supplied to the inverter. When the AC power source fails, the first switch is turned off and the second switch is turned on to output the gate pulse during the power failure to the inverter.

【0008】本発明による無停電電源装置は更に、前記
負荷電圧指令と負荷電圧との差と前記電源電流基本波分
と交流電源電圧とを入力し前記電源電流基本波分と90°
又は−90°の位相差を持つ無効分電圧指令を出力する手
段を具え、前記正常時ゲートパルスを出力する手段が、
該無効分電圧指令と前記有効分電圧指令と前記高調波分
電圧指令とを入力しそれらのベクトル合成値と三角波と
の比較により正常時ゲートパルスを出力するように構成
してもよい。
The uninterruptible power supply device according to the present invention further inputs the difference between the load voltage command and the load voltage, the power supply current fundamental wave component, and the AC power supply voltage, and the power supply current fundamental wave component and 90 °.
Or, comprising means for outputting a reactive voltage command having a phase difference of −90 °, and means for outputting the gate pulse at the normal time,
The reactive component voltage command, the effective component voltage command, and the harmonic component voltage command may be input, and a gate pulse may be output during normal operation by comparing a vector composite value of them and a triangular wave.

【0009】[0009]

【作用】本発明の無停電電源装置は交流電源電圧を検出
して、交流電源正常時はインバータにより負荷の高調波
電流を電源に流出しないように抑制し、インバータの直
流電圧制御を行うと共に、負荷電圧を一定に制御するも
のである。
The uninterruptible power supply of the present invention detects the AC power supply voltage, and when the AC power supply is normal, suppresses the harmonic current of the load from flowing out to the power supply, and controls the DC voltage of the inverter. The load voltage is controlled to be constant.

【0010】この原理を、図3の基本波ベクトル図、図
4の動作波形図、及び図5の無停電電源装置を含む単線
結線図により説明する。
This principle will be described with reference to the fundamental wave vector diagram of FIG. 3, the operation waveform diagram of FIG. 4, and the single line connection diagram including the uninterruptible power supply device of FIG.

【0011】先ず、高調波抑制について説明する。図に
おいて、VS は交流電源電圧、VCは無停電電源装置の
電圧、VL は負荷電圧であり、これらは系統インピーダ
ンスと直列に接続されて負荷電流IS が流れる。交流電
源と負荷との間に接続された無停電電源装置は、負荷電
流が正弦波になるように制御すればよい。すなわち、無
停電電源装置は電源電流高調波成分ISH(添字Hは高調
波成分を表す)を
First, harmonic suppression will be described. In the figure, V S is the AC power supply voltage, V C is the voltage of the uninterruptible power supply, and V L is the load voltage, which are connected in series with the system impedance and the load current I S flows. The uninterruptible power supply device connected between the AC power supply and the load may be controlled so that the load current has a sine wave. That is, the uninterruptible power supply unit supplies the power supply current harmonic component I SH (subscript H represents the harmonic component).

【数2】 ISH=0 (2) となるように制御すれば、[Equation 2] By controlling so that I SH = 0 (2),

【数3】 VC =VSH−VLH (3) となり、無停電電源装置が、(2) 式で表される図4に示
すような高調波電圧を発生することによって、電源電流
高調波成分ISHを零にすることができる。
[Equation 3] V C = V SH −V LH (3) and the uninterruptible power supply generates harmonic voltage as shown in FIG. The component I SH can be zero.

【0012】次に、インバータの直流電圧VD 制御と負
荷電圧VL 制御について説明する。図3において、電源
電流基本波成分IS と同相又は逆相の基本波電圧VA
発生することによって、直流電圧VD の上昇又は下降を
制御することができる。更に電源電流基本波成分IS
90°位相の異なる進み成分又は遅れ成分の基本波電圧V
B を発生することによって、負荷電圧VL の上昇又は下
降を制御することができる。
Next, the DC voltage V D control and the load voltage V L control of the inverter will be described. In FIG. 3, the rise or fall of the DC voltage V D can be controlled by generating the fundamental wave voltage V A in phase with or opposite to the source current fundamental wave component I S. Further, the power source current fundamental wave component I S
Fundamental wave voltage V of lead component or lag component with different 90 ° phase
By generating B , the rise or fall of the load voltage V L can be controlled.

