JPH0525827B2 - - Google Patents

Info

Publication number
JPH0525827B2
JPH0525827B2 JP59199931A JP19993184A JPH0525827B2 JP H0525827 B2 JPH0525827 B2 JP H0525827B2 JP 59199931 A JP59199931 A JP 59199931A JP 19993184 A JP19993184 A JP 19993184A JP H0525827 B2 JPH0525827 B2 JP H0525827B2
Authority
JP
Japan
Prior art keywords
blast furnace
water
weight
furnace slag
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59199931A
Other languages
Japanese (ja)
Other versions
JPS6177655A (en
Inventor
Sadao Yabu
Shinichiro Hasegawa
Hideo Fuki
Kazuo Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP59199931A priority Critical patent/JPS6177655A/en
Publication of JPS6177655A publication Critical patent/JPS6177655A/en
Publication of JPH0525827B2 publication Critical patent/JPH0525827B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明は屋根材、外壁材、内壁材、床材、天井
材あるいは門扉、フエンスの如きエクステリア建
材として広範囲の用途に使用される水硬性組成物
に関し、殊に製鉄時に多量に生じる水砕高炉スラ
グを主成分として、それ自身では高い強度がなく
又硬化にも時間がかかり、硬化収縮も大きい等の
欠点とする高炉スラグを多量に用いながら(主成
分としながら)、高い曲げ強度、衝撃強度を有し、
且つ白華、寸法収縮(寸法変化)率が少なく、ク
ラツクが大幅に改善され、押し出し成形や圧縮成
形等の成型性、賦形性に優れる水硬性組成物に係
るものである。 [背景技術] 近年窯業系成形物、特に建材において、乾式工
法を採用することが著しく増大しており、この目
的に対して普通ポルトランドセメント、白色セメ
ント、あるいはポルトランドセメントの一部を水
砕高炉スラグで置換した、いわゆる高炉セメント
等を用いて水で混練、賦形、水和硬化(養生硬
化)させて成形物を供することが一般的である。
しかしながら、製鉄の際の高炉から副生する高炉
スラグを70重量%以上使用した水硬性組成物によ
つて実際に使用に耐える程の高強度の水和硬化体
を経済的に作り出すことは成功していないのが現
状である。即ち、通常工業的に生産する手段とし
てはポルトランドセメント(白色セメントを含
む)、高炉セメント等の通常の水硬性セメント、
あるいはジエツトセメントの如き速硬性セメント
にフライアツシユ、珪砂、シラス等の無機充填材
を加え、更に近年衛生上問題とされているアスベ
ストを配合し、必要によつては混練、加工性、保
形性を改善する為に少量の有機高分子添加剤を加
え、適量の水を用いて混合、混練して水硬性組成
物を調製し、この水硬性組成物を所定の型に賦形
し、養生硬化して硬化体を作成しているものであ
る。又、この養生について見れば、自然養生、蒸
気養生等の手段で硬化体を得るが強度の発現に長
期間を要し、その強度もたかだか250〜300Kg/cm2
の曲げ強度をもつに過ぎない。この他にオートク
レープによる高温高圧の養生も一般的に行なわれ
ているが、養生に多くの熱エネルギーを必要とし
て経済的でなく、又得られる硬化体の強度も前者
と変わらないものであつた。 [発明の目的] 本発明は上記の点に鑑みて成されたものであつ
て、これまで実用的に供し得なかつた高配合量の
水砕高炉スラグを用い、オートクレープ等の高温
高圧養生を行うことなく自然養生あるいは蒸気養
生等で恒久的な使用に耐えうる高強度、特に高い
曲げ強度を持つ水硬性硬化体を短期的に、しかも
経済的に得ることができる水硬性組成物を提供
し、省エネルギー、省資源、軽量化を実現し、窯
業系材料の発展に寄与することを目的とするもの
である。 [発明の開示] すなわち、本発明の水硬性組成物は、水砕高炉
スラグが70重量%以上、二水石膏とカルシウムア
ルミネートモノサルフエートハイドレイトが1.5
〜15重量%配合され、カルシウムアルミネートモ
ノサルフエートハイドレートと二水石膏の配合比
率が重量比で1:0.5〜1:5である水硬化セメ
ント組成物100重量部に対して水溶性有機高分子
物質が3〜15重量部配合されて成ることを特徴と
するもので、水砕高炉スラグにカルシウムアルミ
ネートモノサルフエートハイドレイト;3CaO.
Al2O3.CaSO4.12H2O(以下MSHと記す)と二水
石膏を配合し、これにポリ酢酸ビニル及び(又
は)その共重合体の加水分解物、プルラン、ヒド
ロキシプロピルメチルセルロースの如き水溶性有
機高分子物質を共存させることにより、水和反応
の初期にはMSHと二水石膏の反応でカルシウム
アルミネートトリサルフエートハイドレイト;
3CaO.Al2O3.3CaSO4.31〜32H2O(以下TSHと記
す)の緻密な針状結晶を高粘度の水溶性物質の溶
液を介して水砕高炉スラグの粒子間及び表面上に
生成し、この生成物が高炉スラグの水和を促進し
て互いに強固で緻密な硬化体を形成することによ
つて上記目的を達成したものである。 以下本発明を実施例に基づいて詳述する。水砕
高炉スラグを主成分とする水硬性組成物におい
て、カルシウムアルミネートモノサルフエートハ
イドレイト;3CaO.Al2O3.CaSO4.12H2O(以下
MSHと記す)と二水石膏を必須成分とし、この
三者より成る水硬性セメント組成物に水溶性有機
高分子物質を水に加え、これらの成分を混合した
水硬性組成物を混練し、所定の型に賦形硬化させ
ることにより、従来のポルトランドセメント、高
炉セメント等では到底得られなかつた高い曲げ強
度、衝撃強度を持ち、更に高炉スラグの欠点とさ
れる収縮クラツクのない水硬性硬化体を得るもの
である。本発明において、水砕高炉スラグは、製
鉄所の高炉から副生するスラグを水砕したもので
通常高炉セメントとして市販されている水硬性セ
メントの構成成分である水砕高炉スラグについて
適用される。水砕高炉スラグを用いて硬化体を得
る場合には、通常はポルトランドセメントの30重
量部以上を添加するのが一般的であり、この水砕
高炉スラグを用いて高強度の硬化体を得る場合は
アスベスト、ガラス繊維、バルブ、ビニロン、ポ
リプロピレン等の無機あるいは有機繊維状物質を
添加し、減水剤等を用いて混合水量をできるだけ
少なくすることが一般的であるが、細心の注意を
払つて材料を混合混練し、所定の型に賦形、硬化
養生した硬化体においても、例えば曲げ強度で見
るとき、本発明者らの経験では300Kg/cm2を超え
ることは極めて希である。本発明者においては係
る技術的背景に基づき水砕高炉スラグを水硬性セ
メント組成物に対して70重量%以上を用いて曲げ
強度400Kg/cm2以上の高い強度を有する水硬性硬
化体を得るための条件を提供するものである。水
砕高炉スラグを有効に硬化せしめるためには適当
な水和刺激剤が必要であり、これについては例え
ば水酸化カルシウム、塩化カルシウム、炭酸ナト
リウム等が有効であることは公知である。しかし
ながら、これらの刺激剤を用いても水砕高炉スラ
グの水和硬化体の強度発現に関しては不充分であ
り、且つ高炉スラグの大きな欠点とされる硬化収
縮に伴うクラツクの発生を抑制することができ
ず、資源の活用に対する有効な手段とはなり得て
いないものであつた。 本発明者らは係る事情に鑑み、水砕高炉スラグ
に対して有効な硬化促進剤及び強度向上に寄与す
る添加剤を検討した結果、水砕高炉スラグを水和
硬化させるに当たり、水和のごく初期にMSHと
二水石膏の反応によつて強度発現に効果的なエト
リンジヤイト即ち、TSHの結晶を水砕高炉スラ
グ粒子間から生成せしめ、次いで緻密なスラグの
水和硬化体を形成し、TSHを包含する形にする
ことが早期強度の発現、硬化収縮、クラツク防止
に極めて有効であることを見出だしたのである。
又、水砕高炉スラグを主体とする水硬性組成物を
混練賦形して水和硬化させ、高強度の硬化体を得
るためにはMSHと二水石膏の存在下で水溶性有
機高分子物質を添加することが有効であり、特に
水和の初期の反応遅延剤として作用し、常温又は
100℃以下の温度で溶解もしくは膨潤するもので
ある。且つ水和の進行及び乾燥によつて水に不溶
乃至難溶性の強い皮膜を形成する物質であること
が必要である。この目的で本発明の水硬性組成物
の中で強度向上に効果のある水溶性及び水膨潤性
有機高分子物質として使用しうる適当な重合体と
しては、ポリ酢酸ビニル又は(及び)その共重合
体の加水分解物(ポリビニルアルコール又はその
共重合体;PVA)、プルラン(α−1,4−結合
のマルトトリオースがその両端でα−1,6−結
合により繰り返し重合した直線状の比較的単純な
α−グルカンである)、ヒドロキシプロピルメチ
ルセルロースが好ましい。その中で比較的少量の
添加で硬化の大きいものはポリ酢酸ビニル及びそ
の共重合体の加水分解物である。しかしながら、
ポルトランドセメント、白色セメント、高炉セメ
ントあるいはジエツトセメント等は水和反応のご
く初期であつても析出するカルシウム(Ca++
が上記PVA又はその共重合体及びプルランと結
合して水不溶性のゲル状物質を生成し、成形加工
性に供する粘弾性を有する混練物を形成し得な
く、非常に希薄なPVA溶液以外は係る水硬性セ
メントに配合し得ない状態となる。 一方において、水砕高炉スラグに水和反応刺激
剤として、生石灰又は消石灰を添加する試みがあ
るが、この場合には緻密な硬化体を作り得ても曲
げ強度は200Kg/cm2程度であり、しかも水砕高炉
スラグ、MSH、二水石膏の水硬性物質で効果の
ある水溶性有機高分子物質、例えばPVAを水砕
高炉スラグ、生石灰又は消石灰の系に添加すると
Ca++とPVA間の反応で粘性の全くない砂状の物
質を形成するのみで成形加工に供する混練物が得
られない。本発明者は係る情況を踏まえ、高炉ス
ラグを有効に硬化せしめ、且つ組成が緻密で高い
曲げ強度を持つ水硬性組成物を得ることを鋭意研
究の結果、水砕高炉スラグにMSHと二水石膏を
配合し、これにポリ酢酸ビニル、及び(又は)そ
の共重合体の加水分解物、プルラン、ヒドロキシ
プロピルメチルセルロースの如き水溶性有機高分
子物質を共存させることにより、水和反応の初期
にはMSHと二水石膏の反応でTSHの緻密な針状
結晶が高粘度の水溶性物質の溶液を介して水砕高
炉スラグの粒子間及び表面上に生成することが促
進され、次いでこの生成物が高炉スラグの水和を
促進して互いに強固な緻密な硬化体を形成するに
至るのを見出だした。このように、水砕高炉スラ
グにMSHと二水石膏を併用添加することで、通
