JPH0525708B2 - - Google Patents

Info

Publication number
JPH0525708B2
JPH0525708B2 JP58168962A JP16896283A JPH0525708B2 JP H0525708 B2 JPH0525708 B2 JP H0525708B2 JP 58168962 A JP58168962 A JP 58168962A JP 16896283 A JP16896283 A JP 16896283A JP H0525708 B2 JPH0525708 B2 JP H0525708B2
Authority
JP
Japan
Prior art keywords
spool
flow rate
valve
spool valve
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58168962A
Other languages
Japanese (ja)
Other versions
JPS6060073A (en
Inventor
Susumu Honaga
Eiju Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP58168962A priority Critical patent/JPS6060073A/en
Publication of JPS6060073A publication Critical patent/JPS6060073A/en
Publication of JPH0525708B2 publication Critical patent/JPH0525708B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はポンプより吐出された圧力流体を絞り
通路を介して動力舵取装置に送出し、余剰流をバ
イパス通路より吸入側に還流する動力舵取用作動
流体の流量制御装置、とりわけポンプ回転数の上
昇につれて動力舵取装置に送出する流量を降下さ
せる流量制御装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is a power steering device that sends pressurized fluid discharged from a pump to a power steering device via a throttle passage, and returns surplus flow to the suction side through a bypass passage. The present invention relates to a flow rate control device for steering working fluid, and particularly to a flow rate control device that reduces the flow rate sent to a power steering device as the pump rotational speed increases.

<従来技術> 自動車の高速走行時においては、運転者に感覚
される操舵反力を増大させることが望ましく、ポ
ンプ回転数の上昇につれて、動力舵取装置への制
御流量を減少させる、いわゆる回転数感応形のポ
ンプが開発された。これは例えば特公昭45−7125
号公報に記載されているように、流量調整弁の一
端に小径部と大径部とからなる調整ロツドを固着
し、ポンプ回転数の上昇による流量調整弁の変位
に応じて絞り通路を可変に制御して動力舵取装置
への制御流量を減少させるものである。
<Prior art> When an automobile is running at high speed, it is desirable to increase the steering reaction force felt by the driver, and as the pump rotation speed increases, the control flow rate to the power steering device is decreased. A sensitive pump was developed. This is, for example, the special public service of 1973
As described in the publication, an adjustment rod consisting of a small diameter part and a large diameter part is fixed to one end of the flow rate adjustment valve, and the throttle passage is made variable according to the displacement of the flow rate adjustment valve due to an increase in the pump rotation speed. control to reduce the control flow rate to the power steering device.

しかしながら、公知のポンプ装置は作動油の粘
度が一定ならば、予定された流量降下特性が得ら
れるが、作動油の粘度が温度に対して変化するた
め、粘度が高い時(低温時)には絞り通路を通過
する流量は低下し、またこの流量低下に伴つて流
量調整弁がバイパス通路をより開く方向に変位さ
れるので、流量はさらに低下してしまう。これに
より流量特性は第4図の線図Aに示すようにな
り、所要の流量を確保できなくなる問題がある。
However, with known pump devices, if the viscosity of the hydraulic oil is constant, the expected flow rate drop characteristic can be obtained, but since the viscosity of the hydraulic oil changes with temperature, when the viscosity is high (at low temperature), The flow rate passing through the throttle passage decreases, and as the flow rate decreases, the flow rate regulating valve is displaced in a direction that opens the bypass passage further, resulting in a further decrease in the flow rate. As a result, the flow rate characteristics become as shown in the diagram A in FIG. 4, and there is a problem that the required flow rate cannot be secured.

<発明の目的> 本発明の目的は、低温時においても動力舵取装
置への流量を確保することである。
<Object of the Invention> An object of the invention is to ensure a flow rate to the power steering device even at low temperatures.

