JPH05258936A - Electromagnetic foil in excellent roll shape and manufacturing method thereof - Google Patents

Electromagnetic foil in excellent roll shape and manufacturing method thereof

Info

Publication number
JPH05258936A
JPH05258936A JP4051953A JP5195392A JPH05258936A JP H05258936 A JPH05258936 A JP H05258936A JP 4051953 A JP4051953 A JP 4051953A JP 5195392 A JP5195392 A JP 5195392A JP H05258936 A JPH05258936 A JP H05258936A
Authority
JP
Japan
Prior art keywords
rolling
foil
plate thickness
electromagnetic
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4051953A
Other languages
Japanese (ja)
Inventor
Norito Abe
憲人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4051953A priority Critical patent/JPH05258936A/en
Publication of JPH05258936A publication Critical patent/JPH05258936A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture the title electromagnetic foil in excellent roll shape by a method wherein a unidirectional electromagnetic steel plate in specific crystalline particle diameter is selected to be cold-rolled without performing the intermediate annealing step. CONSTITUTION:A unidirectional electromagnetic steel plate (magnetic flux density Bs/Bs>0.9, crystalline particle diameter: exceeding 20mm in rolling direction, rolling rectangular direction exceeding 400mm) containing 8wt.% >=Si, 0.1% of Mn, 0.001% of C, 0.002% of N. 0.002% of Al, 0.001% of S and the rest of Fe substantially and having a level of integration in {110} <001> direction is pickled to remove a glass film. Later, the steel plate is rolled by a once cold-rolling to attain the final thickness not exceeding 150mum. At this time, the steepness of the final plate thickness does not exceed 1.2%. Through these procedures, the title electromagnetic foil can be extremely thinned without correcting the shape thereof by intermediate annealing step.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子産業機器分野におい
て、電磁誘導に基づいたエネルギー変換システムの中の
トランス、あるいはインダクタに用いられる電磁箔とそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic foil used for a transformer or an inductor in an energy conversion system based on electromagnetic induction in the field of electronic industrial equipment, and a method for manufacturing the same.

【0002】[0002]

【従来技術】これまで{110}〈001〉方位集積度
の高い電磁鋼板を出発材として圧延箔を製造しようと試
みると、出発材の平均結晶粒径が30mm程度と非常に大
きいために、結晶方位の微妙なずれに起因するすべり系
の違いが圧延形状に顕著となって現れ、圧延が不可能で
あった。
2. Description of the Related Art Up to now, when an attempt was made to manufacture a rolled foil using a magnetic steel sheet having a high degree of {110} <001> orientation integration as a starting material, the average crystal grain size of the starting material was very large, about 30 mm, so that the crystal The difference in the slip system due to the slight deviation of the orientation became noticeable in the rolled shape, and rolling was impossible.

【0003】そこで従来の電磁箔は、平均結晶粒径が2
0mm程度と小さく、{110}〈001〉方位集積度の
低い電磁鋼板を出発材として、圧延箔にしている。しか
し板厚が50μm以下の圧延の場合は中間焼鈍が必要で
あった。
Therefore, a conventional electromagnetic foil has an average crystal grain size of 2
Rolled foil is made from a magnetic steel sheet having a small degree of 0110 mm and a low degree of {110} <001> orientation integration. However, in the case of rolling with a plate thickness of 50 μm or less, intermediate annealing was necessary.

【0004】[0004]

【発明が解決しようとする課題】従来の圧延箔は平均結
晶粒径が20mm程度と小さいが、{110}〈001〉
方位集積度の低い電磁鋼板を出発材としているため、冷
間圧延を施すとすべり系の違いに起因して箔帯にエアポ
ケットが生じる。この圧延形状不良は、圧延工程の中に
中間焼鈍工程を必要とするだけでなく、その後の連続焼
鈍、あるいはコーティングでの箔帯の通板において、箔
帯の折れ、絞り込み、コーティング量の不均一さといっ
た問題となって生じる。
The average grain size of the conventional rolled foil is as small as about 20 mm, but {110} <001>
Since the starting material is a magnetic steel sheet with a low degree of orientation integration, cold rolling causes air pockets in the foil strip due to the difference in the slip system. This rolling shape defect requires not only an intermediate annealing step in the rolling step, but also subsequent continuous annealing, or when the foil strip is threaded by coating, the foil strip is bent, squeezed, and the coating amount is uneven. It becomes a problem such as a problem.