常Ca++の存在下でゲル化を起こすPVAの如き水
溶性有機高分子物質を加えても砂粒状の物質を形
成することなく潤滑性、粘弾性に富む混練物が得
られるものであり、成形硬化体の強度も曲げ強度
で600Kg/cm2以上という驚くべき結果を得ている。
即ち、水和に際して初期の反応でCa++の影響が
PVAの耐水不溶化に寄与し、反応が進行する過
程でTSHの生成によつて組織間の結合がより緻
密になり強固なものとなるのである。一般に、水
硬性セメント硬化体の強度発現に効果にある
TSHに関しては水/セメント比が低い程TSHの
結晶生成が起こり難くなり、普通ポルトランドセ
メントの如くTSHを生成し易い水硬性セメント
においてさえも水/セメント比が0.25以下の時に
はTSHの結晶の生成は極めて小さいことが報告
されている。しかしながら、水硬性組成物の必須
成分としてMSHと二水石膏を予め添加すること
により、水/セメント比が0.15のような低混水域
でもTSHが生成され強度発現、硬化収縮の低減
に極めて有効なものである。ただし、TSHを水
硬性組成物に添加しても強度の発現、水砕高炉ス
ラグの水和促進に対しては有効でない。これらの
ことは本発明に適用されるMSHと二水石膏の重
量比及びその配合量は種々の物質を確保する上で
特に重要である。ここで、MSHと二水石膏の配
合量は水砕高炉スラグと二水石膏とMSHとより
成る水硬化セメント組成物に対して1.5〜15重量
%配合するものであり、1.5重量%未満では初期
強度に時間がかかり、又水砕高炉スラグの欠点と
される硬化収縮に伴うクラツクを防止することが
出来ないものである。逆に、MSHと二水石膏の
量が15重量%を超える場合には水硬性組成物の膨
潤クラツクの危険性があり、更には水溶性高分子
物質、特にポリ酢酸ビニル加水分解物(PVA)、
プルランのゲル化を促進し、混練物が短時間で粘
性、膨潤性を失い成形し得なくなるものである。
また、MSH/二水石膏の配合比率は重量比で
1/0.55(1.8)〜1/5(0.2)であることが必要
であり、好ましくは1/1(1.0)である。
MSH/二水石膏の比率が1/0.55(1.8)を超え
る場合には、未反応のMSHが残存して最終耐久
性に不具合を生じ、またこの比率が1/5(0.2)
未満の場合には、余剰の石膏の為に耐水性が損な
われる結果となる。また、水砕高炉スラグの水和
を刺激、促進するために、塩化カルシウム、炭酸
ナトリウム、酢酸ナトリウム、酢酸カルシウム等
の公知の水和反応刺激剤を使用することができ
る。ただし、MSHと二水石膏を含まない時、及
びポリ酢酸ビニル加水分解物(PVA)を含まな
い場合に、例えば塩化カルシウムの如き硬化刺激
剤を添加して硬化させた場合には、高炉スラグの
ロツトによつて硬化時間に大きなバラツキが有る
ばかりでなく、硬化体にクラツクを生じるが如き
不具合な結果をもたらす。水溶性有機高分子物質
として使用するポリ酢酸ビニル又は(及び)その
共重合体の加水分解物(PVA)は、ケン化度が
65モル%から99.5モル%、好ましくは75〜90モル
%のものを2.5〜15重量部使用することができる。
この場合、水溶解速度、水溶解粘度の異なる2つ
以上のケン化度をモードを有するPVAを用いて
も良い。他の水溶性有機高分子物質として使用す
るヒドロキシプロピルメチルセルロース、プルラ
ン等は0.3〜2.5部の範囲で使用するのが保形性、
硬化のバランスからみて望ましい。本発明は係る
水砕高炉スラグにMSH、二水石膏及びPVAの如
き水溶性有機高分子物質を必須成分として必要に
応じ水和反応刺激剤をして塩化カルシウム、炭酸
ナトリウム、酢酸ナトリウム、酢酸カルシウム等
を適宜配合し、使用目的によつてはアスベスト、
グラスフアイバー、ウオラストナイト、バルブ、
ビニロン、ナイロン、ポリプロピレン等の無機、
有機繊維、珪砂、シラス、雲母、フライアツシ
ユ、クレー、炭酸カルシウム等の充填材を配合
し、これに15重量部以上35重量部以下の水を加え
て混練し、押し出し成形、圧縮成形、トランスフ
アー成形により賦形硬化せしめる水硬性組成物を
示すものであり、平板状、中空を含む複雑な異形
断面を持つ成形品硬化体を容易に且つ安価に提供
することができ、屋根材、外壁材、内壁材、床
材、天井材あるいは門扉、フエンスの如きエクス
テリア建材として広範囲の用途に供せられるもの
である。 以下本発明を実施例に基づいて説明する。 実施例1〜4、比較例1〜4 第1表に示すように、水砕高炉スラグとMSH
と二水石膏の合計を水硬性セメント組成物100重
量部とする(ただし、実施例4では水砕高炉スラ
グの一部を珪砂、ウオラスナイトで置換してい
る。)これに、ポリ酢酸ビニル又は(及び)その
共重合体の加水分解物(PVA)を5重量部、プ
ルラン0.5重量部を添加して混合する。次ぎに、
予め調整し、常温に冷却してある塩化カルシウム
10%水溶液18.5重量部を加圧ニーダー中で上記混
合物に加え、2.5分間加圧混練し、粘弾性のある
混練物を得る。この混練物を一般にドウと呼称す
る。次に、このドウを真空脱気装置を有する押し
出し成形機のホツパーに投入し、真空脱気しなが
ら厚さ6mm、幅60mmの連続した板状試料を成形し
た。押出し圧力は50〜60Kg/cm2であつた。次い
で、この成形品をポリエチレンシートで密封し、
室温(25℃)で15時間放置した後、密封のまま60
℃の恒温槽中で湿熱養生を40時間行い、湿空状態
で4週間放置した。次に、この試料を60℃で15時
間乾燥したものを乾燥強度測定試料とした。強度
は曲げ強度(3点曲げ試験)とシヤルビー衝撃強
度を求めた。又、耐水性を見るために同上の処理
で作成した試料を15時間水中に浸漬した後、付着
水を拭い取り、3時間風乾したものの曲げ強度を
求め、これを吸湿強度とした。結果は第1表に示
す通りである。なお比較例1にあつては、成形が
できず、比較例2は硬化が遅延し、比較例3のも
のは耐水性が悪く、比較例4のものはクラツクを
生じた。 また、X線回折で確認した結果エトリンジヤイ
トの生成はMSHと二水石膏を配合している場合
は成形後10時間から認められ、60℃湿熱養生で
MSHは総て石膏と反応してTSHを生成するもの
と思われる。即ち、水/セメント比が0.2以下の
低混水領域では通常TSHの結晶の生成、成長は
認められないが、MSHと二水石膏、PVAの添加
によりこれが容易に形成され、その過程で水砕高
炉スラグの水和の刺激が調整され緻密な硬化体を
形成して初期及び最期の強度発現に大きく寄与し
ているのである。一方、比較例1、2、4ではい
ずれもTSHを成長することがなく比較例3では
未反応石膏の残存の為に硬化体の耐水性が低下す
るものである。 実施例5〜11、比較例5、6 水砕高炉スラグ95重量部とMSH1重量部に二水
石膏4重量部を加えたものの合計で水硬性セメン
ト組成物100重量部とする。これに、ポリ酢酸ビ
ニルの加水分解物(PVA)及びヒドロキシプロ
ピルメチルセルロース、プルラン等の第2表に示
す部数を添加して混合する。次ぎに、予め調整
し、常温に冷却してある塩化カルシウム10%水溶
液18.5重量部を加圧ニーダー中で上記混合物に加
え、2.5分間加圧混練し、粘弾性のある混練物で
あるドウを得る。次に、このドウを真空脱気装置
を有する押し出し成形機のホツパーに投入し、真
空脱気しながら厚さ6mm、幅60mmの連続した板状
試料を成形した。得られた成形品の外観は均一平
滑な状態で、押出し圧力は50〜65Kg/cm2であつ
た。次いで、この成形品をポリエチレンシートで
密封し、室温(25℃)で15時間放置した後、密封
のまま60℃の恒温槽中で湿熱養生を40時間行い、
湿空状態で4週間放置した。次に、この試料を60
℃で15時間乾燥したものを乾燥強度測定試料とし
た。強度は曲げ強度(3点曲げ試験)とシヤルビ
ー衝撃強度を求めた。又、耐水性を見るために同
上の処理で作成した試料を15時間水中に浸漬した
後、付着水を拭い取り、3時間風乾したものの曲
げ強度を求め、これを湿潤強度とした。結果は第
2表に示す通りである。なお、比較例6は耐水性
に劣るものであつた。
[Technical field] The present invention relates to hydraulic compositions used in a wide range of applications as roofing materials, exterior wall materials, interior wall materials, flooring materials, ceiling materials, and exterior building materials such as gates and fences, and particularly relates to hydraulic compositions that are produced in large quantities during steel manufacturing. The main component is granulated blast furnace slag, which by itself does not have high strength, takes a long time to harden, and suffers from large curing shrinkage. , has impact strength,
Further, the present invention relates to a hydraulic composition that has low efflorescence and dimensional shrinkage (dimensional change) rate, has significantly improved cracking, and has excellent moldability and formability in extrusion molding, compression molding, etc. [Background technology] In recent years, there has been a marked increase in the use of dry construction methods for ceramic moldings, especially building materials.For this purpose, ordinary Portland cement, white cement, or a portion of Portland cement is replaced with granulated blast furnace slag It is common to provide molded products by kneading, shaping, and hydration hardening (curing hardening) using so-called blast furnace cement or the like substituted with water.
