JPH0525671A - Electrolytically fluorinating method - Google Patents

Electrolytically fluorinating method

Info

Publication number
JPH0525671A
JPH0525671A JP3181284A JP18128491A JPH0525671A JP H0525671 A JPH0525671 A JP H0525671A JP 3181284 A JP3181284 A JP 3181284A JP 18128491 A JP18128491 A JP 18128491A JP H0525671 A JPH0525671 A JP H0525671A
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic bath
electrode
bath solution
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3181284A
Other languages
Japanese (ja)
Other versions
JP3126419B2 (en
Inventor
Masakatsu Nishimura
正勝 西村
Naoya Okada
尚哉 岡田
Yasuhiko Hirai
保彦 平井
Masahiro Shirai
正浩 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP03181284A priority Critical patent/JP3126419B2/en
Publication of JPH0525671A publication Critical patent/JPH0525671A/en
Application granted granted Critical
Publication of JP3126419B2 publication Critical patent/JP3126419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To improve the productivity of a desired fluorinated product by increasing an electrode area to increase an electrolytic current. CONSTITUTION:This method consists in executing the electrolytic fluorination of an org. compd. having a carbon-hydrogen bond in an electrolytic cell 1 by circulating an electrolytic bath liquid contg. the org. compd. having the carbon- hydrogen between this electrolytic cell 1 and a circulating cell 2. The electrolytic cell 1 installed with electrode groups 3, 3', 3'' is connected in series and the electrolytic fluorination is executed by maintaining the temp. difference in the flow direction of the electrolytic bath liquid in the respective electrode groups 3, 3', 3'' at <=5 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解浴液中の陽極及び
陰極の間で電気化学的に有機化合物をフッ素化する電解
フッ素化方法に関する。
TECHNICAL FIELD The present invention relates to an electrolytic fluorination method for electrochemically fluorinating an organic compound between an anode and a cathode in an electrolytic bath solution.

【0002】[0002]

【従来の技術】有機化合物を電気化学的にフッ素化する
電解フッ素化方法はよく知られている。たとえば、特開
昭47−18775号公報には、有機化合物を含む電解
浴液を電解槽と循環槽との間を循環させながら、有機化
合物のフッ素化を行なうことが示されている。
2. Description of the Related Art Electrolytic fluorination methods for electrochemically fluorinating organic compounds are well known. For example, JP-A-47-18775 discloses that the organic compound is fluorinated while circulating an electrolytic bath solution containing the organic compound between the electrolytic bath and the circulation bath.

【0003】[0003]

【発明が解決しようとする課題】電解フッ素化を工業的
に行う場合、電解槽と循環槽よりなる一つの電解フッ素
化装置での生産量を大きくし、生産効率を向上させるこ
とが望まれる。本発明者等は、一つの電解フッ素化装置
での生産量を大きくすることを目的として、電流密度を
高くしたり、電極面積を大きくしたりするなどの種々の
実験を行った。
When electrolytically fluorinating industrially, it is desired to increase the production amount in one electrolytic fluorinating apparatus consisting of an electrolytic cell and a circulation tank to improve the production efficiency. The present inventors conducted various experiments such as increasing the current density and increasing the electrode area for the purpose of increasing the production amount in one electrolytic fluorination apparatus.

【0004】その結果、電流密度を高くした場合には、
目的とするフッ素化生成物の収率の低下や電解電圧が不
安定になるなどの問題が発生した。また、電極対の数を
増やしたり、一つ一つの電極の大きさを大きくして電極
面積を大きくした場合、やはり目的とするフッ素化生成
物の収率の著しい低下や電圧の急上昇等の問題が発生し
た。
As a result, when the current density is increased,
Problems such as a decrease in the yield of the desired fluorinated product and instability of the electrolytic voltage have occurred. In addition, when the number of electrode pairs is increased or the size of each electrode is increased to increase the electrode area, the problems such as a significant decrease in the yield of the desired fluorinated product and a sharp increase in voltage are still present. There has occurred.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記した
問題点に鑑み、生産量を大きくする方法について検討を
行った。この結果、電解槽と循環槽との間を循環させる
電解浴液の流れ方向に複数の電極群を設置し、且つ各電
極群における電解浴液の流れ方向の温度差をある値以下
にすることにより、上記の目的が達成されることを見い
だし、本発明を完成するに到った。
In view of the above-mentioned problems, the present inventors have studied a method for increasing the production amount. As a result, a plurality of electrode groups should be installed in the flow direction of the electrolytic bath solution that circulates between the electrolytic bath and the circulation bath, and the temperature difference in the flow direction of the electrolytic bath liquid in each electrode group should be below a certain value. As a result, they have found that the above objects can be achieved, and have completed the present invention.

【0006】即ち、本発明は、炭素−水素結合を有する
有機化合物を含む電解浴液を電解槽と循環槽との間を循
環させて、該電解槽中で炭素−水素結合を有する有機化
合物の電解フッ素化を行なう方法において、電解浴液の
流れ方向に沿って複数の電極群を設置し、且つ各電極群
における電解浴液の流れ方向の温度差を5℃以下として
電解フッ素化を行なうことを特徴とする電解フッ素化方
法である。
That is, according to the present invention, an electrolytic bath solution containing an organic compound having a carbon-hydrogen bond is circulated between an electrolytic cell and a circulation tank, and an organic compound having a carbon-hydrogen bond is produced in the electrolytic cell. In the electrolytic fluorination method, a plurality of electrode groups are installed along the flow direction of the electrolytic bath solution, and the electrolytic fluorination is performed by setting the temperature difference in the flow direction of the electrolytic bath solution in each electrode group to 5 ° C or less. Is an electrolytic fluorination method.