【0005】本発明は、{110}〈001〉方位集積
度の高い電磁鋼板を出発材として一回冷延法によって製
造された圧延形状の優れた電磁箔を提供することを目的
とする。
It is an object of the present invention to provide an electromagnetic foil having an excellent rolled shape, which is manufactured by a single cold rolling method using a magnetic steel sheet having a high degree of {110} <001> orientation integration as a starting material.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明者等は、電子産業機器のトランス、あるいはイ
ンダクタ等に用いられる電磁箔に関する研究によって以
下のことを新たに知見した。出発材としてSi≦8%、
残部が実質的にFeからなり{110}〈001〉方位
集積度を有し、磁束密度B8/Bs>0.9であり、か
つ平均粒径が圧延方向および圧延方向に直角な方向にそ
れぞれ20mm以上および40mm以上の結晶粒径をもつ一
方向性電磁鋼板を選び、この材料に冷間圧延を施すと、
中間焼鈍をすることなく、板厚が10μm以下の圧延形
状のよい電磁箔が得られた。このような出発材を工業的
に得る手段として本発明者等は、例えば特開昭59−2
15419号公報に開示されている技術を提案してい
る。
In order to achieve the above object, the present inventors newly found the following by researching electromagnetic foil used for transformers or inductors of electronic industrial equipment. Si ≦ 8% as starting material,
The balance substantially consists of Fe, has {110} <001> orientation integration, has a magnetic flux density B 8 /Bs>0.9, and has an average grain size in the rolling direction and the direction perpendicular to the rolling direction, respectively. If you select a grain-oriented electrical steel sheet with a grain size of 20 mm or more and 40 mm or more and cold-roll this material,
An electromagnetic foil having a plate thickness of 10 μm or less and a good rolled shape was obtained without intermediate annealing. As a means for industrially obtaining such a starting material, the present inventors have disclosed, for example, in JP-A-59-2.
The technique disclosed in Japanese Patent No. 15419 is proposed.

【0007】また、出発材としてSi≦8%、残部が実
質的にFeからなり{110}〈001〉方位集積度を
有し、磁束密度B8/Bs>0.9であり、かつ平均粒
径が圧延方向および圧延方向に直角な方向にそれぞれ2
5mm以下の結晶粒径をもつ一方向性電磁鋼板を選び、こ
の材料に冷間圧延を施すことによっても、中間焼鈍をす
ることなく、板厚が10μm以下の圧延形状のよい電磁
箔が得られる。
Further, Si ≦ 8% as a starting material, the balance being substantially Fe, having {110} <001> orientation integration degree, magnetic flux density B 8 /Bs>0.9, and average grain size. The diameter is 2 in the rolling direction and 2 in the direction perpendicular to the rolling direction.
Even if a grain-oriented electrical steel sheet having a grain size of 5 mm or less is selected and this material is subjected to cold rolling, an electromagnetic foil having a sheet thickness of 10 μm or less and a good rolled shape can be obtained without intermediate annealing. ..

【0008】さらには上記のような出発材を板厚/ワー
クロール径≦0.04の条件下で圧延することによっ
て、板厚が10μm以下の圧延形状のよい電磁箔が得ら
れることがわかった。
Further, it was found that by rolling the above-mentioned starting material under the conditions of the plate thickness / work roll diameter ≦ 0.04, a rolled foil having a plate thickness of 10 μm or less and a good rolled shape can be obtained. ..

【0009】[0009]

【作用】上記のような出発材を選択することによって中
間焼鈍を施すことなく、一回冷延法によって所定の板厚
まで圧延する。
By selecting the starting material as described above, the sheet is rolled to a predetermined thickness by the single cold rolling method without intermediate annealing.

【0010】[0010]

【実施例】【Example】

実施例を図面に基づいて説明する。 実施例1 重量で、Si:3.3%、Mn:0.1%、C:0.0
01%、N:0.002%、Al:0.002%、S:
0.001%、残部が実質的にFeからなる一方向性電
磁鋼板(B8=1.98T、結晶粒径:圧延方向45m
m、圧延直角方向500mm、板厚:170μm)を酸洗
してグラス被膜を除去した後、一回冷延法によって50
μmの最終板厚とした。表1に最終板厚の急峻度を示
す。従来技術によって製造された市販品が平均2.85
%であるのに対して、本発明品は平均0.08%であ
り、圧延形状がいかに優れているかがわかる。
An embodiment will be described with reference to the drawings. Example 1 By weight, Si: 3.3%, Mn: 0.1%, C: 0.0
01%, N: 0.002%, Al: 0.002%, S:
0.001%, unidirectional electrical steel sheet with the balance being substantially Fe (B 8 = 1.98T, grain size: rolling direction 45 m
m, 500 mm in the direction perpendicular to the rolling direction, plate thickness: 170 μm) was pickled to remove the glass coating, and then 50 times by the single cold rolling method.
The final plate thickness was μm. Table 1 shows the steepness of the final plate thickness. 2.85 on average for commercial products produced by the prior art
%, The average of the product of the present invention is 0.08%, which shows how excellent the rolled shape is.

【0011】[0011]

【表1】 [Table 1]

【0012】実施例2 重量で、Si:3.3%、Mn:0.1%、C:0.0
01%、N:0.002%、Al:0.002%、S:
0.001%、残部が実質的にFeからなる一方向性電
磁鋼板(B8=1.98T、結晶粒径:圧延方向45m
m、圧延直角方向500mm、板厚:170μm)を酸洗
してグラス被膜を除去した後、一回冷延法によって8μ
mの最終板厚とした。表2に最終板厚の急峻度を示す。
従来材では圧延の過程で箔帯にエアポケットが生じ、そ
こより絞り込み、穴、破断といった問題点が生じて圧延
が不可能であったが、本発明品は一回冷延法によって8
μmの板厚まで圧延が可能であるばかりでなく、急峻度
の平均値も1.16%であり、圧延形状も優れているこ
とがわかる。
Example 2 By weight, Si: 3.3%, Mn: 0.1%, C: 0.0
01%, N: 0.002%, Al: 0.002%, S:
0.001%, unidirectional electrical steel sheet with the balance being substantially Fe (B 8 = 1.98T, grain size: rolling direction 45 m
m, 500 mm in the direction perpendicular to the rolling direction, plate thickness: 170 μm) was pickled to remove the glass coating, and then 8 μm by the single cold rolling method
The final plate thickness was m. Table 2 shows the steepness of the final plate thickness.
In the conventional material, air pockets were formed in the foil strip during the rolling process, and problems such as narrowing, holes, and breakage occurred, and rolling was impossible.
It can be seen that not only is it possible to roll to a plate thickness of μm, but the average value of the steepness is 1.16%, and the rolled shape is also excellent.

【0013】[0013]

【表2】 [Table 2]

【0014】実施例3 重量で、Si:3.2%、Mn:0.05%、C:0.
001%、N:0.001%、Al:0.002%、
S:0.0004%、Sn:0.05%、残部が実質的
にFeからなる一方向性電磁鋼板(B8=1.928
T、結晶粒径:圧延方向25mm、圧延直角方向25mm、
板厚:160μm)を酸洗してグラス被膜を除去した
後、一回冷延法によって40μmの最終板厚とした。表
3に最終板厚の急峻度を示すが、本発明品の平均は1.
12%である。結晶方位集積度がやや低いにもかかわら
ず圧延形状は商品レベルを達成している。結晶方位集積
度が低いにもかかわらず圧延形状がよいのは、結晶方位
の違いによるすべり系の相違を互いに相殺しあっている
ことに加え、結晶粒径が小さいので、結晶方位のずれに
起因するすべり系の違いが顕著となって現れないことと
考えられる。
Example 3 By weight, Si: 3.2%, Mn: 0.05%, C: 0.
001%, N: 0.001%, Al: 0.002%,
S: 0.0004%, Sn: 0.05%, the balance being a grain-oriented electrical steel sheet consisting essentially of Fe (B 8 = 1.928).
T, grain size: rolling direction 25 mm, rolling right angle direction 25 mm,
(Plate thickness: 160 μm) was pickled to remove the glass coating, and then the final plate thickness was 40 μm by a single cold rolling method. Table 3 shows the steepness of the final plate thickness. The average of the present invention products is 1.
12%. Despite the fact that the degree of crystal orientation integration is rather low, the rolled shape has achieved product level. The reason why the rolled shape is good despite the low degree of crystal orientation integration is that the difference in the slip system due to the difference in crystal orientation cancels each other out, and the crystal grain size is small It is considered that the difference in the slip system that occurs is not significant and does not appear.

【0015】[0015]

【表3】 [Table 3]

【0016】実施例4 重量で、Si:3.2%、Mn:0.05%、C:0.
001%、N:0.001%、Al:0.002%、
S:0.0004%、Sn:0.05%、残部が実質的
にFeからなる一方向性電磁鋼板(B8=1.928
T、結晶粒径:圧延方向25mm、圧延直角方向25mm、
板厚:160μm)を酸洗してグラス被膜を除去した
後、一回冷延法によって15μmの最終板厚とした。表
4に最終板厚の急峻度を示すが、本発明品の平均は1.
44%である。結晶方位集積度が低い出発材でも結晶粒
径を小さくすることによって一回冷延法による極薄化が
可能であることが明かである。
Example 4 By weight, Si: 3.2%, Mn: 0.05%, C: 0.
001%, N: 0.001%, Al: 0.002%,
S: 0.0004%, Sn: 0.05%, the balance being a grain-oriented electrical steel sheet consisting essentially of Fe (B 8 = 1.928).
T, grain size: rolling direction 25 mm, rolling right angle direction 25 mm,
(Plate thickness: 160 μm) was pickled to remove the glass coating, and then a single cold rolling method was performed to give a final plate thickness of 15 μm. Table 4 shows the steepness of the final plate thickness. The average of the invention products is 1.
44%. It is clear that even a starting material having a low degree of crystal orientation integration can be made extremely thin by the single cold rolling method by reducing the crystal grain size.

【0017】[0017]

【表4】 [Table 4]

【0018】実施例5 重量で、Si:3.3%、Mn:0.1%、C:0.0
01%、N:0.002%、Al:0.002%、S:
0.001%、残部が実質的にFeからなる一方向性電
磁鋼板(B8=1.98T、結晶粒径:圧延方向45m
m、圧延直角方向500mm、板厚:170μm)を酸洗
してグラス被膜を除去した後、一回冷延法によって18
μmの最終板厚とした。図1に最終板厚の急峻度と板厚
/ワークロール径を示す。板厚/ワークロール径≦0.
04の範囲において、急峻度≦1.5%を達成している
ことがわかる。これは圧延バイトにおける材料とロール
の接触面積がロール径が小さいほど少ないので、強力な
変形抵抗を与えることができるためである。
Example 5 By weight, Si: 3.3%, Mn: 0.1%, C: 0.0
01%, N: 0.002%, Al: 0.002%, S:
0.001%, unidirectional electrical steel sheet with the balance being substantially Fe (B 8 = 1.98T, grain size: rolling direction 45 m
m, rolling right angle direction 500 mm, plate thickness: 170 μm) was pickled to remove the glass film, and then once cold rolled 18
The final plate thickness was μm. Fig. 1 shows the steepness of the final plate thickness and the plate thickness / work roll diameter. Plate thickness / work roll diameter ≦ 0.
It can be seen that in the range of 04, the steepness ≦ 1.5% is achieved. This is because the contact area between the material and the roll in the rolling tool is smaller as the roll diameter is smaller, so that stronger deformation resistance can be given.

【0019】[0019]

【発明の効果】本発明に従えば、中間焼鈍による形状矯
正を行うことなく箔の極薄化が可能となるので、工業的
な省コスト製造法としては好適である。本発明材は形状
がよくなったため、連続通板が容易になって生産性向上
の効果が得られた。さらに本発明に従えば、絶縁被膜塗
布の均一化が容易になり、占積率も上昇したことによっ
て電磁箔の磁気特性品質安定の向上につながり、電子機
器の精密制御を可能にするものである。
According to the present invention, the foil can be made extremely thin without performing shape correction by intermediate annealing, which is suitable as an industrial cost-saving manufacturing method. Since the material of the present invention has a good shape, continuous passing becomes easy and the effect of improving productivity is obtained. Further, according to the present invention, it becomes easy to uniformly apply the insulating film and the space factor is increased, which leads to improvement in stability of the magnetic characteristics of the electromagnetic foil and enables precise control of electronic devices. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例5による電磁箔の圧延形状性を示す図で
ある。
FIG. 1 is a diagram showing rolled formability of an electromagnetic foil according to Example 5.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si≦8%、残部が実質的にFeからな
り{110}〈001〉方位集積度を有し、磁束密度B
8/Bs>0.9であり、かつ平均粒径が圧延方向およ
び圧延方向に直角な方向にそれぞれ20mm以上および4
0mm以上の結晶粒径をもつ一方向性電磁鋼板を出発材と
する加工後の板厚が150μm以下で急峻度≦1.2%
の圧延形状の優れた電磁箔。
1. Si ≦ 8%, the balance being substantially Fe, having a {110} <001> orientation integration degree, and a magnetic flux density B
8 /Bs>0.9, and the average grain size is 20 mm or more and 4 in the rolling direction and the direction perpendicular to the rolling direction, respectively.
Starting from a grain-oriented electrical steel sheet with a grain size of 0 mm or more, the thickness after processing is 150 μm or less, and the steepness ≦ 1.2%
Excellent rolled foil electromagnetic foil.
【請求項2】 Si≦8%、残部が実質的にFeからな
り{110}〈001〉方位集積度を有し、磁束密度B
8/Bs>0.9であり、かつ平均粒径が圧延方向およ
び圧延方向に直角な方向にそれぞれ25mm以下の結晶粒
径をもつ一方向性電磁鋼板を出発材とする加工後の板厚
が150μm以下で急峻度≦1.5%の圧延形状の優れ
た電磁箔。
2. Si ≦ 8%, the balance being substantially Fe and having a {110} <001> orientation integration degree and a magnetic flux density B.
8 / Bs> 0.9, and the plate thickness after processing starting from the grain-oriented electrical steel sheet having an average grain size of 25 mm or less in the rolling direction and the direction perpendicular to the rolling direction, respectively. An electromagnetic foil excellent in rolled shape with a steepness ≤1.5% at 150 μm or less.
【請求項3】 請求項1記載の出発材を板厚/ワークロ
ール径≦0.04の条件下で冷間圧延することを特徴と
する圧延形状の優れた電磁箔の製造方法。
3. A method for producing an electromagnetic foil having an excellent rolled shape, which comprises cold rolling the starting material according to claim 1 under the condition of plate thickness / work roll diameter ≦ 0.04.
【請求項4】 請求項2記載の出発材を板厚/ワークロ
ール径≦0.04の条件下で冷間圧延することを特徴と
する圧延形状の優れた電磁箔の製造方法。
4. A method for producing an electromagnetic foil having an excellent rolled shape, which comprises cold rolling the starting material according to claim 2 under the condition of plate thickness / work roll diameter ≦ 0.04.
JP4051953A 1992-03-10 1992-03-10 Electromagnetic foil in excellent roll shape and manufacturing method thereof Withdrawn JPH05258936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4051953A JPH05258936A (en) 1992-03-10 1992-03-10 Electromagnetic foil in excellent roll shape and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4051953A JPH05258936A (en) 1992-03-10 1992-03-10 Electromagnetic foil in excellent roll shape and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH05258936A true JPH05258936A (en) 1993-10-08

Family

ID=12901241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4051953A Withdrawn JPH05258936A (en) 1992-03-10 1992-03-10 Electromagnetic foil in excellent roll shape and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH05258936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104438325A (en) * 2014-10-08 2015-03-25 武汉科技大学 Rolling method of ultra-thin silicon steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104438325A (en) * 2014-10-08 2015-03-25 武汉科技大学 Rolling method of ultra-thin silicon steel sheet

Similar Documents

Publication Publication Date Title
WO1986002950A1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
JP2010280970A (en) Method for producing grain-oriented electromagnetic steel sheet with good magnetic flux density
JPS62185828A (en) Manufacture of frame material for shadow mask
JP3882103B2 (en) Low iron loss unidirectional electrical steel sheet with tension-applying anisotropic coating
JPS62161915A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
JPH05258936A (en) Electromagnetic foil in excellent roll shape and manufacturing method thereof
JP3544590B2 (en) Material for magnetic shielding for color picture tubes
JPH0816259B2 (en) Grain-oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof
KR102583464B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH03267320A (en) Production of shadow mask material
JPS6316445B2 (en)
WO1997006285A1 (en) Raw material for magnetic shield, production method thereof, and color television receiver
JP3350214B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties
JP3022074B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH08199270A (en) Iron-nickel alloy sheet excellent in magnetic property and its production
WO2020149325A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2757695B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JP2001295001A (en) Nonoriented silicon steel sheet excellent in high frequency magnetic property and weldability
US5041170A (en) Method employing skin-pass rolling to enhance the quality of phosphorus-striped silicon steel
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH01272718A (en) Production of double oriented electrical steel sheet having high magnetic flux density and uniform magnetic characteristic in longitudinal direction
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518