However, it has not been possible to economically produce a hydration-hardened material with a high enough strength to withstand actual use by using a hydraulic composition that uses 70% by weight or more of blast furnace slag, which is a by-product of blast furnaces during steel manufacturing. The current situation is that this is not the case. In other words, common industrial production methods include portland cement (including white cement), normal hydraulic cement such as blast furnace cement,
Alternatively, inorganic fillers such as fly ash, silica sand, and shirasu are added to quick-hardening cement such as jet cement, and asbestos, which has become a sanitary problem in recent years, is added, and if necessary, kneading, processability, and shape retention are improved. To improve this, a small amount of organic polymer additive is added, mixed and kneaded with an appropriate amount of water to prepare a hydraulic composition, this hydraulic composition is shaped into a predetermined mold, and cured. The cured product is created by Also, regarding this curing, although a hardened product can be obtained by means such as natural curing or steam curing, it takes a long time to develop strength, and the strength is at most 250 to 300 kg/cm 2
It has only a bending strength of . In addition, high-temperature, high-pressure curing using an autoclave is also commonly performed, but curing requires a large amount of thermal energy, making it uneconomical, and the strength of the resulting cured product is no different from the former. . [Objective of the Invention] The present invention has been made in view of the above-mentioned points, and uses granulated blast furnace slag with a high blending amount, which has not been practically available up to now, and is capable of being cured at high temperature and high pressure using autoclave or other methods. To provide a hydraulic composition that can economically obtain a hydraulically cured product having high strength, especially high bending strength, that can withstand permanent use by natural curing or steam curing, etc., without any dry curing. The purpose is to realize energy saving, resource saving, and weight reduction, and to contribute to the development of ceramic materials. [Disclosure of the Invention] That is, the hydraulic composition of the present invention contains 70% by weight or more of granulated blast furnace slag and 1.5% by weight of dihydrate gypsum and calcium aluminate monosulfate hydrate.
~15% by weight of a water-soluble organic high It is characterized by containing 3 to 15 parts by weight of molecular substances, including granulated blast furnace slag and calcium aluminate monosulfate hydrate; 3CaO.
Blend Al 2 O 3 .CaSO 4 .12H 2 O (hereinafter referred to as MSH) and dihydrate, and add to this a hydrolyzate of polyvinyl acetate and/or its copolymer, pullulan, hydroxypropyl methylcellulose, etc. By allowing a water-soluble organic polymer substance to coexist, at the initial stage of the hydration reaction, the reaction between MSH and dihydrate produces calcium aluminate trisulfate hydrate;
Dense acicular crystals of 3CaO.Al 2 O 3 .3CaSO 4 .31~32H 2 O (hereinafter referred to as TSH) are deposited between particles and on the surface of granulated blast furnace slag through a solution of a highly viscous water-soluble substance. The above object is achieved by promoting the hydration of the blast furnace slag and forming a mutually strong and dense hardened body. The present invention will be described in detail below based on examples. In a hydraulic composition mainly composed of granulated blast furnace slag, calcium aluminate monosulfate hydrate; 3CaO.Al 2 O 3 .CaSO 4 .12H 2 O (hereinafter referred to as
MSH) and dihydrate gypsum are essential components, and a water-soluble organic polymer substance is added to water to a hydraulic cement composition consisting of these three components, and the hydraulic composition obtained by mixing these components is kneaded to form a predetermined mixture. By forming and hardening it into a mold, we have created a hydraulically hardened material that has high bending strength and impact strength that cannot be obtained with conventional Portland cement, blast furnace cement, etc., and also does not suffer from shrinkage cracks, which are the drawbacks of blast furnace slag. It's something you get. In the present invention, granulated blast furnace slag is applied to granulated blast furnace slag, which is obtained by pulverizing slag by-produced from a blast furnace in a steel mill and is a component of hydraulic cement, which is usually commercially available as blast furnace cement. When obtaining a hardened body using granulated blast furnace slag, it is common to add 30 parts by weight or more of Portland cement; when obtaining a high-strength hardened body using this granulated blast furnace slag, It is common practice to add inorganic or organic fibrous substances such as asbestos, glass fiber, bulb, vinylon, polypropylene, etc., and to reduce