【0007】本発明において、電解フッ素化は、原料の
炭素−水素結合を有する有機化合物を無水フッ化水素酸
に溶解又は分散させて実施される。
In the present invention, electrolytic fluorination is carried out by dissolving or dispersing a raw material organic compound having a carbon-hydrogen bond in anhydrous hydrofluoric acid.

【0008】炭素−水素結合を有する有機化合物として
は、炭素原子に直接結合した水素原子を有する有機化合
物であれば特に制限なく用いることができる。たとえ
ば、これまで電解フッ素化の対象として知られている脂
肪族炭化水素、芳香族炭化水素等の炭化水素類;直鎖又
は環状の脂肪族第一アミン、第二アミン、第三アミン、
芳香族アミン等のアミン類;直鎖又は環状の脂肪族エー
テル、芳香族エーテル、ポリエーテル等のエーテル類;
直鎖又は環状の脂肪族アルコール、芳香族アルコール等
のアルコール類;フェノール類;ケトン類;アルデヒド
類;直鎖又は環状の脂肪族カルボン酸、芳香族カルボン
酸等、及びこれらから誘導されるカルボン酸クロリド、
カルボン酸フルオリド等のカルボン酸ハライド、あるい
は酸無水物、エステル等のカルボン酸及びその誘導体
類;脂肪族スルホン酸、芳香族スルホン酸及びこれらか
ら誘導されるスルホン酸クロリド、スルホン酸フルオリ
ド等のスルホン酸ハライド、あるいはエステルなどのス
ルホン酸及びその誘導体類;チオエーテルなどの含イオ
ウ化合物などを挙げることができる。
As the organic compound having a carbon-hydrogen bond, any organic compound having a hydrogen atom directly bonded to a carbon atom can be used without particular limitation. For example, hydrocarbons such as aliphatic hydrocarbons and aromatic hydrocarbons that have hitherto been known as targets for electrolytic fluorination; linear or cyclic aliphatic primary amines, secondary amines, tertiary amines,
Amines such as aromatic amines; linear or cyclic aliphatic ethers, aromatic ethers, polyethers and other ethers;
Alcohols such as linear or cyclic aliphatic alcohols and aromatic alcohols; phenols; ketones; aldehydes; linear or cyclic aliphatic carboxylic acids, aromatic carboxylic acids, etc., and carboxylic acids derived from these Chloride,
Carboxylic acid halides such as carboxylic acid fluorides, carboxylic acids such as acid anhydrides and esters, and their derivatives; Aliphatic sulfonic acids, aromatic sulfonic acids, and sulfonic acids such as sulfonic acid chlorides and sulfonic acid fluorides. Examples thereof include sulfonic acids such as halides or esters and derivatives thereof; sulfur-containing compounds such as thioethers.

【0009】これらの中でも電解フッ素化で用いる無水
フッ化水素酸への溶解性を勘案すると、分子中に窒素原
子、酸素原子、イオウ原子を有する有機化合物が好まし
い。もちろん、上記した有機化合物の水素原子が一部フ
ッ素原子のようなハロゲン原子で置換された有機化合物
も、本発明における有機化合物として用い得ることは言
うまでもない。
Of these, an organic compound having a nitrogen atom, an oxygen atom or a sulfur atom in the molecule is preferable in view of the solubility in anhydrous hydrofluoric acid used for electrolytic fluorination. Of course, it goes without saying that an organic compound in which a part of hydrogen atoms of the above-mentioned organic compound is replaced with a halogen atom such as a fluorine atom can also be used as the organic compound in the present invention.

【0010】本発明において使用される無水フッ化水素
酸は、市販されている無水フッ化水素酸がそのまま、あ
るいは必要に応じて微量含まれる水分を予め低電流密度
での電解等の公知の方法で除去した後に用いられる。
As the anhydrous hydrofluoric acid used in the present invention, commercially available anhydrous hydrofluoric acid is used as it is, or if necessary, a known method such as electrolysis at a low current density in advance with a small amount of water contained therein. It is used after being removed by.

【0011】本発明に於いては、電解浴液を電解槽と循
環槽との間を循環させながら電解フッ素化が行われる。
この場合、電解槽内部では電解浴液を電極面にほぼ平行
に流れるように循環させることにより電解反応を安定さ
せることができる。このようにすることによって、電極
反応で生ずる樹脂状生成物やフッ化ニッケル等の電極面
からの除去と、また、原料の有機化合物の電極反応サイ
トへの供給がスムーズに行なわれるようになる。長期間
に亘って安定に電解を行なうためには、電極面上での電
解浴液の線速度を1.5cm/秒以上、好ましくは2.
5cm/秒以上、更に好ましくは4cm/秒以上にする
と良い。
In the present invention, electrolytic fluorination is carried out while circulating the electrolytic bath liquid between the electrolytic bath and the circulation bath.
In this case, the electrolytic reaction can be stabilized by circulating the electrolytic bath solution so as to flow substantially parallel to the electrode surface inside the electrolytic cell. By doing so, the resinous products generated by the electrode reaction, nickel fluoride and the like can be smoothly removed from the electrode surface, and the raw material organic compound can be smoothly supplied to the electrode reaction site. In order to perform stable electrolysis for a long period of time, the linear velocity of the electrolytic bath solution on the electrode surface is 1.5 cm / sec or more, preferably 2.
5 cm / sec or more, more preferably 4 cm / sec or more.

