JPH05259538A - Optical waveguide ring laser - Google Patents

Optical waveguide ring laser

Info

Publication number
JPH05259538A
JPH05259538A JP5847392A JP5847392A JPH05259538A JP H05259538 A JPH05259538 A JP H05259538A JP 5847392 A JP5847392 A JP 5847392A JP 5847392 A JP5847392 A JP 5847392A JP H05259538 A JPH05259538 A JP H05259538A
Authority
JP
Japan
Prior art keywords
wavelength
optical waveguide
ring laser
light
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5847392A
Other languages
Japanese (ja)
Inventor
Takeshi Kitagawa
毅 北川
Taisuke Oguchi
泰介 小口
Kuninori Hattori
邦典 服部
Keizo Shudo
啓三 首藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5847392A priority Critical patent/JPH05259538A/en
Publication of JPH05259538A publication Critical patent/JPH05259538A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical waveguide ring laser capable of controlling arbitrarily an oscillation wavelength by a method wherein a wavelength selecting element, which transmits light of a specified wavelength, is provided in a ring laser resonator. CONSTITUTION:The so-called narrow-band transmitting filter, which transmits light of a specified wavelength and stops light other than the light of a specified wavelength, is added in a ring laser resonator 14 constituted of an Er-doped optical waveguide as a waveguide selecting element 15. Thereby, a resonator circuital loss in a wavelength other than that in the transmitting band of the light is increased and it becomes possible to make a laser oscillation take place in an arbitrary wavelength to coincide with the transmitting wavelength of the element 15. As the narrow-band transmitting filter, a dielectric multilayer film filter, which is superior in the controllability of a transmitting wavelength and a transmitting band, is practical. It is desirable that the element 15 is arranged in a position immediate before an excitation light circuits in the resonator 14 and is emitted through an excitation light incident port or is arranged in the optically rear position of the Er-doped optical waveguide part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信、光情報処理、
光計測など分野において光源としての利用価値が高い光
導波路型希土類イオン添加ガラスリングレーザの構造に
関するものである。
BACKGROUND OF THE INVENTION The present invention relates to optical communication, optical information processing,
The present invention relates to a structure of an optical waveguide type rare earth ion-doped glass ring laser which is highly useful as a light source in fields such as optical measurement.

【0002】[0002]

【従来の技術】Er,Nd,Prなどの希土類イオンを
コアに添加した石英系光導波路型リングレーザは、小さ
い励起光強度の発振しきい値と高い変換効率を得ること
ができ、発振線幅が狭く、縦モード間隔を精密に制御で
きる等の特徴を有する。このため、光通信、光情報処
理、光計測などの広い分野において様々な応用が期待さ
れている。とりわけ、活性イオンとして、Erイオンを
添加した光導波路型レーザは、光通信に重要な1.5μ
m帯に発光帯を有するので極めて利用価値が高い。Er
イオンは、0.82μm帯、0.98μm帯及び1.4
8μm帯など近赤外領域に吸収帯を有し、これらに適合
した波長の光で励起され、1.5μm帯の光を誘導放出
する。
2. Description of the Related Art A silica-based optical waveguide ring laser in which a rare earth ion such as Er, Nd or Pr is added to a core can obtain an oscillation threshold of a small excitation light intensity and a high conversion efficiency, and an oscillation line width. Is narrow and the vertical mode interval can be precisely controlled. Therefore, various applications are expected in a wide range of fields such as optical communication, optical information processing, and optical measurement. In particular, an optical waveguide laser with Er ions added as active ions is important for optical communication.
Since it has a light emitting band in the m band, it is extremely useful. Er
Ions are in the 0.82 μm band, 0.98 μm band and 1.4
It has an absorption band in the near-infrared region such as 8 μm band, is excited by light having a wavelength suitable for these, and stimulates and emits light in the 1.5 μm band.