the amount of mixed water as much as possible by using water reducing agents, etc. Even in a cured product obtained by mixing and kneading, shaping into a predetermined mold, and curing and curing, for example, when looking at the bending strength, it is extremely rare for the bending strength to exceed 300 Kg/cm 2 according to the experience of the present inventors. Based on this technical background, the present inventor uses 70% by weight or more of granulated blast furnace slag in a hydraulic cement composition in order to obtain a hydraulic hardened body having a high bending strength of 400 Kg/cm 2 or more. It provides the conditions for In order to effectively harden granulated blast furnace slag, a suitable hydration stimulant is required, and it is known that, for example, calcium hydroxide, calcium chloride, sodium carbonate, etc. are effective. However, even if these stimulants are used, it is insufficient to develop the strength of the hydrated and hardened material of granulated blast furnace slag, and it is difficult to suppress the occurrence of cracks due to hardening shrinkage, which is a major drawback of blast furnace slag. Therefore, it could not be an effective means of utilizing resources. In view of the above circumstances, the present inventors investigated effective hardening accelerators for granulated blast furnace slag and additives that contribute to improving strength. Initially, crystals of ettringite, which is effective for developing strength, are formed between particles of granulated blast furnace slag by the reaction between MSH and dihydrate gypsum, and then a dense hydrated slag is formed to form TSH. They have discovered that forming the material into a shape that includes it is extremely effective in developing early strength, curing shrinkage, and preventing cracks.
In addition, in order to obtain a high-strength hardened product by kneading and shaping a hydraulic composition mainly composed of granulated blast furnace slag, a water-soluble organic polymer substance is added in the presence of MSH and dihydrate gypsum. It is effective to add
It dissolves or swells at temperatures below 100°C. In addition, it is necessary that the material forms a strong film that is insoluble or sparingly soluble in water as hydration progresses and dries. For this purpose, suitable polymers that can be used as water-soluble and water-swellable organic polymer substances effective in improving strength in the hydraulic composition of the present invention include polyvinyl acetate and/or copolymers thereof. hydrolyzate of polymer (polyvinyl alcohol or its copolymer; PVA), pullulan (a linear comparative product in which maltotriose with α-1,4-bonds is repeatedly polymerized with α-1,6-bonds at both ends) hydroxypropyl methylcellulose is preferred. Among them, hydrolysates of polyvinyl acetate and copolymers thereof are highly curing even when added in relatively small amounts. however,
Portland cement, white cement, blast furnace cement, jet cement, etc. contain calcium (Ca ++ ) that precipitates even at the very beginning of the hydration reaction.
is combined with the above-mentioned PVA or its copolymer and pullulan to produce a water-insoluble gel-like substance, and cannot form a kneaded material with viscoelasticity suitable for molding processability, except for extremely dilute PVA solutions. This makes it impossible to mix it into hydraulic cement. On the other hand, there have been attempts to add quicklime or slaked lime to granulated blast furnace slag as a hydration reaction stimulant, but in this case, even if a dense hardened product could be made, the bending strength was only about 200 kg/ cm2 ; Furthermore, when water-soluble organic polymer substances such as PVA, which are effective in hydraulic substances such as granulated blast furnace slag, MSH, and dihydrate gypsum, are added to the granulated blast furnace slag, quicklime, or slaked lime system,
The reaction between Ca ++ and PVA only forms a sand-like substance with no viscosity, and a kneaded material that can be used for molding cannot be obtained. In view of the above circumstances, the present inventor has conducted intensive research to effectively harden blast furnace slag and obtain a hydraulic composition with a dense composition and high bending strength. By blending polyvinyl acetate and/or its copolymer hydrolyzate, pullulan, hydroxypropyl methylcellulose, and other water-soluble organic polymer substances, MSH can be added at the initial stage of the hydration reaction. The reaction between gypsum and gypsum promotes the formation of dense acicular crystals of TSH between particles and on the surface of granulated blast furnace slag through a solution of highly viscous water-soluble substances, and then this product is transferred to the blast furnace. It has been found that hydration of the slag is promoted to form a mutually strong and dense hardened body. In this way, by adding MSH and gypsum together to granulated blast furnace slag, even when water-soluble organic polymer substances such as PVA, which normally cause gelation in the presence of Ca ++ , are added, no sand-like particles can be formed. It is possible to obtain a kneaded product with excellent lubricity and viscoelasticity without forming any pores, and the strength of the molded and cured product has been surprisingly high, with a bending strength of 600 kg/cm 2 or more.