【0012】本発明における電解フッ素化は、バッチ式
及び連続式のいずれの方法で行っても良いが、特に原料
となる有機化合物と無水フッ化水素酸とをそれぞれ連続
的に又は間欠的に電解浴液中に補給して、電解浴液中に
おける原料の有機化合物及び中間生成物である種々のフ
ッ素化有機化合物の濃度及び組成をほぼ定常状態に維持
しつつ、長期に連続して反応を行う連続式が好適であ
る。この時、原料の有機化合物及び中間生成物である種
々のフッ素化有機化合物の合計の濃度が、一般には2〜
40重量%、更には3〜30重量%の範囲内になるよう
に選択することが好ましい。
The electrolytic fluorination in the present invention may be carried out by either a batch method or a continuous method. In particular, an organic compound as a raw material and anhydrous hydrofluoric acid are electrolyzed continuously or intermittently, respectively. Replenish into the bath solution to carry out the reaction continuously for a long time while maintaining the concentration and composition of the raw material organic compounds and various fluorinated organic compounds as intermediate products in the electrolysis bath solution in a substantially steady state. The continuous type is preferable. At this time, the total concentration of the organic compounds as raw materials and various fluorinated organic compounds as intermediate products is generally 2 to
It is preferably selected so as to fall within the range of 40% by weight, and more preferably 3 to 30% by weight.

【0013】電解反応で生成する目的物であるパーフル
オロ有機化合物を含むフッ素化生成物は、電解浴液に溶
解せず電解浴液より比重が大きい。このために、これを
電解浴液から分離して抜き出す方法として、通常は循環
槽自体に沈降槽の機能も持たせてフッ素化生成物を沈降
せしめ、これを連続的にあるいは定期的に抜き出す方法
が好適に採用される。
The fluorinated product containing the perfluoroorganic compound, which is the target product produced by the electrolytic reaction, does not dissolve in the electrolytic bath liquid and has a larger specific gravity than the electrolytic bath liquid. For this reason, as a method for separating and extracting this from the electrolytic bath solution, a method in which the circulation tank itself also has a function of a settling tank to settle the fluorinated product, and this is continuously or periodically extracted Is preferably adopted.

【0014】本発明の大きな特徴の一つは、電解浴液の
流れ方向に沿って複数の電極群を設けることである。本
発明における電極群とは、陽極と陰極とが、ある極間距
離を保って対向して配置された一群の電極をいう。この
場合、多数の陽極と陰極とが交互に対向して配置されて
一群を形成していてもよく、また、一対の対向する陽極
と陰極がらせん状または波状に設置されて一群を形成し
ていてもよく、さらに、波状に配置されて隣り合う陽極
または陰極の一方の極板の間に他方の極板が挿入され、
陰極と陽極とが交互に配置されて一群を形成していても
よい。
One of the major features of the present invention is to provide a plurality of electrode groups along the flow direction of the electrolytic bath solution. The electrode group in the present invention refers to a group of electrodes in which an anode and a cathode are arranged so as to face each other with a certain distance between the electrodes. In this case, a large number of anodes and cathodes may be alternately arranged to form a group, and a pair of facing anodes and cathodes may be arranged in a spiral or wavy form to form a group. Alternatively, the other electrode plate may be inserted between one electrode plate of one of the anodes or cathodes arranged adjacent to each other in a wavy manner,
Cathodes and anodes may be arranged alternately to form a group.

【0015】本発明においては、上記の電極群の複数個
が電解浴液の流れ方向に沿って配置される。具体的に
は、図1に示すように、電解槽1と循環槽2とが閉回路
を形成しており、電解槽1中に電極群3、3′および
3″が電解浴液の流れ方向に直列に配列される。このと
き、電解浴液の大部分が各電極群の極間を通過するよう
に各電極群の電解浴液の流れに垂直方向において各電極
群と壁面との間に間隙を実質的に設けず、電極群3を通
過した電解浴液の大部分が電極群3′を通過し、さらに
電極群3′を通過した電解浴液の大部分が電極群3″を
通過するように、各電極群が配置される。
In the present invention, a plurality of the above electrode groups are arranged along the flow direction of the electrolytic bath liquid. Specifically, as shown in FIG. 1, the electrolytic cell 1 and the circulation tank 2 form a closed circuit, and the electrode groups 3, 3 ′ and 3 ″ in the electrolytic cell 1 have a flow direction of the electrolytic bath solution. In this case, between the electrode groups and the wall surface in a direction perpendicular to the flow of the electrolytic bath solution of each electrode group so that most of the electrolytic bath solution passes between the electrodes of each electrode group. Most of the electrolytic bath solution that has passed through the electrode group 3 passes through the electrode group 3 ', and most of the electrolytic bath solution that has passed through the electrode group 3'passes through the electrode group 3 "without providing a gap. Each electrode group is arranged so that

【0016】複数の電極群を電解浴液の流れ方向に並列
に配置することによっても電極面積を大きくすることが
できるが、この場合、各電極群に均一に電解浴液を供給
するのが困難であり、また、そのようにしようとすれば
電解浴液の循環量を大きくしなければならず、そのため
に循環槽を大きくしなければならないという問題がある
ため、本発明においては好ましくない。
The electrode area can be increased by arranging a plurality of electrode groups in parallel in the flow direction of the electrolytic bath solution, but in this case, it is difficult to uniformly supply the electrolytic bath solution to each electrode group. In addition, in order to do so, there is a problem that the circulation amount of the electrolytic bath solution must be increased, and therefore the circulation tank must be enlarged, which is not preferable in the present invention.

【0017】本発明において、電解浴液の流れ方向に沿
って複数の電極群を設ける具体的な方法としては、例え
ば、図1に示すように一つの電解槽中において電解浴液
の流れ方向に沿って複数の電極群を設ける方法、図2に
示すように一つの電極群を設置した電解槽を直列に接続
する方法、および上記2つの方法を組合せる方法等をあ
げることができる。
In the present invention, as a specific method of providing a plurality of electrode groups along the flow direction of the electrolytic bath solution, for example, as shown in FIG. Examples of the method include a method of providing a plurality of electrode groups along the line, a method of connecting in series electrolytic cells having one electrode group as shown in FIG. 2, and a method of combining the above two methods.