【0013】従って、無停電電源装置が発生する基本波
電圧は、VA とVB とをベクトル的に加算したVC ′と
なる。
Therefore, the fundamental wave voltage generated by the uninterruptible power supply becomes V C ′ which is the vector addition of V A and V B.

【0014】このように、交流電源正常時は無停電電源
装置が高調波電圧VC と基本波電圧VC ′とをベクトル
的に加算した電圧を発生することによって、高調波抑制
と、直流電圧制御、及び負荷電圧制御を行うことができ
る。
As described above, when the AC power supply is normal, the uninterruptible power supply generates a voltage in which the harmonic voltage V C and the fundamental wave voltage V C ′ are added in vector. Control and load voltage control can be performed.

【0015】交流電源停電時はインバータが交流電源よ
り切り離され、インバータは一定の負荷電圧VL を発生
するように制御される。
During a power failure of the AC power supply, the inverter is disconnected from the AC power supply and the inverter is controlled to generate a constant load voltage V L.

【0016】[0016]

【実施例】図1は本発明の無停電電源装置の主回路構
成、図2は制御装置の一実施例を示す図である。これら
の図中、3は第2開閉器、21は電源電流分析回路、22は
第1加算回路、23は無効分電圧指令回路、24は第2加算
回路、25は有効分電圧指令回路、26は高調波分電圧指令
回路、27は比較回路、28は正弦波PWMパルス発生回
路、29は選択回路であり、その他図7と同一の符号は同
一部分を示す。
FIG. 1 is a diagram showing the main circuit configuration of an uninterruptible power supply unit according to the present invention, and FIG. 2 is a diagram showing an embodiment of a control unit. In these figures, 3 is a second switch, 21 is a power supply current analysis circuit, 22 is a first addition circuit, 23 is a reactive component voltage command circuit, 24 is a second addition circuit, 25 is an effective component voltage command circuit, 26 Is a harmonic component voltage command circuit, 27 is a comparison circuit, 28 is a sine wave PWM pulse generation circuit, 29 is a selection circuit, and the same reference numerals as those in FIG. 7 denote the same parts.

【0017】蓄電池8は交流電圧正常時はインバータ7
の直流側電圧を安定させるためのものであり、交流電源
停電時はインバータ7の負荷5への電力供給源である。
又、リップル除去用フィルタ6はインバータ7のスイッ
チング成分を除去するためのものである。
The storage battery 8 is an inverter 7 when the AC voltage is normal.
This is for stabilizing the DC side voltage of, and is a power supply source to the load 5 of the inverter 7 at the time of AC power failure.
The ripple removing filter 6 is for removing the switching component of the inverter 7.

【0018】図2において、交流電源1が導通時は電源
電流分析回路21は電源電圧VS と電源電流IS とを入力
し、電源電流IS から電源電圧VS と同周期の基本波電
流成分ISFと高調波電流分ISHとを、それぞれ無効分電
圧指令回路23と、有効分電圧指令回路25及び高調波分指
令回路26に出力する。
In FIG. 2, when the AC power supply 1 is conducting, the power supply current analysis circuit 21 inputs the power supply voltage V S and the power supply current I S, and changes from the power supply current I S to the power supply voltage V S of the fundamental wave current. The component I SF and the harmonic current component I SH are output to the reactive component voltage command circuit 23, the active component voltage command circuit 25, and the harmonic component command circuit 26, respectively.

【0019】第1加算回路22は負荷電圧指令VL * と負
荷電圧VL とを入力し、その差分を交流電圧偏差分ΔV
L として無効分電圧指令回路23に出力する。
The first adder circuit 22 inputs the load voltage command V L * and the load voltage V L, and the difference between them is the AC voltage deviation ΔV.
It is output as L to the reactive voltage command circuit 23.

【0020】無効分電圧指令回路23は交流電源電圧VS
と、基本波電流分ISF及び交流電圧偏差分ΔVL を入力
し、例えば図3に示すように基本波電流分ISFが交流電
源電圧VS よりも位相が遅れていて、交流電圧偏差分Δ
L が正の時、すなわち負荷電圧VL が指令より低い
時、交流電圧偏差分ΔVL に比例した基本波電流分ISF
より90°位相の進んだ無効分電圧指令VB を比較回路27
に出力する。
The reactive voltage command circuit 23 uses the AC power supply voltage V S.
Then, the fundamental wave current component I SF and the AC voltage deviation component ΔV L are input. For example, as shown in FIG. 3, the fundamental wave current component I SF is delayed in phase from the AC power supply voltage V S , and the AC voltage deviation component is Δ
When V L is positive, that is, when the load voltage V L is lower than the command, the fundamental wave current component I SF proportional to the AC voltage deviation ΔV L
The reactive circuit voltage command V B advanced 90 ° in phase is compared with the comparison circuit 27.
Output to.

【0021】高調波分電圧指令回路26は、高調波電流分
SHを入力しゲインK倍して高調波分電圧指令VSHを出
力する。
The harmonic component voltage command circuit 26 receives the harmonic current component I SH , multiplies the gain K by K, and outputs the harmonic component voltage command V SH .

【0022】第2加算回路24は、蓄電池8の直流電圧指
令VD * と直流電圧VD とを入力して、その差分を直流
電圧偏差分ΔVD として有効分電圧指令回路25に出力す
る。
The second adding circuit 24 inputs the DC voltage command V D * of the storage battery 8 and the DC voltage V D , and outputs the difference to the effective voltage command circuit 25 as a DC voltage deviation ΔV D.

【0023】有効分電圧指令回路25は電源電圧VS 及び
直流電圧偏差分ΔVD を入力し、例えば図3に示すよう
に直流電圧偏差分ΔVD が正の時、すなわち直流電圧V
D が指令より低い時、電源電圧VS と同相の有効分電圧
指令VA を比較回路27に出力する。
The effective component voltage command circuit 25 inputs the power source voltage V S and the DC voltage deviation ΔV D, and when the DC voltage deviation ΔV D is positive as shown in FIG. 3, that is, the DC voltage V
When D is lower than the command, the effective voltage command V A in phase with the power supply voltage V S is output to the comparison circuit 27.

【0024】比較回路27は高調波電圧指令VSH、無効分
電圧指令VB 、及び有効分電圧指令VA を入力し、それ
らの加算値と三角波比較を行い、正常時ゲートパルスGI
を選択回路29へ出力する。高調波電圧指令VSHによりイ
ンバータ7は図4のVC 及びIS に示すように時間T0
の後は高調波電圧VC を発生し、高調波電流の抑制を行
う。
The comparator circuit 27 inputs the harmonic voltage command V SH , the reactive voltage command V B , and the active voltage command V A , compares them with the added value, and performs a triangular wave comparison.
To the selection circuit 29. The harmonic voltage command V SH causes the inverter 7 to operate at time T 0 as shown by V C and I S in FIG.
After that, the harmonic voltage V C is generated to suppress the harmonic current.

【0025】無効分電圧指令VB により負荷電圧VL
一定制御を行って、有効分電圧指令VA により蓄電池の
直流電圧VD の一定制御を行うように、インバータ7は
図3のVC ′に示すような基本波電圧を発生する。
The inverter 7 is controlled by V C in FIG. 3 so that the reactive voltage command V B controls the load voltage V L constantly and the active voltage command V A controls the DC voltage V D of the storage battery. The fundamental wave voltage as shown in ′ is generated.

【0026】正弦波PWMパルス発生回路28は、交流電
源1が停電時に負荷5へ交流電源1と同相の交流電圧を
発生するような停電時ゲートパルスGVを生成し、選択回
路29へ出力する。
The sine wave PWM pulse generation circuit 28 generates a power failure gate pulse GV that generates an AC voltage of the same phase as the AC power supply 1 to the load 5 when the AC power supply 1 fails, and outputs it to the selection circuit 29.

【0027】選択回路29は正常時ゲートパルスGIと、正
弦波PWMパルス及び電源電圧VSを入力し、交流電源
1が正常時には第1開閉器2をオンし、第2開閉器3を
オフするような開閉器指令Sを第1開閉器及び第2開閉
器3に出力すると共に、正常時ゲートパルスGIをゲート
信号Gとしてインバータ7に出力する。
The selection circuit 29 inputs the gate pulse GI in normal time, the sine wave PWM pulse and the power supply voltage V S , and turns on the first switch 2 and turns off the second switch 3 when the AC power supply 1 is normal. Such a switch command S is output to the first switch and the second switch 3, and the normal-time gate pulse GI is output to the inverter 7 as the gate signal G.

【0028】次に、停電時は選択回路29は第1開閉器2
をオフし、第2開閉器3をオンするような開閉器指令S
を第1開閉器2及び第2開閉器3に出力すると共に、停
電時ゲートパルスGVをゲート信号としてインバータ7に
出力する。
Next, at the time of power failure, the selection circuit 29 operates as the first switch 2
Switch command S for turning off the switch and turning on the second switch 3
Is output to the first switch 2 and the second switch 3, and the gate pulse GV during a power failure is output to the inverter 7 as a gate signal.

【0029】図6は三相系統において三相インバータを
使用した時の実施例であり、変成器4により系統と接続
される。
FIG. 6 shows an embodiment in which a three-phase inverter is used in a three-phase system, which is connected to the system by a transformer 4.

【0030】[0030]

【発明の効果】以上の動作説明から明らかなように、本
発明によれば、交流電源が停電時には第1開閉器をオフ
し、第2開閉器をオンすると共に、負荷へ交流電力を供
給するようにインバータを動作させ、交流電源が正常時
には第1開閉器をオンし、第2開閉器をオフすると共
に、電源電流と電源電圧、負荷電圧及びインバータの直
流電圧を検出して、蓄電池直流電圧の一定制御と負荷電
圧の一定制御とを行いながら、負荷の高調波電流の電源
側への流入を抑制するようにインバータを動作させるの
で、従来交流電源側に設置されていたリアクタンス回路
を除去することができ、しかも負荷電圧の一定制御を行
うことができる簡便な制御回路を有する、小形で安価な
無停電電源装置を構成することができる。
As is apparent from the above description of the operation, according to the present invention, when the AC power source fails, the first switch is turned off and the second switch is turned on, and the AC power is supplied to the load. When the AC power supply is normal, the first switch is turned on, the second switch is turned off, and the power supply current, the power supply voltage, the load voltage and the DC voltage of the inverter are detected, and the storage battery DC voltage is detected. The inverter is operated so as to suppress the inflow of the harmonic current of the load to the power supply side while performing the constant control of the load voltage and the constant control of the load voltage, so that the reactance circuit conventionally installed on the AC power supply side is removed. It is possible to configure a small and inexpensive uninterruptible power supply having a simple control circuit capable of performing constant control of load voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の無停電電源装置の主回路構成図であ
る。
FIG. 1 is a main circuit configuration diagram of an uninterruptible power supply according to the present invention.

【図2】本発明の無停電電源装置の制御装置の一実施例
を示す図である。
FIG. 2 is a diagram showing an embodiment of a control device for an uninterruptible power supply according to the present invention.

【図3】本発明の無停電電源装置の原理を示すための基
本波ベクトル図である。
FIG. 3 is a fundamental wave vector diagram for illustrating the principle of the uninterruptible power supply device of the present invention.

【図4】本発明の無停電電源装置の動作波形図である。FIG. 4 is an operation waveform diagram of the uninterruptible power supply device of the present invention.

【図5】本発明の無停電電源装置を含む単線結線図であ
る。
FIG. 5 is a single line connection diagram including the uninterruptible power supply device of the present invention.

【図6】三相系統において三相インバータを使用した時
の一実施例を示す主回路構成図である。
FIG. 6 is a main circuit configuration diagram showing an embodiment when a three-phase inverter is used in a three-phase system.

【図7】従来から公知のこの種の無停電電源装置の主回
路接続図を示している。
FIG. 7 shows a main circuit connection diagram of a conventionally known uninterruptible power supply device of this type.

【符号の説明】[Explanation of symbols]

1 交流電源 2 第1開閉器 3 第2開閉器 4 変成器 5 負荷設備 6 リップル除去用フィルタ 7 インバータ 8 充電可能な蓄電池 9 リアクタンス回路 21 電源電流分析回路 22 第1加算回路 23 無効分電圧指令回路 24 第2加算回路 25 有効分電圧指令回路 26 高調波分電圧指令回路 27 比較回路 28 正弦波PWMパルス発生回路 29 選択回路 1 AC power supply 2 1st switch 3 2nd switch 4 Transformer 5 Load equipment 6 Ripple removal filter 7 Inverter 8 Rechargeable storage battery 9 Reactance circuit 21 Power supply current analysis circuit 22 First addition circuit 23 Reactive voltage command circuit 24 Second addition circuit 25 Effective voltage command circuit 26 Harmonic voltage command circuit 27 Comparison circuit 28 Sine wave PWM pulse generation circuit 29 Selection circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 交流電源と負荷との間に直列に設けられ
る無停電電源装置であって、交流電源に直列に接続され
た第1の開閉器と、該第1の開閉器の出力側に並列に接
続されたリップル除去用フィルタと、前記第1の開閉器
と直列に接続されたインバータと、該インバータの直流
側に接続された蓄電池と、前記インバータを制御する制
御装置とを具え、該制御装置は電源電流と交流電源電圧
とを検出しその基本波成分と高調波成分とを検出する手
段と、該電源電流高調波成分をゲインK倍して高調波電
圧指令を出力する手段と、前記蓄電池の直流電圧指令と
前記蓄電池の直流電圧との差と前記電源電流基本波成分
とを入力し前記電源電流基本波成分と同相又は逆相の有
効分電圧指令を出力する手段と、前記高調波分電圧指令
と前記有効分電圧指令とを入力しそれらのベクトル合成
値と三角波との比較により正常時ゲートパルスを出力す
る手段と、負荷電圧指令を入力し前記インバータ出力が
交流電圧となるように停電時ゲートパルスを出力する手
段と、該停電時ゲートパルスと前記正常時ゲートパルス
と交流電源電圧とを入力とし交流電源正常時は前記第1
の開閉器をオンし前記第2の開閉器をオフにし前記正常
時ゲートパルスを前記インバータに出力し交流電源停電
時は前記第1の開閉器をオフし前記第2の開閉器をオン
にし前記停電時ゲートパルスをインバータに出力するこ
とを特徴とする無停電電源装置。
1. An uninterruptible power supply device provided in series between an AC power supply and a load, the first switch being connected in series to the AC power supply, and the output side of the first switch. A ripple removal filter connected in parallel, an inverter connected in series with the first switch, a storage battery connected to the DC side of the inverter, and a control device for controlling the inverter, The control device detects a power supply current and an AC power supply voltage and detects a fundamental wave component and a harmonic component thereof, and a means for multiplying the power supply current harmonic component by a gain K to output a harmonic voltage command, A means for inputting the difference between the direct current voltage command of the storage battery and the direct current voltage of the storage battery and the power supply current fundamental wave component and outputting an effective component voltage command in phase with or opposite to the power supply current fundamental wave component, and the harmonic Wave voltage command and effective voltage finger Means for outputting a gate pulse in a normal state by comparing the vector composite value of these with a triangular wave, and a means for inputting a load voltage command and outputting a gate pulse during a power failure so that the inverter output becomes an AC voltage. And the gate pulse at the time of power failure, the gate pulse at the time of normal operation, and the AC power supply voltage as input, and when the AC power supply is normal, the first
Turning on the switch, turning off the second switch, outputting the normal gate pulse to the inverter, turning off the first switch and turning on the second switch when the AC power supply is interrupted, An uninterruptible power supply device that outputs a gate pulse to the inverter during a power failure.
【請求項2】 前記負荷電圧指令と負荷電圧との差と前
記電源電流基本波分と交流電源電圧とを入力し前記電源
電流基本波分と90°又は−90°の位相差を持つ無効分電
圧指令を出力する手段と、該無効分電圧指令と前記有効
分電圧指令と前記高調波分電圧指令とを入力しそれらの
ベクトル合成値と三角波との比較により正常時ゲートパ
ルスを出力する手段とを有することを特徴とする請求項
1記載の無停電電源装置。
2. A reactive component having a phase difference of 90 ° or −90 ° with respect to the power supply current fundamental wave component by inputting the difference between the load voltage command and the load voltage, the power supply current fundamental wave component and the AC power supply voltage. Means for outputting a voltage command, means for inputting the reactive component voltage command, the effective component voltage command, and the harmonic component voltage command, and outputting a gate pulse in a normal state by comparing their vector composite value and a triangular wave The uninterruptible power supply according to claim 1, further comprising:
JP4053679A 1992-03-12 1992-03-12 Uninterruptible power supply equipment Pending JPH05260685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4053679A JPH05260685A (en) 1992-03-12 1992-03-12 Uninterruptible power supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4053679A JPH05260685A (en) 1992-03-12 1992-03-12 Uninterruptible power supply equipment