That is, during hydration, the influence of Ca ++ is
It contributes to making PVA water-resistant and insolubilizable, and as the reaction progresses, the bonds between tissues become denser and stronger due to the production of TSH. In general, it is effective in developing the strength of hardened hydraulic cement.
Regarding TSH, the lower the water/cement ratio is, the more difficult it is for TSH crystal formation to occur, and even in hydraulic cement that easily generates TSH, such as ordinary Portland cement, when the water/cement ratio is less than 0.25, TSH crystal formation is less likely to occur. It has been reported that it is extremely small. However, by pre-adding MSH and gypsum dihydrate as essential components of a hydraulic composition, TSH is generated even in a low mixed area with a water/cement ratio of 0.15, which is extremely effective in developing strength and reducing curing shrinkage. It is something. However, even if TSH is added to a hydraulic composition, it is not effective for developing strength or promoting hydration of granulated blast furnace slag. These matters are particularly important in determining the weight ratio of MSH and dihydrate gypsum and their blending amount, which are applied to the present invention, in order to secure various substances. Here, the blending amount of MSH and dihydrate is 1.5 to 15% by weight with respect to the hydraulic cement composition consisting of granulated blast furnace slag, dihydrate gypsum, and MSH, and if it is less than 1.5% by weight, the initial It takes time to develop strength, and it is not possible to prevent cracks caused by hardening shrinkage, which is a drawback of granulated blast furnace slag. Conversely, if the amount of MSH and gypsum exceeds 15% by weight, there is a risk of swelling cracks in the hydraulic composition, and even water-soluble polymeric substances, especially polyvinyl acetate hydrolyzate (PVA). ,
It promotes the gelation of pullulan, and the kneaded product loses its viscosity and swelling properties in a short period of time, making it impossible to mold it.
The mixing ratio of MSH/gypsum dihydrate needs to be 1/0.55 (1.8) to 1/5 (0.2) by weight, preferably 1/1 (1.0).
If the ratio of MSH/gypsum dihydrate exceeds 1/0.55 (1.8), unreacted MSH will remain, causing problems in final durability;
If it is less than 10%, water resistance will be impaired due to excess gypsum. Further, in order to stimulate and promote the hydration of granulated blast furnace slag, known hydration reaction stimulants such as calcium chloride, sodium carbonate, sodium acetate, calcium acetate, etc. can be used. However, if MSH and dihydrate gypsum are not included, and if polyvinyl acetate hydrolyzate (PVA) is not included, and if a hardening stimulant such as calcium chloride is added for hardening, blast furnace slag Not only does the curing time vary widely depending on the lot, but it also causes undesirable results such as cracks in the cured product. The hydrolyzate (PVA) of polyvinyl acetate or (and) its copolymer used as a water-soluble organic polymer substance has a saponification degree of
It is possible to use 2.5 to 15 parts by weight of 65 to 99.5 mol%, preferably 75 to 90 mol%.
In this case, PVA having two or more saponification degree modes with different water dissolution rates and water dissolution viscosities may be used. Hydroxypropyl methylcellulose, pullulan, etc. used as other water-soluble organic polymer substances should be used in the range of 0.3 to 2.5 parts for shape retention.
Desirable from the viewpoint of curing balance. The present invention uses water-soluble organic polymer substances such as MSH, gypsum dihydrate, and PVA as essential ingredients and hydration reaction stimulators as necessary to the granulated blast furnace slag to produce calcium chloride, sodium carbonate, sodium acetate, and calcium acetate. Depending on the purpose of use, asbestos,
glass fiber, wollastonite, valve,
Inorganic materials such as vinylon, nylon, polypropylene, etc.