【0018】本発明によれば、現在工業的に用いられて
いるような大きさの電極群を一つの電解フッ素化装置に
複数個、たとえば2〜10個、通常は3〜6個を設置で
きるので、電極面積を大幅に増やすことが可能になる。
この場合、一つの電極群を構成する各電極板の寸法と陰
陽極の対数等は一般的には次の範囲から選ぶことが安定
した電解フッ素化をおこなうことができるために好まし
い。電解浴液の流れ方向の電極長さは、30〜150c
m、好ましくは40〜120cm、陰陽極対数は1〜2
50対、工業的規模で電解フッ素化を行うときは25〜
250対、陰陽極間距離は0.5〜7mm、好ましくは
1〜4mmの範囲である。
According to the present invention, it is possible to install a plurality of electrode groups, for example, 2 to 10 pieces, usually 3 to 6 pieces, in one electrolytic fluorination apparatus, the electrode groups having the sizes currently used in industry. Therefore, the electrode area can be significantly increased.
In this case, it is generally preferable that the size of each electrode plate constituting one electrode group, the number of pairs of negative and positive electrodes, etc. be selected from the following ranges because stable electrolytic fluorination can be carried out. The electrode length in the flow direction of the electrolytic bath solution is 30 to 150 c.
m, preferably 40 to 120 cm, the number of pairs of negative and positive electrodes is 1 to 2
50 pairs, 25 to 25 when performing electrolytic fluorination on an industrial scale
The distance between 250 pairs and negative and positive electrodes is in the range of 0.5 to 7 mm, preferably 1 to 4 mm.

【0019】なお、本発明で使用される電極の材質とし
ては、公知のものが何ら制限されず使用し得る。陽極と
しては、通常ニッケル又はニッケル合金が用いられ、陰
極としては、ニッケル又はその合金の他に鉄、ステンレ
ススチール、銅等が用いられる。
As the material of the electrode used in the present invention, known materials can be used without any limitation. Nickel or a nickel alloy is usually used for the anode, and iron, stainless steel, copper or the like is used for the cathode in addition to nickel or its alloy.

【0020】本発明では複数の電極群が電解浴液の流れ
方向に沿って設置されるが、電極群における電極対間を
流れる電解浴液の方向としては垂直上向き、垂直下向
き、水平方向など特に限定されない。しかしながら各電
極対間に均一に電解浴液を流すために、通常は垂直方
向、特に垂直上向きの方向が好適に採用される。
In the present invention, a plurality of electrode groups are installed along the flow direction of the electrolytic bath solution, and the direction of the electrolytic bath solution flowing between the electrode pairs in the electrode group is vertical upward, vertical downward, horizontal direction, etc. Not limited. However, in order to flow the electrolytic bath solution uniformly between each pair of electrodes, the vertical direction, particularly the vertical upward direction is preferably adopted.

【0021】なお、複数の電解槽を直列に接続する場合
には、電解槽間の電解浴液の移動のために必要に応じて
ポンプが設置される。あるいは、電解槽の設置位置を順
次低くすることにより、ヘッド差を利用して電解槽間の
電解浴液の移動を行なうこともできる。
When a plurality of electrolytic cells are connected in series, a pump is installed as necessary to move the electrolytic bath solution between the electrolytic cells. Alternatively, it is possible to move the electrolytic bath liquid between the electrolytic cells by utilizing the difference in heads by sequentially lowering the installation positions of the electrolytic cells.

【0022】本発明の他の大きな特徴は、各電極群にお
ける電解浴液の流れ方向の温度差を5℃以下に保って電
解することにある。電極群中における電解浴液の温度
は、電解フッ素化反応による発熱のために、電解浴液の
入口から出口に向かって温度が上昇していく。この温度
差をコントロールすることにより、長期に亘って安定に
電解ができ、しかも目的とするフッ素化生成物を良好な
収率で得ることができる。上記の温度差が5℃以上にな
ると、一つの電極表面上での温度分布が大きくなること
によって電流密度の差が異常に大きくなり、電圧の急上
昇や目的フッ素化生成物の収率の極端な低下が生じて電
解の続行が不可能になる。この現象は、従来の食塩電解
等には見られないもので、本発明者らが初めて見いだし
たものである。上記の温度差を4℃以下、更に好ましく
は3℃以下とすれば、更に良好な結果が得られる。
Another major feature of the present invention is that the temperature difference in the flow direction of the electrolytic bath solution in each electrode group is maintained at 5 ° C. or less for electrolysis. The temperature of the electrolytic bath liquid in the electrode group rises from the inlet to the outlet of the electrolytic bath liquid due to the heat generated by the electrolytic fluorination reaction. By controlling this temperature difference, stable electrolysis can be performed for a long period of time, and the desired fluorinated product can be obtained in good yield. When the above temperature difference is 5 ° C. or more, the temperature distribution on one electrode surface becomes large and the difference in current density becomes abnormally large, which causes a sharp increase in voltage and an extreme yield of the target fluorinated product. A decrease occurs and it becomes impossible to continue the electrolysis. This phenomenon is not seen in the conventional salt electrolysis or the like, and is the first time that the present inventors found out. When the temperature difference is 4 ° C. or less, more preferably 3 ° C. or less, better results can be obtained.