<発明の構成> 上記した目的を達成するために本発明は、ユニ
オン内に筒状の制御スプールを流量調整用スプー
ル弁に対して相対変位可能に収納し、この制御ス
プールに絞り通路を構成する第1および第2制限
孔を形成し、制御スプールをスプール弁に当接す
る方向に押圧するスプリングを設け、このスプリ
ングの押圧力によつて制御スプールがスプール弁
に当接した状態において制御スプールがバイパス
通路を大きく開口した場合に第1制限孔がユニオ
ンの内周で閉塞されるように第1制限孔を制御ス
プールの外周面に開口し、作動油の粘度が通常の
場合には、制御スプールをスプリングの押圧力に
よつてスプール弁に当接させ、作動油の粘度が高
く第1および第2制限孔の前後の圧力差がスプリ
ングの押圧力よりも大きくなつた場合に、制御ス
プールをスプール弁より離隔させて第1制限孔を
閉塞しないようにし、これによつて流量を確保す
るようにしたものである。
<Structure of the Invention> In order to achieve the above-mentioned object, the present invention stores a cylindrical control spool in a union so as to be movable relative to a flow rate adjustment spool valve, and forms a throttle passage in this control spool. The first and second restriction holes are formed, and a spring is provided that presses the control spool in the direction of contacting the spool valve, and the pressing force of the spring causes the control spool to bypass when the control spool is in contact with the spool valve. The first restriction hole is opened on the outer peripheral surface of the control spool so that when the passage is opened wide, the first restriction hole is closed by the inner periphery of the union, and when the viscosity of the hydraulic oil is normal, the control spool is closed. The control spool is brought into contact with the spool valve by the pressing force of the spring, and when the viscosity of the hydraulic oil is high and the pressure difference between the first and second restriction holes becomes larger than the pressing force of the spring, the control spool is brought into contact with the spool valve. The first restricting holes are spaced further apart from each other so that the first restricting holes are not blocked, thereby ensuring a flow rate.

<実施例> 以下本発明の実施例を図面に基づいて説明す
る。
<Examples> Examples of the present invention will be described below based on the drawings.

第1図において、10はポンプハウジングを示
し、このポンプハウジング10に弁収納孔11が
貫通され、この弁収納孔11の一端に動力舵取装
置のノーマルオープン形制御弁に通ずる圧力流体
送出口12を形成したユニオン13が螺着され、
他端に止め栓14が嵌着されている。弁収納孔1
1には供給通路15とバイパス通路16が軸線方
向に離間して開口され、この供給通路15はポン
プの吐出室に連通され、バイパス通路16はポン
プの吸入室に連通されている。
In FIG. 1, reference numeral 10 denotes a pump housing. A valve housing hole 11 is passed through the pump housing 10, and a pressure fluid outlet 12 is provided at one end of the valve housing hole 11 leading to a normally open type control valve of a power steering device. The union 13 formed with is screwed on,
A stopper 14 is fitted to the other end. Valve storage hole 1
1, a supply passage 15 and a bypass passage 16 are opened spaced apart in the axial direction, and the supply passage 15 communicates with a discharge chamber of the pump, and the bypass passage 16 communicates with a suction chamber of the pump.

前記弁収納孔11には供給通路15とバイパス
通路16との連通路を閉止しかつその連通路の開
度を調整可能にするべく流量調整用スプール弁1
7が摺動可能に嵌装され、このスプール弁17の
両側に第1弁室18と第2弁室19が形成されて
いる。第2弁室19にはスプール弁17を第1弁
室18に向けて押圧するスプリング20が設けら
れ、このスプリング20の撥力によつて通常スプ
ール弁17を前記ユニオン13に当接する位置に
保持し、第1弁室18に開口する供給通路15と
バイパス通路16との連通を遮断している。
A spool valve 1 for adjusting the flow rate is provided in the valve storage hole 11 in order to close the communication path between the supply passage 15 and the bypass passage 16 and to adjust the opening degree of the communication passage.
A first valve chamber 18 and a second valve chamber 19 are formed on both sides of the spool valve 17. The second valve chamber 19 is provided with a spring 20 that presses the spool valve 17 toward the first valve chamber 18 , and the repulsive force of the spring 20 normally holds the spool valve 17 in a position where it contacts the union 13 . However, communication between the supply passage 15 that opens into the first valve chamber 18 and the bypass passage 16 is cut off.

前記ユニオン13には筒状の制御スプール21
が摺動可能に嵌装され、この制御スプール21に
第1、第2制限孔23,24が形成されている。
この第1、第2制限孔23,24を介して前記送
出口12と第1弁室18とが互いに連通されてい
る。ここで第1制限孔23は、制御スプール21
の摺動によりその絞り開度を変化できるように、
ユニオン13との嵌合面(外周面)に開口されて
いる。ユニオン13内には制御スプール21を第
1弁室18に向けて押圧するスプリング25が組
込まれ、このスプリング25の撥力によつて通常
制御スプール21をスプール弁17に当接する位
置に保持している。ここでスプール弁17が摺動
すればスプリング25の撥力により制御スプール
21が摺動し、第1制限孔23はユニオン13に
より可変的に制御される。すなわち、ポンプ回転
数が低く従つてスプール弁17の変位量が小さい
うちは、第1制限孔23はユニオン13にてまだ
絞られず、流量通過面積は第1、第2制限孔2
3,24にて決定されるが、ポンプ回転数が高く
なつてスプール弁17が大きく変位された場合に
は、第1制限孔23はユニオン13にて漸次制限
されてついには閉止され、動力舵取装置への流量
を降下させるようになつている。
The union 13 has a cylindrical control spool 21.
is slidably fitted therein, and first and second restriction holes 23, 24 are formed in this control spool 21.
The outlet port 12 and the first valve chamber 18 are communicated with each other through the first and second restriction holes 23 and 24. Here, the first restriction hole 23 is connected to the control spool 21.
The aperture opening can be changed by sliding the
It is opened in the fitting surface (outer peripheral surface) with the union 13. A spring 25 that presses the control spool 21 toward the first valve chamber 18 is incorporated in the union 13, and the repulsive force of the spring 25 normally holds the control spool 21 in a position where it contacts the spool valve 17. There is. When the spool valve 17 slides, the control spool 21 slides due to the repulsive force of the spring 25, and the first restriction hole 23 is variably controlled by the union 13. That is, while the pump rotation speed is low and the amount of displacement of the spool valve 17 is small, the first restriction hole 23 is not yet throttled by the union 13, and the flow rate passing area is smaller than that of the first and second restriction holes 2.
3 and 24, but when the pump rotation speed increases and the spool valve 17 is largely displaced, the first restriction hole 23 is gradually restricted by the union 13 and finally closed, and the power steering It is designed to reduce the flow rate to the extraction device.

前記第2弁室19には連通孔37の一端が開口
され、この連通孔37の他端は前記ユニオン13
に穿設した細孔38を介して送出口12に連通さ
れ、この連通孔37を介して制限孔23,24を
通過した流体が第2弁室19に導かれる。これに
よりスプール弁17の両端面には制限孔23,2
4の通過前の圧力と通過後の圧力が作用するた
め、制限孔23,24における圧力降下に応じて
スプール弁17が軸方向に移動され、制限孔2
3,24における圧力降下を一定値に保つべくバ
イパス通路16の開度を調整する。
One end of a communication hole 37 is opened in the second valve chamber 19, and the other end of this communication hole 37 is opened in the second valve chamber 19.
The fluid that has passed through the restriction holes 23 and 24 is led to the second valve chamber 19 through the communication hole 37 . As a result, the restriction holes 23 and 2 are provided on both end faces of the spool valve 17.
Since the pressure before the passage of the restriction hole 2 and the pressure after the passage of the restriction hole 2 act, the spool valve 17 is moved in the axial direction according to the pressure drop in the restriction hole 23 and 24.
The opening degree of the bypass passage 16 is adjusted in order to maintain the pressure drop at a constant value at 3 and 24.

なお、図中40は前記スプール弁17内に組込
まれた圧力レリーフ弁で、球弁41とスプリング
42により構成され、第2弁室19の圧力が設定
圧以上になると、スプリング42の押圧力に抗し
て球弁41を開き、第2弁室19の流体を逃がし
孔36を通じてバイパス通路16に逃がすように
している。
In addition, 40 in the figure is a pressure relief valve incorporated in the spool valve 17, and is composed of a ball valve 41 and a spring 42. When the pressure in the second valve chamber 19 exceeds the set pressure, the pressing force of the spring 42 is applied. In response, the ball valve 41 is opened to allow the fluid in the second valve chamber 19 to escape to the bypass passage 16 through the escape hole 36.