Fillers such as organic fibers, silica sand, shirasu, mica, fly ash, clay, and calcium carbonate are blended, and 15 parts by weight or more and 35 parts by weight or less of water are added and kneaded, followed by extrusion molding, compression molding, or transfer molding. This refers to a hydraulic composition that can be shape-cured by shape-curing, and can easily and inexpensively provide cured molded products with complex irregular cross-sections, including flat plates and hollow spaces, and can be used for roofing materials, exterior wall materials, and interior walls. It can be used in a wide range of applications as exterior building materials such as wood, flooring, ceiling materials, gates, and fences. The present invention will be explained below based on examples. Examples 1 to 4, Comparative Examples 1 to 4 As shown in Table 1, granulated blast furnace slag and MSH
and dihydrate gypsum to make 100 parts by weight of the hydraulic cement composition. and) 5 parts by weight of the hydrolyzate of the copolymer (PVA) and 0.5 parts by weight of pullulan are added and mixed. Next,
Calcium chloride prepared in advance and cooled to room temperature
Add 18.5 parts by weight of a 10% aqueous solution to the above mixture in a pressure kneader and knead under pressure for 2.5 minutes to obtain a viscoelastic kneaded product. This kneaded material is generally called dough. Next, this dough was put into a hopper of an extrusion molding machine equipped with a vacuum degassing device, and a continuous plate-like sample having a thickness of 6 mm and a width of 60 mm was molded while being vacuum degassed. The extrusion pressure was 50-60 Kg/ cm2 . Next, this molded product is sealed with a polyethylene sheet,
After leaving it at room temperature (25℃) for 15 hours, it will remain sealed for 60 hours.
Moist heat curing was performed for 40 hours in a constant temperature bath at ℃, and the sample was left in a humid air condition for 4 weeks. Next, this sample was dried at 60° C. for 15 hours and used as a sample for dry strength measurement. The strength was determined by bending strength (3-point bending test) and Sialby impact strength. In addition, to check water resistance, a sample prepared by the above treatment was immersed in water for 15 hours, the adhering water was wiped off, and the sample was air-dried for 3 hours to determine the bending strength, which was taken as the hygroscopic strength. The results are shown in Table 1. Comparative Example 1 could not be molded, Comparative Example 2 had delayed curing, Comparative Example 3 had poor water resistance, and Comparative Example 4 cracked. In addition, as confirmed by X-ray diffraction, the formation of ettringite was observed from 10 hours after molding when MSH and dihydrate gypsum were mixed, and after moist heat curing at 60℃.
All MSH seems to react with gypsum to generate TSH. In other words, in the low water mixing region where the water/cement ratio is 0.2 or less, the formation and growth of TSH crystals is not normally observed, but with the addition of MSH, dihydrate gypsum, and PVA, they are easily formed, and in the process, water granulation occurs. The stimulation of hydration of blast furnace slag is adjusted to form a dense hardened body, which greatly contributes to the initial and final strength development. On the other hand, in Comparative Examples 1, 2, and 4, no TSH was grown, and in Comparative Example 3, the water resistance of the cured product decreased due to the residual unreacted gypsum. Examples 5 to 11, Comparative Examples 5 and 6 4 parts by weight of dihydrate were added to 95 parts by weight of granulated blast furnace slag, 1 part by weight of MSH, and the total amount was 100 parts by weight of the hydraulic cement composition. To this, the parts shown in Table 2 such as polyvinyl acetate hydrolyzate (PVA), hydroxypropyl methyl cellulose, pullulan, etc. are added and mixed. Next, 18.5 parts by weight of a 10% calcium chloride aqueous solution, which had been prepared in advance and cooled to room temperature, was added to the above mixture in a pressure kneader and kneaded under pressure for 2.5 minutes to obtain a viscoelastic kneaded dough. . Next, this dough was put into a hopper of an extrusion molding machine equipped with a vacuum degassing device, and a continuous plate-like sample having a thickness of 6 mm and a width of 60 mm was molded while being vacuum degassed. The appearance of the obtained molded product was uniform and smooth, and the extrusion pressure was 50 to 65 kg/cm 2 . Next, this molded product was sealed with a polyethylene sheet and left at room temperature (25°C) for 15 hours, and then kept sealed in a thermostat at 60°C for 40 hours with moist heat curing.
It was left in a humid air condition for 4 weeks. Next, add this sample to 60
The sample dried at ℃ for 15 hours was used as a sample for dry strength measurement. The strength was determined by bending strength (3-point bending test) and Sialby impact strength. In addition, to check the water resistance, a sample prepared by the above treatment was immersed in water for 15 hours, the adhering water was wiped off, and the sample was air-dried for 3 hours to determine the bending strength, which was taken as the wet strength. The results are shown in Table 2. Note that Comparative Example 6 was inferior in water resistance.