【0023】この温度差は、電流密度、電解電圧、電解
浴液の流れ方向の長さ、極間距離、電極上での電解浴液
の線速度等の因子により決定される。したがって、比較
的小型の電解槽を用いた実験により得られる電解特性の
結果その他を参考にしながら、電解条件を選定しその条
件下での各電極群における電解浴液の温度差が上記値以
下になるように電解フッ素化装置を設計すれば良い。
This temperature difference is determined by factors such as current density, electrolysis voltage, length in the direction of flow of the electrolytic bath solution, distance between the electrodes, and linear velocity of the electrolytic bath solution on the electrodes. Therefore, while referring to the results of the electrolysis characteristics obtained by experiments using a relatively small electrolytic cell and other factors, the electrolysis conditions were selected and the temperature difference of the electrolytic bath solution in each electrode group under those conditions was kept below the above value. The electrolytic fluorination apparatus may be designed so that

【0024】個々の電極群内における電解浴液の温度差
には上記のとおり上限がある。しかし、第1番目の電極
群と最後の電極群との間における電解浴液の温度差は、
特に制限されるものではなく、原料となる有機化合物の
種類に応じて許容可能な温度差の範囲内で運転すればよ
い。上記の温度差の許容範囲の狭い有機化合物を原料と
する場合には、クーラー等の冷却装置を各電極間に設置
するなどの方法を講じて、電解浴液の温度上昇を防止す
ることができる。
There is an upper limit to the temperature difference of the electrolytic bath solution in each electrode group as described above. However, the temperature difference of the electrolytic bath liquid between the first electrode group and the last electrode group is
The operation is not particularly limited, and the operation may be performed within an allowable temperature difference range depending on the type of the organic compound as the raw material. When an organic compound having a narrow allowable temperature difference is used as a raw material, a cooling device such as a cooler may be installed between the electrodes to prevent the temperature rise of the electrolytic bath solution. ..

【0025】複数の電極群への通電方法については、多
数の整流器を設置してそれぞれ別々に供給することもで
きるが、一つの整流器を用いて各電極群の陰陽極端子を
直列又は並列につないで通電することも可能である。電
解浴液の流れ方向に沿って設置した各電極群における条
件は厳密には異なっているにもかかわらず、各電極群を
電気的に直列に接続して一つの整流器を用いて定電流で
通電することにより安定な電解が可能なことは、経済的
にも又運転管理の面でも大きな意味がある。
Regarding the method of energizing a plurality of electrode groups, a large number of rectifiers can be installed and supplied separately, but one rectifier is used to connect the negative and positive terminals of each electrode group in series or in parallel. It is also possible to energize with. Although the conditions in each electrode group installed along the flow direction of the electrolytic bath solution are strictly different, each electrode group is electrically connected in series and energized with a constant current using one rectifier. By doing so, stable electrolysis is possible, which has great significance both economically and in terms of operation management.

【0026】電解フッ素化の電解条件は、原料の有機化
合物の種類によって異なるが、通常は温度−15〜25
℃、電流密度0.5〜6A/dm2、陰陽極間電圧4〜
8Vの範囲から採用するのが良い。電解槽中の圧力は、
通常常圧であるが、いくぶん加圧することもできる。
The electrolysis conditions for the electrolytic fluorination vary depending on the kind of the organic compound as the raw material, but usually the temperature is -15 to 25.
C, current density 0.5 to 6 A / dm 2 , voltage between negative and positive electrodes 4 to
It is good to adopt from the range of 8V. The pressure in the electrolytic cell is
Usually normal pressure, but can be somewhat pressurized.

【0027】[0027]

【発明の効果】本発明の方法によれば、一つの電解フッ
素化装置で従来の2〜10倍の電解電流での電解フッ素
化が可能となる。しかも、長期間安定して電解を継続す
ることができる。また、先の電極群において電解フッ素
化されて生成したフッ素化生成物が後の電極群を通過す
る際に分解すると予想されたにもかかわらず、目的とす
るフッ素化生成物を良好な収率で得ることができる。そ
の結果、一つの電解フッ素化装置で生産できる目的フッ
素化生成物の量を向上させることができる。
According to the method of the present invention, it is possible to perform electrolytic fluorination with one electrolytic fluorination apparatus at an electrolytic current that is 2 to 10 times that of the conventional one. Moreover, electrolysis can be stably continued for a long period of time. In addition, although the fluorinated product produced by electrolytic fluorination in the previous electrode group was expected to decompose when passing through the latter electrode group, the desired fluorinated product was obtained in good yield. Can be obtained at As a result, the amount of the target fluorinated product that can be produced by one electrolytic fluorination device can be improved.

【0028】この場合に、電解フッ素化装置の電解浴液
の循環流量を増加させる必要がないため、従来の循環槽
と同程度の容量で十分にフッ素化生成物の電解浴液から
の分離が可能であり、循環槽を特別に大きなものにした
り、あるいは特殊な装置を設置する等の必要もない。し
たがって、本発明による経済的、あるいは運転管理の省
力化の面における効果は非常に大きい。
In this case, since it is not necessary to increase the circulation flow rate of the electrolytic bath solution of the electrolytic fluorination apparatus, the fluorinated product can be sufficiently separated from the electrolytic bath solution with the same capacity as the conventional circulation tank. It is possible, and there is no need to make the circulation tank extra large or to install a special device. Therefore, the effect of the present invention in terms of economy or labor saving of operation management is very large.

【0029】[0029]

【実施例】以下に本発明をさらに詳細に説明するために
実施例及び比較例を示すが、本発明はこれらの実施例に
限定されるものではない。
EXAMPLES Examples and comparative examples are shown below for illustrating the present invention further in detail, but the present invention is not limited to these examples.