Publications (1)

Publication Number Publication Date
JPH05260685A true JPH05260685A (en) 1993-10-08

Family

ID=12949510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4053679A Pending JPH05260685A (en) 1992-03-12 1992-03-12 Uninterruptible power supply equipment

Country Status (1)

Country Link
JP (1) JPH05260685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384451B1 (en) * 1998-12-18 2003-08-25 재단법인 포항산업과학연구원 Uninterruptible power supply with integrated charger and inverter
CN111682578A (en) * 2020-05-09 2020-09-18 杭州电子科技大学 Three-phase harmonic resonance suppression device and suppression method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384451B1 (en) * 1998-12-18 2003-08-25 재단법인 포항산업과학연구원 Uninterruptible power supply with integrated charger and inverter
CN111682578A (en) * 2020-05-09 2020-09-18 杭州电子科技大学 Three-phase harmonic resonance suppression device and suppression method
CN111682578B (en) * 2020-05-09 2022-02-18 杭州电子科技大学 Three-phase harmonic resonance suppression device and suppression method

Similar Documents

Publication Publication Date Title
US6295215B1 (en) AC power supply apparatus with economy mode and methods of operation thereof
EP0372109B1 (en) Reactive power controller
KR100205266B1 (en) A.c electrical power supply installation comprising a back-up power supply equipped with an inverter operating in reversible mode
Segaran et al. High-performance bi-directional AC-DC converters for PHEV with minimised DC bus capacitance
JPH0564376A (en) Parallel operation of chargers
JPH07231513A (en) Controller for electric automobile
JP4588178B2 (en) Power converter control device for power storage device
JPH05260685A (en) Uninterruptible power supply equipment
JP2004208345A (en) Three-phase unbalanced voltage restraining apparatus
JPH1014251A (en) Control circuit for uninterruptible power supply
JP2003189474A (en) System linked power converter
JP5490801B2 (en) Self-excited reactive power compensator
JP4156767B2 (en) Power converter
JP3057332B2 (en) Instantaneous interruption power switching method and instantaneous interruption uninterruptible power supply
JP2006136054A (en) Uninterruptible power supply device
JP2013243934A (en) Self-excited reactive power compensation device
JP2003070165A (en) Power supply
JPH06189475A (en) Uninterruptible power supply apparatus
JP2003224978A (en) Power supply voltage fluctuation compensator and application method thereof
KR102153071B1 (en) Apparatus for Converting Three Phase Power Independent Phase Rotation Direction
JP3237220B2 (en) Harmonic suppression device
JPH0649075Y2 (en) Control device for active filter
JP2005176567A (en) Two-system changeover feeding device, uninterruptible power supply, and two-system changeover feeding method
JP2009254122A (en) Control circuit for power converter
JPH02100116A (en) Power unit without power failure