【表】【table】

【表】 [発明の効果] 上記のように本発明は、水砕高炉スラグが70重
量%以上、二水石膏とMSHが1.5〜15重量%配合
され、MSHと二水石膏の配合比率が1:0.5〜
1:5である水硬性セメント組成物100重量部に
水溶性有機高分子物質が3〜15重量部配合されて
いるので、高配合量の水砕高炉スラグを用いて水
硬性組成物を調製するにあたつて、水砕高炉スラ
グ、二水石膏、カルシウムアルミネートモノサル
フエートハイドレイト及び水溶性有機高分子物質
の四成分を上記配合で組み合わせて用いることに
よつて、水和反応の初期にはMSHと二水石膏の
反応でTSHの緻密な針状結晶が高粘度の水溶性
有機高分子物質の溶液を介して水砕高炉スラグの
粒子間及び表面上に生成することが促進され、次
いでこの生成物が高炉スラグの水和を促進して互
いに強固な硬化体に至るものであり、オートクレ
ーブ等の高温高圧養生を行うことなく自然養生あ
るいは蒸気養生等で恒久的な使用に耐えうる高強
度、特に高い曲げ強度を持つ水硬性硬化体を短期
的に、しかも経済的に得ることができるものであ
る。
[Table] [Effects of the invention] As described above, the present invention contains 70% by weight or more of granulated blast furnace slag, 1.5 to 15% by weight of dihydrate gypsum and MSH, and the blending ratio of MSH and dihydrate gypsum is 1. :0.5~
Since 3 to 15 parts by weight of a water-soluble organic polymer substance is blended in 100 parts by weight of a hydraulic cement composition with a ratio of 1:5, the hydraulic composition is prepared using a high blending amount of granulated blast furnace slag. By using the four components of granulated blast furnace slag, gypsum dihydrate, calcium aluminate monosulfate hydrate, and a water-soluble organic polymer substance in the above-mentioned combination, it is possible to The reaction between MSH and dihydrate gypsum promotes the formation of dense acicular crystals of TSH between particles and on the surface of granulated blast furnace slag through a solution of a highly viscous water-soluble organic polymer substance, and then This product promotes the hydration of blast furnace slag to form a mutually strong hardened product, which has a high strength that can withstand permanent use through natural curing or steam curing without the need for high-temperature and high-pressure curing such as in an autoclave. , it is possible to obtain a hydraulically cured body having especially high bending strength in a short period of time and economically.

Claims (1)

【特許請求の範囲】 1 水砕高炉スラグが70重量%以上、二水石膏と
カルシウムアルミネートモノサルフエートハイド
レイトが1.5〜15重量%配合され、カルシウムア
ルミネートモノサルフエートハイドレートと二水
石膏の配合比率が重量比で1:0.5〜1:5であ
る水硬性セメント組成物100重量部に対して水溶
性有機高分子物質が3〜15重量部配合されて成る
ことを特徴とする水硬性組成物。 2 水溶性有機高分子物質が、ポリ酢酸ビニルの
加水分解物、ポリ酢酸ビニル共重合体の加水分解
物、プルラン、ヒドロキシプロピルメチルセルロ
ースのうちから選ばれる少なくとも1種以上から
成ることを特徴とする特許請求の範囲第1項記載
の水硬性組成物。
[Claims] 1. 70% by weight or more of granulated blast furnace slag, 1.5 to 15% by weight of dihydrate gypsum and calcium aluminate monosulfate hydrate, calcium aluminate monosulfate hydrate and dihydrate gypsum. A hydraulic cement composition characterized in that 3 to 15 parts by weight of a water-soluble organic polymer substance is blended to 100 parts by weight of a hydraulic cement composition having a mixing ratio of 1:0.5 to 1:5 by weight. Composition. 2. A patent characterized in that the water-soluble organic polymer substance consists of at least one selected from the group consisting of a hydrolyzate of polyvinyl acetate, a hydrolyzate of polyvinyl acetate copolymer, pullulan, and hydroxypropyl methylcellulose. The hydraulic composition according to claim 1.
JP59199931A 1984-09-25 1984-09-25 Hydraulic composition Granted JPS6177655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59199931A JPS6177655A (en) 1984-09-25 1984-09-25 Hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59199931A JPS6177655A (en) 1984-09-25 1984-09-25 Hydraulic composition

Publications (2)

Publication Number Publication Date
JPS6177655A JPS6177655A (en) 1986-04-21
JPH0525827B2 true JPH0525827B2 (en) 1993-04-14

Family

ID=16415973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59199931A Granted JPS6177655A (en) 1984-09-25 1984-09-25 Hydraulic composition

Country Status (1)

Country Link
JP (1) JPS6177655A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154771A (en) * 1989-07-19 1992-10-13 Takeda Chemical Industries, Ltd. Hydraulic inorganic composition and molded articles thereof
WO2016035661A1 (en) 2014-09-05 2016-03-10 花王株式会社 Water-settable composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539824A (en) * 1976-07-15 1978-01-28 Matsushita Electric Works Ltd Solid composition
JPS589853A (en) * 1981-07-06 1983-01-20 松下電工株式会社 Manufacture of inorganic hardened body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539824A (en) * 1976-07-15 1978-01-28 Matsushita Electric Works Ltd Solid composition
JPS589853A (en) * 1981-07-06 1983-01-20 松下電工株式会社 Manufacture of inorganic hardened body

Also Published As

Publication number Publication date
JPS6177655A (en) 1986-04-21

Similar Documents

Publication Publication Date Title
JP2986986B2 (en) Manufacturing method of high strength gypsum board
JP2015120630A (en) Cement composition
EP4118056B1 (en) Processes for producing foamed concrete
JPS6363505B2 (en)
JP2003104766A (en) Fiber reinforced hydraulic composition and fiber reinforced hydraulic formed body obtained by using the composition
JPH0525827B2 (en)
JP3552023B2 (en) Cement mortar composition
JP2010018496A (en) Hydraulic composition
JPS60171260A (en) Hydraulic inorganic composition
JP2000203915A (en) Cement mortar composition
JPH10330146A (en) Production of hydraulic inorganic molded product
JP3769446B2 (en) Method for producing inorganic carbonized cured body
JP3559687B2 (en) Method for producing hardened high-strength cement with excellent water resistance
JPH10226553A (en) High strength cement hardened body excellent in water resistance and its production
JP3212573B2 (en) Sheet molding composition such as stone-like sheet, and method for producing sheet using the same
KR102392377B1 (en) Additive composition for tile cement mortar and tile cement mortar having the same
JP2899587B1 (en) Cement-based extruded product and method for producing the same
JP3365811B2 (en) Method for producing hydraulic molded product
JPH07126055A (en) Hydraulic composition, extrusion molded article and production thereof
JP2000072515A (en) Hardened cement product
JPS5858305B2 (en) Fluorite gypsum composition
JPH0637319B2 (en) Method for curing cement composition
JPH11147744A (en) Hydraulic mineral molded product
JP3280636B2 (en) Manufacturing method of molded product
JPS5814384B2 (en) Anhydrite composition