【0030】実施例1 ニッケル製の3枚の陰極と2枚の陽極(4対の陰陽極)
が交互に配置されてなる電極群(電極寸法;幅60c
m、高さ70cm、厚さ2mm、極間距離;1.8m
m)を垂直方向に2cmの間隔をおいて3群設置したモ
ネル製の電解槽を用いて、トリブチルアミンの電解フッ
素化を行なった(以下、3つの電極群を下の方から順番
に第1電極群、第2電極群、および第3電極群と呼
ぶ)。
Example 1 Three cathodes and two anodes made of nickel (4 pairs of negative anodes)
Electrode groups (electrode dimensions; width 60c
m, height 70 cm, thickness 2 mm, distance between poles: 1.8 m
m) was electrolytically fluorinated with tributylamine using a Monel electrolytic cell in which three groups were installed at intervals of 2 cm in the vertical direction (hereinafter, three electrode groups were sequentially arranged from the bottom to the first). Called the electrode group, the second electrode group, and the third electrode group).

【0031】まず、モネル製の循環槽(内径24cm、
高さ60cm、下部は円錐型)に、25リットルの無水
フッ化水素酸とトリブチルアミンをトリブチルアミンの
濃度が6重量%になるように供給した。この混合液を陰
陽極間での線速度が4.5cm/秒になるようにポンプ
を用いて電解槽の下部より供給し(循環流量 195c
3/秒 )、第3電極群の上部よりオーバーフローで再
び循環槽に戻しながら、電解を開始した。なお、各電極
群の陰陽極端子を直列に連結し、1台の整流器を用いて
第1電極群から第3電極群に向かって電流を流すように
した。徐々に電流を上げてゆき、60時間後より通電量
を400Aとした(電解電流値;1200A)。この際
に、循環ラインの電解槽入口前に設置したクーラーによ
り、電解槽に流入する混合液の温度を−4℃に調節し
た。
First, a Monel circulation tank (inner diameter 24 cm,
25 liters of anhydrous hydrofluoric acid and tributylamine were fed so that the concentration of tributylamine was 6% by weight. This mixed solution was supplied from the lower part of the electrolytic cell using a pump so that the linear velocity between the negative and positive electrodes was 4.5 cm / sec (circulation flow rate 195c
m 3 / sec), the electrolysis was started while returning to the circulation tank due to overflow from the upper part of the third electrode group. The cathode and anode terminals of each electrode group were connected in series, and a current was made to flow from the first electrode group to the third electrode group using one rectifier. The current was gradually increased, and after 60 hours, the energization amount was set to 400 A (electrolytic current value: 1200 A). At this time, the temperature of the mixed liquid flowing into the electrolytic cell was adjusted to −4 ° C. by a cooler installed in front of the electrolytic cell inlet of the circulation line.

【0032】電解で発生する水素ガスは電解槽の上部に
設けられた−40℃の還流冷却器をとおして排出した。
反応中電解浴液の量を一定に保つように、無水フッ化水
素酸を連続的に供給した。電解開始後、まもなくトリブ
チルアミンの循環槽への供給を開始し、電解浴液中にお
ける全アミンの濃度が約12重量%の定常状態を維持す
るようにした。
The hydrogen gas generated by electrolysis was discharged through a -40 ° C. reflux condenser provided in the upper part of the electrolytic cell.
During the reaction, anhydrous hydrofluoric acid was continuously supplied so as to keep the amount of the electrolytic bath solution constant. Shortly after the start of electrolysis, the supply of tributylamine to the circulation tank was started so that the concentration of all amines in the electrolytic bath solution was maintained at a steady state of about 12% by weight.

【0033】パーフルオロ化合物を含む生成フッ素化物
を、循環槽の下部より間欠的に抜き出した。これを40
重量%の苛性ソーダ水溶液とジイソブチルアミンの等容
量混合液中で120時間リフラックスした後に、水洗、
乾燥、蒸留を行いパーフルオロトリブチルアミンを得
た。
The fluorinated product containing the perfluoro compound was intermittently withdrawn from the lower part of the circulation tank. 40 this
After refluxing for 120 hours in an equal volume mixture of a caustic soda aqueous solution and diisobutylamine by weight, washing with water,
It was dried and distilled to obtain perfluorotributylamine.

【0034】120日間継続して電解を行なったが、電
圧、収率共に非常に安定していた。この間の平均の電解
結果(ただし、通電量が400Aになった後)を以下に
示す;パーフルオロトリブチルアミンの収量 4.67
kg/日、トリブチルアミンの供給量 3.54kg/
日、パーフルオロトリブチルアミンの収率 36.4
%、陰陽極間電圧 5.32V(第1電極群)5.21
V(第2電極群)5.18V(第3電極群)、各電極群
中における電解浴液の温度 −4.0〜−1.7℃(第
1電極群)、−1.7〜−0.5℃(第2電極群)、−
0.5〜3.0℃(第3電極群)。
When electrolysis was continued for 120 days, both voltage and yield were very stable. The average electrolysis results during this period (however, after the energization amount reached 400 A) are shown below; the yield of perfluorotributylamine 4.67.
kg / day, supply amount of tributylamine 3.54 kg /
Day, yield of perfluorotributylamine 36.4
%, Voltage between negative and positive electrodes 5.32 V (first electrode group) 5.21
V (second electrode group) 5.18V (third electrode group), temperature of electrolytic bath solution in each electrode group -4.0 to -1.7 ° C (first electrode group), -1.7 to- 0.5 ° C (second electrode group),-
0.5-3.0 degreeC (3rd electrode group).