【0003】従来の光導波路型リングレーザは、励起光
導入発振光導出用方向性結合器の結合率波長特性によ
り、励起光スルー型及び励起光クロス型の2種類に大別
される。励起光スルー型の方向性結合器は、石英系光導
波回路の製造工程に適しており、高い歩留まりで所要の
結合率特性を実現できる。これをリングレーザの入出力
ポートとして利用する場合には、リング共振器内に交差
導波路組み込むことが必要となる。本出願人らにより発
明された(特願平3−281579号)励起光スルー型
方向性結合器を有する光導波路型リングレーザの構造を
図4に示す。このリングレーザは、平板状基板内に形成
されたリングレーザ共振器45とこの共振器45への励
起光導入及び共振器からの発振光導出に用いられる方向
性結合器43と交差部44を有する。方向性結合器43
は、励起光波長で結合率が小さく、1.5μm帯の発振
波長で結合率が大きい結合波長特性を有する。
Conventional optical waveguide type ring lasers are roughly classified into two types, a pumping light through type and a pumping light cross type, depending on the wavelength characteristics of the directional coupler for introducing pumping light and oscillating light. The pumping light through type directional coupler is suitable for a manufacturing process of a silica-based optical waveguide circuit, and can achieve a required coupling rate characteristic with a high yield. When this is used as an input / output port of a ring laser, it is necessary to incorporate a cross waveguide in the ring resonator. FIG. 4 shows the structure of an optical waveguide type ring laser having a pumping light through type directional coupler invented by the present applicants (Japanese Patent Application No. 3-281579). This ring laser has a ring laser resonator 45 formed in a flat substrate, a directional coupler 43 used for introducing pumping light into the resonator 45 and deriving oscillated light from the resonator, and an intersecting portion 44. .. Directional coupler 43
Has a coupling wavelength characteristic that the coupling rate is small at the excitation light wavelength and the coupling rate is large at the oscillation wavelength in the 1.5 μm band.

【0004】この光導波路型レーザの一方の導波路端面
41より励起光を入射すると、励起光は方向性結合器4
3を介してリングレーザ共振器45に導入され、共振器
45内のErイオンを励起する。励起Erイオンの誘導
放出に基づく増幅度がリングレーザ共振器45の周回光
損失より大きくなるとリングレーザ共振器45は発振を
開始し、方向性結合器43を介して導出された1.5μ
m帯のレーザ発振光が他方の発振光出力ポート47より
出力される。
When pumping light enters from one waveguide end face 41 of this optical waveguide type laser, the pumping light is directional coupler 4
3 is introduced into the ring laser resonator 45 to excite Er ions in the resonator 45. When the amplification degree based on the stimulated emission of excited Er ions becomes larger than the circulating light loss of the ring laser resonator 45, the ring laser resonator 45 starts oscillating, and 1.5 μ derived through the directional coupler 43.
Laser oscillation light in the m band is output from the other oscillation light output port 47.

【0005】[0005]

【発明が解決しようとする課題】3準位系として動作す
るErイオンは、1.5μm帯にブロードな吸収帯及び
発光帯を有し、それぞれの中にエネルギー準位のシュタ
ルク分裂に対応する微細構造をもつ。また、反転分布の
程度により増幅度の波長特性が変化するという特徴があ
る。励起光強度が小さい場合には1.5μm帯の長波長
側の微細構造に相当する1.60μmで増幅度が大き
く、励起光強度が大きい場合には1.5μm帯全体の発
光ピーク波長である1.535μmで増幅度が最大にな
る。Erイオン添加光導波路型リングレーザでは、リン
グレーザ共振器の周回光損失と増幅度が一致する波長及
び励起光強度においてレーザ発振を開始するため、Er
添加濃度や共振器周回光損失により発振波長が1.53
5μmや1.60μmなどErイオンの局所的発光ピー
ク波長で発振し、発振波長を任意に制御することは困難
であった。このため、1.5μm帯の任意の波長でレー
ザ発振する光導波路型リングレーザの開発が待たれてい
た。そこで本発明では、発振波長を任意に制御可能な光
導波路型リングレーザの構造を提供することを目的とす
る。
The Er ion, which operates as a three-level system, has a broad absorption band and an emission band in the 1.5 μm band, each of which is a fine particle corresponding to Stark splitting of the energy level. It has a structure. Further, there is a feature that the wavelength characteristic of the amplification degree changes depending on the degree of population inversion. When the excitation light intensity is low, the amplification degree is large at 1.60 μm, which corresponds to the fine structure on the long wavelength side of the 1.5 μm band, and when the excitation light intensity is high, it is the emission peak wavelength of the entire 1.5 μm band. The amplification degree becomes maximum at 1.535 μm. In the Er ion-doped optical waveguide type ring laser, laser oscillation is started at a wavelength and pumping light intensity at which the circulating light loss of the ring laser resonator and the amplification degree match, so that Er
The oscillating wavelength is 1.53 due to the added concentration and the loss of light from the resonator
It has been difficult to oscillate at a local emission peak wavelength of Er ions such as 5 μm or 1.60 μm and arbitrarily control the oscillation wavelength. Therefore, development of an optical waveguide type ring laser that oscillates at an arbitrary wavelength in the 1.5 μm band has been awaited. Therefore, an object of the present invention is to provide a structure of an optical waveguide type ring laser capable of arbitrarily controlling the oscillation wavelength.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、希土類イオンを少なくとも一部に添加し
た光導波路により、リングレーザ共振器を平面基板上に
構成した光導波路型リングレーザであって、前記リング
レーザ共振器内に特定波長の光を透過する少なくとも1
つの波長選択素子を設けたことを特徴とする。
In order to solve the above problems, the present invention provides an optical waveguide ring laser in which a ring laser resonator is formed on a flat substrate by an optical waveguide in which at least a part of rare earth ions is added. And transmitting at least one light of a specific wavelength into the ring laser resonator.
One wavelength selecting element is provided.

【0007】[0007]

【作用】特定波長の光を透過しそれ以外の波長の光を阻
止する、いわゆる狭帯域透過フィルタを波長選択素子と
してEr添加光導波路で構成したリングレーザ共振器内
に付加することにより、透過域以外の波長における共振
器周回損失を増し、波長選択素子の透過波長に一致する
任意の波長でレーザ発振させることが可能となる。
A so-called narrow band transmission filter, which transmits light of a specific wavelength and blocks light of other wavelengths, is added as a wavelength selection element in a ring laser resonator constituted by an Er-doped optical waveguide to obtain a transmission region. It becomes possible to increase the round-trip loss of the resonator at wavelengths other than, and to oscillate at an arbitrary wavelength that matches the transmission wavelength of the wavelength selection element.

【0008】[0008]

【実施例】以下、実施例により詳細に説明する。図1に
本発明による光導波路型リングレーザの構成を示す。符
号12は励起光導入用導波路、13は励起光入力発振光
出力用方向性結合器、14はEr添加光導波路で構成し
たリングレーザ共振器、15は波長選択素子として用い
られる狭帯域透過フィルタ、16は発振光導出用導波路
である。図1では、発振光の光路に着目してリングレー
ザ共振器を図示したので、先に例示した従来のリングレ
ーザが有する交差部は明示していない。
EXAMPLES The present invention will be described in detail below with reference to examples. FIG. 1 shows the structure of an optical waveguide type ring laser according to the present invention. Reference numeral 12 is a waveguide for introducing pumping light, 13 is a directional coupler for inputting pumping light and oscillating light, 14 is a ring laser resonator composed of an Er-doped optical waveguide, and 15 is a narrow band transmission filter used as a wavelength selection element. , 16 are waveguides for deriving oscillated light. In FIG. 1, the ring laser resonator is shown focusing on the optical path of the oscillated light, so that the crossing portion of the conventional ring laser illustrated above is not shown.