次に上記したように構成された流量制御装置の
作動について説明する。
Next, the operation of the flow control device configured as described above will be explained.

自動車エンジンによつてポンプロータが回転駆
動されると、流体槽内の作動流体が吸引室よりポ
ンプ室に吸入され、圧力流体がポンプ室より吐出
室に吐出される。吐出室に吐出された圧力流体は
制限孔23,24を通過して送出口12より動力
舵取装置に供給され、動力舵取装置より戻される
流体は流体槽に回収され、再びポンプ室に吸入さ
れる。
When the pump rotor is rotationally driven by the automobile engine, working fluid in the fluid tank is sucked into the pump chamber from the suction chamber, and pressurized fluid is discharged from the pump chamber into the discharge chamber. The pressure fluid discharged into the discharge chamber passes through the restriction holes 23 and 24 and is supplied to the power steering device from the outlet 12, and the fluid returned from the power steering device is collected in the fluid tank and sucked into the pump chamber again. be done.

ポンプ回転速度が低いうちはポンプ吐出流量も
少ないのでスプール弁17はバイパス通路16を
閉止し、ポンプ吐出流量の全量が制限孔23,2
4を経て動力舵取装置に送出されるが、ポンプ回
転速度が上昇するにつれて吐出流量も増大し、制
限孔23,24前後の圧力差を一定にするように
スプール弁17が摺動されてバイパス通路16を
徐々に開き、余剰流をバイパス通路16にバイパ
スする。これにより動力舵取装置に送出される圧
力流体は制御スプール21の制限孔23,24の
絞り面積により決定される所定量Q1に維持され
る。
When the pump rotation speed is low, the pump discharge flow rate is also small, so the spool valve 17 closes the bypass passage 16, and the total pump discharge flow rate is reduced to the limit hole 23, 2.
4 to the power steering device, but as the pump rotation speed increases, the discharge flow rate also increases, and the spool valve 17 is slid to keep the pressure difference before and after the restriction holes 23 and 24 constant, and the bypass is performed. The passageway 16 is gradually opened to bypass excess flow to the bypass passageway 16. Thereby, the pressure fluid sent to the power steering device is maintained at a predetermined amount Q1 determined by the restricting area of the restriction holes 23 and 24 of the control spool 21.

自動車の高速走行への移行に伴つてポンプ回転
速度がさらに上昇されると、スプール弁17はバ
イパス通路16をより大きく開くべく変位され
る。この際、圧力流体の粘度が通常の場合には、
制限孔23,24の前後の圧力差はスプリング2
5に抗して制御スプール21を変位させるまでに
は大きくならず、その結果、制御スプール21は
スプリング25の押圧力によつてスプール弁17
に当接され、スプール弁17と一体的に変位され
る。
When the pump rotational speed is further increased as the automobile shifts to high-speed running, the spool valve 17 is displaced to open the bypass passage 16 more widely. At this time, if the viscosity of the pressure fluid is normal,
The pressure difference before and after the restriction holes 23 and 24 is caused by the spring 2
5, the control spool 21 is not large enough to displace the control spool 21 against the spool valve 17 due to the pressing force of the spring 25.
and is displaced integrally with the spool valve 17.

従つて上記したように、スプール弁17がバイ
パス通路16を大きく開くべく変位されることに
伴つて、制御スプール21の第1制限孔23は第
2図に示すようにユニオン13によつて漸次制御
されるとともに遂には閉止され、動力舵取装置に
送出される圧力流体は第4図の線図Bに示すよう
に前記流量Q1より次第に減少して第2制限孔2
4の絞り面積にて決定される所定量Q2まで減少
される。従つて高速走行時においては、供給流量
の減少によつて得られる操舵反力を運転者に享受
でき、高速安定性が高められる。
Therefore, as described above, as the spool valve 17 is displaced to widen the bypass passage 16, the first restriction hole 23 of the control spool 21 is gradually controlled by the union 13 as shown in FIG. is finally closed, and the pressure fluid sent to the power steering device gradually decreases from the flow rate Q1 as shown in line B in FIG.
It is reduced to a predetermined amount Q2 determined by the aperture area of No. 4. Therefore, when driving at high speed, the driver can enjoy the steering reaction force obtained by reducing the supply flow rate, and high speed stability is improved.

ところで低温時には、作動油の粘性が高くなる
ため第1弁室18と送出口12との圧力差は大き
くなり、これによつて第3図に示すようにスプリ
ング25の撥力に打ち勝つて制御スプール21を
送出口方向へ移動させるため、スプール弁17が
大きく変位された状態においても第1制限孔23
が閉止されることがなく、第4図の線図Cに示す
ように流量Q3が確保される。
By the way, at low temperatures, the viscosity of the hydraulic oil increases, so the pressure difference between the first valve chamber 18 and the delivery port 12 increases, and as a result, as shown in FIG. 3, the control spool overcomes the repulsive force of the spring 25. 21 toward the delivery port, the first restriction hole 23 is moved even when the spool valve 17 is largely displaced.
is not closed, and the flow rate Q3 is ensured as shown in diagram C in FIG.

<発明の効果> 以上述べたように本発明は、第1および第2制
限孔を形成した制御スプールを流量調整用スプー
ル弁と相対変位可能に収納し、作動油の粘度が通
常の常温時には、制御スプールをスプリングの押
圧力によつてスプール弁に当接させてスプール弁
と一体的に変位させ、これによりスプール弁の変
位の増大に応じて制御スプールの第1制限孔を閉
塞して絞り通路を縮小させるようにした構成であ
るので、自動車の走行速度が上昇し、従つてポン
プ回転数が上昇するにつれて動力舵取装置に送出
する流量を降下せしめることができ、これによつ
て高速時における走行安定性と省馬力化が図られ
る。また作動油の粘度が高い低温時には、制御ス
プールをスプール弁より離隔させて第1制限孔を
閉塞しないようにした構成であるので、低温時に
おいても必要な流量を確保できるようになり、動
力舵取装置の操作安定性が著しく高められるよう
になる。
<Effects of the Invention> As described above, the present invention accommodates the control spool in which the first and second restriction holes are formed so as to be movable relative to the flow rate adjustment spool valve, and when the viscosity of the hydraulic oil is at normal temperature. The control spool is brought into contact with the spool valve by the pressing force of the spring and is displaced together with the spool valve, thereby closing the first restriction hole of the control spool in response to an increase in the displacement of the spool valve, thereby opening the throttle passage. Since the structure is designed to reduce the flow rate, as the traveling speed of the vehicle increases and the pump rotation speed increases, the flow rate sent to the power steering device can be decreased. This will improve driving stability and reduce horsepower. In addition, at low temperatures when the viscosity of the hydraulic oil is high, the control spool is separated from the spool valve to prevent the first restriction hole from being blocked, making it possible to secure the necessary flow rate even at low temperatures. The operational stability of the extraction device is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は
流量制御装置の断面図、第2図、第3図は作動状
態を示す断面図、第4図はポンプ回転数に対する
流量特性を示す線図である。 10……ポンプハウジング、12……送出口、
13……ユニオン、15……供給通路、16……
バイパス通路、17……流量調整用スプール弁、
21……制御スプール、23……第1制限孔、2
4……第2制限孔、25……スプリング。
The drawings show an embodiment of the present invention, and FIG. 1 is a cross-sectional view of a flow rate control device, FIGS. 2 and 3 are cross-sectional views showing operating states, and FIG. 4 is a flow rate characteristic with respect to pump rotation speed. It is a line diagram. 10...Pump housing, 12...Outlet port,
13... Union, 15... Supply passage, 16...
Bypass passage, 17... Spool valve for flow rate adjustment,
21...Control spool, 23...First restriction hole, 2
4...Second restriction hole, 25...Spring.

Claims (1)

【特許請求の範囲】[Claims] 1 ポンプより吐出された圧力流体を絞り通路を
介して動力舵取装置に送出し、この絞り通路の前
後の圧力差に応動する流量調整用スプール弁によ
りバイパス通路の開度を調整して余剰流をポンプ
の吸入側に還流する動力舵取用作動流体の流量制
御装置にして、ユニオン内に筒状の制御スプール
を前記スプール弁に対して相対変位可能に収納
し、この制御スプールに前記絞り通路を構成する
第1および第2制限孔を形成し、前記制御スプー
ルを前記スプール弁に当接する方向に押圧するス
プリングを設け、このスプリングの押圧力によつ
て前記制御スプールが前記スプール弁に当接した
状態において前記制御スプールが前記バイパス通
路を大きく開口した場合に前記第1制限孔が前記
ユニオン内周で閉塞されるように第1制限孔を前
記制御スプールの外周面に開口し、作動油の粘度
が通常の場合には、前記制御スプールをスプリン
グの押圧力によつて前記スプール弁に当接させ、
作動油の粘度が高く前記第1および第2制限孔の
前後の圧力差が前記スプリングの押圧力よりも大
きくなつた場合に、前記制御スプールを前記スプ
ール弁より離隔させて前記第1制限孔を閉塞しな
いように構成してなる動力舵取用作動流体の流量
制御装置。
1 Pressurized fluid discharged from the pump is sent to the power steering device via the throttle passage, and the opening degree of the bypass passage is adjusted by a flow rate adjustment spool valve that responds to the pressure difference between the front and rear of the throttle passage, thereby reducing the surplus flow. is used as a flow rate control device for the power steering working fluid that is returned to the suction side of the pump, and a cylindrical control spool is housed in the union so as to be movable relative to the spool valve, and the control spool is connected to the throttle passage. a spring is provided for pressing the control spool in the direction of contacting the spool valve, and the control spool is brought into contact with the spool valve by the pressing force of the spring. A first restriction hole is opened in the outer circumferential surface of the control spool so that when the control spool opens the bypass passage largely in the state in which the bypass passage is opened, the first restriction hole is closed by the inner circumference of the union. When the viscosity is normal, the control spool is brought into contact with the spool valve by the pressing force of a spring;
When the viscosity of the hydraulic oil is high and the pressure difference across the first and second restriction holes becomes larger than the pressing force of the spring, the control spool is separated from the spool valve to open the first restriction hole. A power steering working fluid flow rate control device configured to prevent blockage.
JP58168962A 1983-09-12 1983-09-12 Flow controller for power steering operating fluid Granted JPS6060073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58168962A JPS6060073A (en) 1983-09-12 1983-09-12 Flow controller for power steering operating fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168962A JPS6060073A (en) 1983-09-12 1983-09-12 Flow controller for power steering operating fluid

Publications (2)

Publication Number Publication Date
JPS6060073A JPS6060073A (en) 1985-04-06
JPH0525708B2 true JPH0525708B2 (en) 1993-04-13

Family

ID=15877784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168962A Granted JPS6060073A (en) 1983-09-12 1983-09-12 Flow controller for power steering operating fluid

Country Status (1)

Country Link
JP (1) JPS6060073A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2854306B2 (en) * 1988-11-05 1999-02-03 四一 安藤 Sound reproduction device

Also Published As

Publication number Publication date
JPS6060073A (en) 1985-04-06

Similar Documents

Publication Publication Date Title
US4361166A (en) Flow controlling apparatus for power steering, operating fluid
JPS629755B2 (en)
JPS6210870B2 (en)
JP2666808B2 (en) Flow control device for working fluid for power steering
JPH0127308B2 (en)
US4099893A (en) Pump with electrically actuated flow control
JPH0525708B2 (en)
US5822988A (en) Flow control device of a power steering apparatus
JP3237457B2 (en) Flow control device in power steering device
JP3355866B2 (en) Power steering device
JP3854801B2 (en) Variable displacement pump
JPH0327422B2 (en)
JPS6345342B2 (en)
JP3596431B2 (en) Flow control device in power steering device
JP3543570B2 (en) Flow control device in power steering device
JPS629754B2 (en)
JP3570174B2 (en) Flow control device for working fluid for power steering
JP3355860B2 (en) Flow control device in power steering device
JPS6365544B2 (en)
JPS59110882A (en) Variable volume vane pump
JPH085097Y2 (en) Flow control valve
JPS6151194B2 (en)
JPS60107460A (en) Controller of flow rate of working fluid for power steering
JPH0335540B2 (en)
JPH0213276Y2 (en)