【0035】比較例1 実施例1に示した電解槽に幅60cm、高さ210c
m、厚さ2mmのニッケル製の2枚の陽極と3枚の陰極
を極間距離を1.8mmとして交互に設置し、循環槽や
クーラー等は実施例1で用いたものをそのまま使用し、
同じくトリブチルアミンの電解フッ素化を行なった。通
電開始後50時間以降の通電電流を1200A(電流密
度は実施例1の場合と同じ)とした以外は、実施例1の
場合と同様に電流を上げていった。循環流量等の条件も
実施例1の場合と同じである。通電電流が1200Aに
なった時点での、電解浴液の電解槽入口、出口での温度
はそれぞれ−4℃、3.2℃であった。その後次第に陰
陽極間電圧が上昇し、5日後および10日後の電圧はそ
れぞれ5.35Vおよび5.73Vであった。20日後
には、電圧は6.8Vを越え又この時点でのパーフルオ
ロトリブチルアミンの収率は20%以下と極端に低く、
このために電解を停止せざるをえなかった。
Comparative Example 1 The electrolytic cell shown in Example 1 had a width of 60 cm and a height of 210 c.
m, 2 mm thick nickel-made two anodes and three cathodes were alternately installed with the distance between the electrodes being 1.8 mm, and the circulating tank, cooler and the like used in Example 1 were used as they were,
Similarly, electrolytic fluorination of tributylamine was performed. The current was increased in the same manner as in Example 1 except that the energized current after 50 hours from the start of energization was 1200 A (the current density was the same as in Example 1). The conditions such as the circulation flow rate are the same as those in the first embodiment. The temperatures at the electrolytic cell inlet and outlet of the electrolytic bath solution at the time when the energizing current reached 1200 A were −4 ° C. and 3.2 ° C., respectively. Thereafter, the voltage between the negative and positive electrodes gradually increased, and the voltages after 5 days and 10 days were 5.35 V and 5.73 V, respectively. After 20 days, the voltage exceeded 6.8 V, and the yield of perfluorotributylamine at this point was extremely low at 20% or less,
For this reason, the electrolysis had to be stopped.

【0036】実施例2 次に示す電解フッ素化装置を用いて、トリペンチルアミ
ンの電解フッ素化を行なった。循環槽やクーラー等は実
施例1に示したものと同じであるが、電解槽としては実
施例1に示したものと同じ電極群がそれぞれ一つずつ設
置されている3台のモネル製の電解槽を電解浴液の流れ
に沿って連結したものを用いた。この場合、1台目の電
解槽から順次50cmずつ低く配置し(順番に第1電解
槽、第2電解槽および第3電解槽と呼ぶ。)、それぞれ
の電解槽の下部から供給された電解浴液が、各電極群の
上部でオーバーフローして次の電解槽へヘッド差で流れ
るようにした。電解浴液(25リットル)中のトータル
アミンの濃度が13重量%になるように無水フッ化水素
酸とトリペンチルアミンを循環槽に補給しながら、又ポ
ンプで第1電解槽の下部に供給される電解浴液の温度が
−3℃となるように温度コントロールをしながら、電解
浴液を電極間での線速度が9cmとなるような速度で循
環しながら電解を行なった(循環流量 390cm3
秒)。通電方法としては、各電解槽の電極群の陰陽極端
子を直列に連結し、1台の整流器を用いて500Aの電
流を流した(電解電流値 1500A)。
Example 2 Tripentylamine was electrolytically fluorinated using the electrolytic fluorination apparatus shown below. The circulation tank, the cooler, etc. are the same as those shown in the first embodiment, but as the electrolysis tank, the same three electrode groups as those shown in the first embodiment are installed. What connected the tank along the flow of the electrolytic bath liquid was used. In this case, the electrolysis baths are placed 50 cm lower from the first electrolyzer (sequentially referred to as the first electrolyzer, the second electrolyzer, and the third electrolyzer), and supplied from the bottom of each electrolyzer. The liquid was allowed to overflow at the top of each electrode group and flow to the next electrolytic cell with a head difference. While supplying hydrofluoric acid anhydride and tripentylamine to the circulation tank so that the concentration of total amine in the electrolytic bath liquid (25 liters) would be 13% by weight, it was also supplied to the lower part of the first electrolytic tank by a pump. While controlling the temperature of the electrolytic bath solution to −3 ° C., electrolysis was performed while circulating the electrolytic bath solution at a rate such that the linear velocity between the electrodes was 9 cm (circulating flow rate 390 cm 3 /
Seconds). As a method of energizing, the negative and positive terminals of the electrode group of each electrolytic cell were connected in series, and a current of 500 A was passed using one rectifier (electrolytic current value 1500 A).

【0037】電解で発生する水素ガスは、各電解槽の上
部に設けられた−45℃の還流冷却器をとおして排出さ
せた。パーフルオロトリペンチルアミンを含むフッ素化
生成物は循環槽の下部から抜き出し、実施例1の場合と
同様の処理を施してパーフルオロトリペンチルアミンを
得た。
The hydrogen gas generated by electrolysis was discharged through a -45 ° C. reflux condenser provided at the top of each electrolytic cell. The fluorinated product containing perfluorotripentylamine was withdrawn from the lower part of the circulation tank and treated in the same manner as in Example 1 to obtain perfluorotripentylamine.