【0009】狭帯域透過フィルタとしては、透過波長や
透過帯域の制御性に優れる誘電体多層膜フィルタが実用
的である。多層膜フィルタの透過波長は多層膜材料の屈
折率と膜厚で精密に制御することができ、透過波長帯域
は多層膜フィルタの層数により幅広く変化させることが
できる。Er添加光導波路レーザの発振波長である1.
5μm帯において、透過波長域0.1nmと極めて狭帯
域のバンドパスフィルタが実用に供されている。
As the narrow band transmission filter, a dielectric multilayer filter having excellent controllability of transmission wavelength and transmission band is practical. The transmission wavelength of the multilayer filter can be precisely controlled by the refractive index and the film thickness of the multilayer material, and the transmission wavelength band can be widely changed depending on the number of layers of the multilayer filter. It is the oscillation wavelength of the Er-doped optical waveguide laser.
In the 5 μm band, a bandpass filter having a transmission wavelength range of 0.1 nm and an extremely narrow band is put into practical use.

【0010】波長選択素子15をリングレーザ共振器1
4に組み込むには、図2に示すように、リングレーザ共
振器を構成する光導波路21を横切るようにエッチング
や機械加工により溝23を形成し、この溝23内にフィ
ルタ用基板25の上に形成された狭帯域透過誘電体多層
膜フィルタ24を配備する。誘電体多層膜バンドパスフ
ィルタ24の透過波長を変えることにより、波長1.5
3μmから1.60μmまでの広い波長域で制御性よく
レーザ発振を実現できる。誘電体多層膜フィルタ24面
からの反射光が導波路に再結合すると、一枚の多層膜フ
ィルタを両端面ミラーとして共有するファブリペロ共振
器が構成され、透過波長ではなく反射率の高い阻止波長
でレーザ発振する。これを防止するため、反射光が光導
波路に戻らないように、フィルタ面を導波路に対して斜
めに傾けることが必要である。導波路の接線とフィルタ
面の法線のなす角度を1゜以上とすることによりフィル
タ面からの反射を十分抑圧できる。
The wavelength selection element 15 is connected to the ring laser resonator 1
4, the groove 23 is formed by etching or machining so as to traverse the optical waveguide 21 forming the ring laser resonator, and the groove 23 is formed on the filter substrate 25 in the groove 23 as shown in FIG. The formed narrow band transmission dielectric multilayer filter 24 is provided. By changing the transmission wavelength of the dielectric multilayer film bandpass filter 24, the wavelength of 1.5
Laser oscillation can be realized with good controllability in a wide wavelength range from 3 μm to 1.60 μm. When the reflected light from the surface of the dielectric multilayer filter 24 is recombined with the waveguide, a Fabry-Perot resonator in which one multilayer filter is shared as both end face mirrors is configured, and a blocking wavelength having a high reflectance is used instead of a transmission wavelength. Laser oscillation. In order to prevent this, it is necessary to incline the filter surface with respect to the waveguide so that the reflected light does not return to the optical waveguide. By setting the angle between the tangent line of the waveguide and the normal line of the filter surface to be 1 ° or more, the reflection from the filter surface can be sufficiently suppressed.

【0011】波長選択素子15における発振光の損失
は、狭帯域透過フィルタの透過波長における損失、溝2
3を空間伝搬する際の回折損失および導波路端面の散乱
損失の和で与えられる。挿入損失の小さい波長選択素子
15を構成するには、透過波長における損失の小さい高
品質多層膜フィルタを使用することが重要である。ま
た、導波路端面から出射するビームが溝23を空間伝搬
する際にビーム径が拡大する結果、多層膜フィルタを透
過後一部の光のみが導波路に再結合し、光損失が生じる
こととなる。このような回折損失を低減するため、自由
空間を伝搬する距離に相当する溝23の幅は0.1mm
以下であることが望ましく、挿入する多層膜フィルタが
薄型であることが必要である。薄型多層膜フィルタとし
て、例えばポリイミド膜や石英薄板上に形成した厚さ3
0μm程度の多層膜フィルタが開発されており、これを
使用できる。溝23と挿入したフィルタを光導波路と屈
折率の整合した光学接着剤26で埋め込み固定すること
により、端面の散乱や反射による接続損の低減と同時
に、長期信頼性の確保が可能となる。
The loss of the oscillated light in the wavelength selection element 15 is the loss in the transmission wavelength of the narrow band transmission filter, and the groove 2
It is given by the sum of the diffraction loss and the scattering loss at the end face of the waveguide when spatially propagating in 3. In order to construct the wavelength selection element 15 with a small insertion loss, it is important to use a high quality multilayer film filter with a small loss at the transmission wavelength. Moreover, as a result of the beam diameter expanding when the beam emitted from the end face of the waveguide propagates through the groove 23 in space, only a part of the light is recombined with the waveguide after passing through the multilayer filter, resulting in an optical loss. Become. In order to reduce such diffraction loss, the width of the groove 23 corresponding to the distance of propagation in free space is 0.1 mm.
The following is desirable, and it is necessary that the inserted multilayer filter is thin. As a thin multilayer filter, for example, a thickness of 3 formed on a polyimide film or a quartz thin plate.
A multilayer filter of about 0 μm has been developed and can be used. By embedding and fixing the groove 23 and the inserted filter with the optical adhesive 26 having a refractive index matching with that of the optical waveguide, it is possible to reduce connection loss due to scattering and reflection of the end face and to secure long-term reliability.

【0012】光導波路より出射するビームの広がり角が
大きい場合には、光回折に起因する挿入損失が増加し、
また、狭帯域フィルタの透過帯域が広がる。高NA導波
路構造によるレーザの高効率化と同時に、フィルタ挿入
損失の低減や透過帯域の拡大防止を実現するには、波長
選択素子15に光を入出射する光導波路21端部に、例
えば、アップテーパ22やダウンテーパあるいは屈折率
制御添加物の熱拡散部を設け、モードフィールド径を拡
大する方法が有効である。
When the divergence angle of the beam emitted from the optical waveguide is large, the insertion loss due to optical diffraction increases,
In addition, the transmission band of the narrow band filter is widened. In order to improve the efficiency of the laser by the high NA waveguide structure and at the same time reduce the filter insertion loss and prevent the expansion of the transmission band, for example, at the end portion of the optical waveguide 21 that allows light to enter and exit the wavelength selection element 15, It is effective to increase the mode field diameter by providing an up taper 22, a down taper, or a thermal diffusion portion of a refractive index control additive.

【0013】波長選択素子15は、なるべく励起光強度
が小さい位置に配置することが望ましい。励起光源とし
て実用的な多モード発振の半導体レーザが用いられるの
で、励起光透過率の高い狭帯域誘電体多層膜フィルタを
実現することは実質的に不可能である。従って、図1に
示すように、励起光が共振器14内を周回し、励起光入
射ポートより出射する直前の位置に配置するか、もしく
は、リング共振器14の一部をEr添加導波路で構成し
波長選択素子15をEr添加導波路部の光学的に後方の
位置に配備することが好適である。また、波長選択素子
が二以上あっても同様の効果を得ることができる。
It is desirable that the wavelength selection element 15 is arranged at a position where the excitation light intensity is as small as possible. Since a practical multimode oscillation semiconductor laser is used as the excitation light source, it is practically impossible to realize a narrow band dielectric multilayer filter having a high excitation light transmittance. Therefore, as shown in FIG. 1, the excitation light circulates in the resonator 14 and is arranged at a position immediately before being emitted from the excitation light incident port, or a part of the ring resonator 14 is formed by an Er-doped waveguide. It is preferable that the constructed wavelength selecting element 15 is arranged at a position optically rearward of the Er-doped waveguide portion. Further, the same effect can be obtained even if there are two or more wavelength selection elements.

【0014】(実施例1)Er添加石英系光導波路によ
り構成されるリング共振器に、誘電体多層膜フィルタを
組み込み発振波長制御実験を行った。
Example 1 An oscillation wavelength control experiment was carried out by incorporating a dielectric multilayer film filter in a ring resonator composed of an Er-doped silica optical waveguide.

【0015】図3に、使用したリングレーザの構造を示
す。導波路は、火炎堆積液浸法及び反応性イオンエッチ
ング法でシリコン基板上に作製した埋め込み導波路であ
る。コアに添加したErイオンの濃度は1重量%、コア
断面の寸法は高さ5μm幅、幅5μm、コア・クラッド
間の屈折率差は0.75%である。導波路のモードフィ
ールド径は6μmである。リングレーザは、波長選択素
子を組み込んだ周長10cmのリングレーザ共振器35
と共振器35への励起光導入及び共振器35からの発振
光導出に用いられる方向性結合器33と、交差部34を
有する構造である。方向性結合器33は、励起光波長
0.98μmで結合率が20%と小さく、発振波長1.
55μmで結合率が90%と大きい結合波長特性を有す
る。波長選択素子39としては、ポリイミド膜上に蒸着
したSiO2 −TiO2 系多層膜フィルタ(厚さ30μ
m)を用いた。透過波長は1.550μm、透過帯域は
0.1nm、透過波長における損失は1dBである。励
起光として用いる波長0.98μmの歪超格子半導体レ
ーザ光の透過率は3%である。狭帯域透過多層膜フィル
タは、励起光が共振器内を周回し励起光入射ポートより
出射する方向性結合器33の手前2cmの位置に形成し
たフィルタ挿入溝38内に配置した。挿入溝38の両側
の導波路にアップテーパをつけて、挿入溝端面における
モードフィールド径を10μmに拡大した。フィルタ挿
入溝38はダイシングソーで切削加工して形成した。溝
38の幅は40μm、深さは0.2mmである。導波路
接線とフィルタ面法線のなす角度が5゜となるように、
導波路接線と溝のなす角度を85゜とした。溝38に狭
帯域透過多層膜フィルタ39を挿入し、紫外線硬化性光
学接着剤で固定して保持した。
FIG. 3 shows the structure of the ring laser used. The waveguide is a buried waveguide formed on a silicon substrate by the flame deposition immersion method and the reactive ion etching method. The concentration of Er ions added to the core is 1% by weight, the cross section of the core has a height of 5 μm width, a width of 5 μm, and the refractive index difference between the core and the cladding is 0.75%. The mode field diameter of the waveguide is 6 μm. The ring laser is a ring laser resonator 35 incorporating a wavelength selection element and having a circumference of 10 cm.
And a cross section 34, and a directional coupler 33 used for introducing pumping light into the resonator 35 and deriving oscillating light from the resonator 35. The directional coupler 33 has a small coupling rate of 20% at an excitation light wavelength of 0.98 μm and an oscillation wavelength of 1.
It has a large coupling wavelength characteristic with a coupling rate of 90% at 55 μm. As the wavelength selection element 39, a SiO 2 —TiO 2 system multilayer film filter (thickness 30 μm) deposited on a polyimide film was used.
m) was used. The transmission wavelength is 1.550 μm, the transmission band is 0.1 nm, and the loss at the transmission wavelength is 1 dB. The transmittance of the strained superlattice semiconductor laser light having a wavelength of 0.98 μm used as the excitation light is 3%. The narrow band transmission multilayer filter was arranged in the filter insertion groove 38 formed 2 cm before the directional coupler 33 in which the excitation light circulates in the resonator and is emitted from the excitation light incident port. The waveguides on both sides of the insertion groove 38 are uptapered to increase the mode field diameter at the end surface of the insertion groove to 10 μm. The filter insertion groove 38 was formed by cutting with a dicing saw. The groove 38 has a width of 40 μm and a depth of 0.2 mm. The angle between the tangent to the waveguide and the normal to the filter surface should be 5 °,
The angle between the waveguide tangent and the groove was set to 85 °. A narrow band transmission multilayer filter 39 was inserted into the groove 38 and fixed and held by an ultraviolet curable optical adhesive.

【0016】リングレーザの励起光入射ポートより、励
起光を入射しレーザ発振実験を行った。その結果、狭帯
域透過フィルタの透過波長に一致した波長1.550μ
mでレーザ発振することが明かとなった。励起光強度の
発振閾値30mW、微分効率5%の特性を得た。
A laser oscillation experiment was conducted by injecting pumping light from the pumping light entrance port of the ring laser. As a result, a wavelength of 1.550μ that matches the transmission wavelength of the narrow band transmission filter.
It became clear that laser oscillation occurs at m. The characteristics of oscillation threshold of excitation light intensity of 30 mW and differential efficiency of 5% were obtained.

【0017】(実施例2)リング共振器部の1/2周を
Er添加光導波路により、残りをErを含有しない光導
波路で構成し、波長選択素子をEr添加導波路部より光
学的に後方の位置に配置して、実施例1と全く同様の実
験を行った。その結果、実施例1と同様に、狭帯域透過
フィルタの透過波長に一致した波長1.550μmでレ
ーザ発振することが明かとなった。
(Embodiment 2) Half the circumference of the ring resonator portion is constituted by an Er-doped optical waveguide and the rest is constituted by an Er-free optical waveguide, and the wavelength selection element is optically rearward of the Er-doped waveguide portion. The same experiment as in Example 1 was performed by arranging at the position of. As a result, it was revealed that laser oscillation occurred at a wavelength of 1.550 μm, which coincided with the transmission wavelength of the narrow band transmission filter, as in Example 1.

【0018】(比較例)実施例1で用いたリングレーザ
より、狭帯域透過多層膜フィルタを除去し、フィルタ挿
入溝38を光学接着剤で完全に埋め込んで、実施例1と
同様のレーザ発振実験を行った。その結果、レーザ発振
波長は1.60μmであり、狭帯域透過多層膜フィルタ
の透過波長と異なる波長で発振することが明かとなっ
た。
(Comparative Example) The same laser oscillation experiment as in Example 1 was carried out by removing the narrow band transmission multilayer filter from the ring laser used in Example 1 and completely filling the filter insertion groove 38 with an optical adhesive. I went. As a result, it was revealed that the laser oscillation wavelength was 1.60 μm, and that the laser oscillated at a wavelength different from the transmission wavelength of the narrow band transmission multilayer filter.

【0019】[0019]

【発明の効果】以上説明したように、本発明の光導波路
型リングレーザは、希土類イオンを少なくとも一部に添
加した光導波路によりリングレーザ共振器を平面基板上
に構成した光導波路型リングレーザであって、前記リン
グレーザ共振器内に特定波長の光を透過する少なくとも
1つの波長選択素子を設けたものであるので、本リング
レーザによれば、レーザ発振波長を1.5μm帯の任意
の波長、すなわち波長選択素子の透過波長に等しい波長
に高い精度で制御することが可能となる。
As described above, the optical waveguide type ring laser of the present invention is an optical waveguide type ring laser in which a ring laser resonator is formed on a flat substrate by an optical waveguide in which at least a part of rare earth ions is added. Since the ring laser resonator is provided with at least one wavelength selection element that transmits light of a specific wavelength, the present ring laser allows the laser oscillation wavelength to be any wavelength in the 1.5 μm band. That is, it becomes possible to control with high accuracy to a wavelength equal to the transmission wavelength of the wavelength selection element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光導波路型リングレーザの一例を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of an optical waveguide ring laser according to the present invention.

【図2】波長選択素子としての狭帯域透過誘電体多層膜
フィルタの設置方法を示す構成図である。
FIG. 2 is a configuration diagram showing a method of installing a narrow band transmission dielectric multilayer filter as a wavelength selection element.

【図3】本発明の実施例1における光導波路型リングレ
ーザを示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing an optical waveguide type ring laser according to a first embodiment of the present invention.

【図4】従来の光導波路型リングレーザを示す概略構成
図である。
FIG. 4 is a schematic configuration diagram showing a conventional optical waveguide ring laser.

【符号の説明】[Explanation of symbols]

14 Er添加光導波路リングレーザ共振器 15 波長選択素子 14 Er-doped optical waveguide ring laser resonator 15 Wavelength selection element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 首藤 啓三 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keizo Suto, 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類イオンを少なくとも一部に添加し
た光導波路によりリングレーザ共振器を平面基板上に構
成した光導波路型リングレーザであって、前記リングレ
ーザ共振器内に特定波長の光を透過する少なくとも1つ
の波長選択素子を設けたことを特徴とする光導波路型リ
ングレーザ。
1. An optical waveguide type ring laser in which a ring laser resonator is formed on a flat substrate by an optical waveguide to which rare earth ions are added at least in a part thereof, and light of a specific wavelength is transmitted through the ring laser resonator. An optical waveguide type ring laser provided with at least one wavelength selecting element for
【請求項2】 請求項1において、前記波長選択素子を
前記リングレーザ共振器内の希土類イオン添加光導波路
部よりも光学的に後方の位置に配置したことを特徴とす
る光導波路型リングレーザ。
2. The optical waveguide ring laser according to claim 1, wherein the wavelength selection element is arranged at a position optically rearward of the rare earth ion-doped optical waveguide portion in the ring laser resonator.
JP5847392A 1992-03-16 1992-03-16 Optical waveguide ring laser Pending JPH05259538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5847392A JPH05259538A (en) 1992-03-16 1992-03-16 Optical waveguide ring laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5847392A JPH05259538A (en) 1992-03-16 1992-03-16 Optical waveguide ring laser

Publications (1)

Publication Number Publication Date
JPH05259538A true JPH05259538A (en) 1993-10-08

Family

ID=13085405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5847392A Pending JPH05259538A (en) 1992-03-16 1992-03-16 Optical waveguide ring laser

Country Status (1)

Country Link
JP (1) JPH05259538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336684B2 (en) 2003-08-01 2008-02-26 Massachusetts Institute Of Technology Planar multiwavelength optical power supply on a silicon platform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336684B2 (en) 2003-08-01 2008-02-26 Massachusetts Institute Of Technology Planar multiwavelength optical power supply on a silicon platform

Similar Documents

Publication Publication Date Title
JP3214910B2 (en) Manufacturing method of planar waveguide optical amplifier
US6970494B1 (en) Rare-earth doped phosphate-glass lasers and associated methods
US5170458A (en) Optical fiber light-amplifier system
US5710786A (en) Optical fibre laser pump source for fibre amplifiers
JP2004529494A (en) Optical wavelength filter device having low refractive index cladding
JPH10284777A (en) Optical fiber laser
JP3425734B2 (en) Manufacturing method of optical waveguide
JPH04232419A (en) Waveguide resonator and micro-optical thin-film gyroscope
JP3228451B2 (en) Optical fiber amplifier
Mwarania et al. Neodymium-doped ion-exchanged waveguide lasers in BK-7 glass
JPH05259538A (en) Optical waveguide ring laser
CN107851953B (en) planar waveguide laser device
JP2994577B2 (en) Optical amplifier
US7027212B2 (en) Waveguide optical amplifier
JP2717218B2 (en) Laser oscillation device
JPS63220586A (en) Nd-doped fiber laser system
JP3005074B2 (en) Fiber amplifier, fiber laser, waveguide device amplifier, and waveguide device laser
JPH05291655A (en) Planer optical-waveguide type laser element and laser device
JP2002131567A (en) Optical waveguide element and semiconductor laser device
JPH05291656A (en) Optical-waveguide type ring laser
JPH06324368A (en) Optical fiber amplifier
JPH04271328A (en) Production of optical waveguide for optical amplifier
JP3062776B2 (en) Optical waveguide ring laser
JP2007324452A (en) Optical coupler, fiber laser, and optical fiber amplifier
JPH05283770A (en) Optical signal amplifier