【0038】通電電流が500Aになった後90日間電
解を継続したが、電圧、収率ともに非常に安定してい
た。この間の平均の電解結果は次のとおりであった;パ
ーフルオロトリぺンチルアミンの収量 4.67kg/
日、トリペンチルアミンの供給量 4.28kg/日、
収率 30.2%、陰陽極間電圧 5.67V(第1電
解槽)、5.58V(第2電解槽)、5.52V(第3
電解槽)、各電極群内での電解浴液の温度 −3.0〜
−1.4℃(第1電解槽)、−1.4〜0.3℃(第2
電解槽)、0.1〜1.9℃(第3電解槽)。
Electrolysis was continued for 90 days after the energizing current reached 500 A, and the voltage and yield were very stable. The average electrolysis results during this period were as follows; Yield of perfluorotripentylamine 4.67 kg /
Supply amount of tripentylamine 4.28 kg / day,
Yield 30.2%, voltage between cathode and anode 5.67V (first electrolytic cell), 5.58V (second electrolytic cell), 5.52V (third)
Electrolyte bath), temperature of electrolytic bath liquid in each electrode group −3.0 to
-1.4 ° C (first electrolyzer), -1.4 to 0.3 ° C (second
Electrolytic bath), 0.1 to 1.9 ° C (third electrolytic bath).

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本発明の電解フッ素化方法において
使用される電解フッ素化装置の代表的な態様を示す概略
図である。
FIG. 1 is a schematic view showing a typical embodiment of an electrolytic fluorination apparatus used in the electrolytic fluorination method of the present invention.

【図2】 図2は、本発明の電解フッ素化方法において
使用される電解フッ素化装置の他の態様を示す概略図で
ある。
FIG. 2 is a schematic view showing another embodiment of the electrolytic fluorination apparatus used in the electrolytic fluorination method of the present invention.

【符号の説明】[Explanation of symbols]

1、1′および1″ 電解槽 2 循環槽 3、3′および3″ 電極群 1, 1'and 1 "electrolysis tank 2 circulation tank 3, 3'and 3" electrode group

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白井 正浩 山口県徳山市御影町1番1号 徳山曹達株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Shirai 1-1, Mikage-cho, Tokuyama-shi, Yamaguchi Prefecture Tokuyama Soda Stock Company

Claims (1)

【特許請求の範囲】 【請求項1】 炭素−水素結合を有する有機化合物を含
む電解浴液を電解槽と循環槽との間を循環させて、該電
解槽中で炭素−水素結合を有する有機化合物の電解フッ
素化を行なう方法において、電解浴液の流れ方向に沿っ
て複数の電極群を設置し、且つ各電極群における電解浴
液の流れ方向の温度差を5℃以下として電解フッ素化を
行なうことを特徴とする電解フッ素化方法。
Claim: What is claimed is: 1. An electrolytic bath solution containing an organic compound having a carbon-hydrogen bond is circulated between an electrolytic cell and a circulation tank, and an organic compound having a carbon-hydrogen bond is provided in the electrolytic cell. In the method for performing electrolytic fluorination of a compound, a plurality of electrode groups are installed along the flow direction of the electrolytic bath solution, and the temperature difference in the flow direction of the electrolytic bath solution in each electrode group is set to 5 ° C. or less to perform the electrolytic fluorination. An electrolytic fluorination method characterized by carrying out.
JP03181284A 1991-07-22 1991-07-22 Electrolytic fluorination method Expired - Fee Related JP3126419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03181284A JP3126419B2 (en) 1991-07-22 1991-07-22 Electrolytic fluorination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03181284A JP3126419B2 (en) 1991-07-22 1991-07-22 Electrolytic fluorination method

Publications (2)

Publication Number Publication Date
JPH0525671A true JPH0525671A (en) 1993-02-02
JP3126419B2 JP3126419B2 (en) 2001-01-22

Family

ID=16098004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03181284A Expired - Fee Related JP3126419B2 (en) 1991-07-22 1991-07-22 Electrolytic fluorination method

Country Status (1)

Country Link
JP (1) JP3126419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430823A (en) * 2020-11-03 2021-03-02 浙江诺亚氟化工有限公司 Progressive gradual electrofluorination device and process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430823A (en) * 2020-11-03 2021-03-02 浙江诺亚氟化工有限公司 Progressive gradual electrofluorination device and process
CN112430823B (en) * 2020-11-03 2021-11-02 浙江诺亚氟化工有限公司 Progressive gradual electrofluorination device and process

Also Published As

Publication number Publication date
JP3126419B2 (en) 2001-01-22

Similar Documents

Publication Publication Date Title
US6267865B1 (en) Electrochemical fluorination using interrupted current
US3492209A (en) Hydrodimerization in a wicking type cell
US2468766A (en) Recovery of chlorine from hydrogen chloride
US4466881A (en) Process for the preparation of (ω-fluorosulfonyl)haloaliphatic carboxylic acid fluorides
US3725222A (en) Production of aluminum
US3928152A (en) Method for the electrolytic recovery of metal employing improved electrolyte convection
US3518180A (en) Bipolar electrolytic cell
JPS63126863A (en) Continuous manufacture of dialkanesulfonylperoxide
EP0235908A2 (en) Method for the production of L-cysteine
JP3126419B2 (en) Electrolytic fluorination method
US3501387A (en) Continuous process for the electrolytic production of aluminum
WO2013170310A1 (en) Drained cathode electrolysis cell for production of rare earth metals
CA2879712C (en) Electrolytic cell for production of rare earth metals
WO1980001575A1 (en) Electrochemical apparatus and process for manufacturing halates
JP2006348381A (en) Method for producing organic compound by electrolytic fluoridation
JPH0587595B2 (en)
JP3040209B2 (en) Electrolytic fluorination method
JP2986885B2 (en) Electrolytic fluorination method and apparatus
JP2755494B2 (en) Method for producing perfluoro organic compound
JP3043251B2 (en) Method for producing nitrogen trifluoride
JP3115426B2 (en) Method for producing perfluoro organic compound
US3486994A (en) Process for preparing chlorine by electrolysis of aqueous hydrochloric acid
JP2553628B2 (en) Electrolytic fluorination method
US3871976A (en) Electrochemical adiponitrile process
JP2584825B2 (en) Electrolytic fluorination method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees