JPH05256372A - Automatic air vent valve - Google Patents
Automatic air vent valveInfo
- Publication number
- JPH05256372A JPH05256372A JP33800892A JP33800892A JPH05256372A JP H05256372 A JPH05256372 A JP H05256372A JP 33800892 A JP33800892 A JP 33800892A JP 33800892 A JP33800892 A JP 33800892A JP H05256372 A JPH05256372 A JP H05256372A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- float
- retainer
- air
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Self-Closing Valves And Venting Or Aerating Valves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、液体圧力容器などにお
ける自動空気抜弁に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic air vent valve in a liquid pressure container or the like.
【0002】[0002]
【従来の技術】図4はCIP装置に採用されていた従来
技術による自動空気抜弁の連通状態における縦断面図で
ある。図4を参照してその構成と作用について説明す
る。圧力容器の内外を連通している弁本体10は図4の
ようにCIP装置の上蓋1にねじなどにより取付けられ
ており、前記弁本体の内部には弁室9が形成され、弁室
には細孔よりなる排気口11が穿設されている。弁棒3
はばね8を介して軸方向に摺動可能な状態で弁室9内に
装設されている。圧力容器内への液体圧媒の注入ととも
に、空気は液体圧媒との密度差によって、空気通孔2か
ら細孔4を経由して排気口11から矢印で示されるよう
に排出される。液体圧媒が細孔4を通り弁室9に流入す
るようになると、細孔4を通る際のエネルギ損失により
弁棒3の上面部の圧力は細孔4の入口部より低下し、弁
棒3の上下に差圧が発生する。この差圧によってばね8
を圧縮して弁棒3を排気口側に摺動させ、弁棒3のシー
ル面6と弁本体10のシール面7との間で弁の開放、閉
止を行っていた。2. Description of the Related Art FIG. 4 is a longitudinal sectional view of a conventional automatic air bleeding valve used in a CIP device in a communicating state. The configuration and operation will be described with reference to FIG. The valve body 10 communicating between the inside and the outside of the pressure vessel is attached to the upper lid 1 of the CIP device by a screw or the like as shown in FIG. 4, and the valve chamber 9 is formed inside the valve body, and the valve chamber is formed in the valve chamber. An exhaust port 11 made of fine holes is provided. Valve rod 3
Is mounted in the valve chamber 9 via the spring 8 so as to be slidable in the axial direction. Along with the injection of the liquid pressure medium into the pressure vessel, the air is discharged from the air outlet 2 through the fine holes 4 through the exhaust port 11 as indicated by the arrow due to the difference in density with the liquid pressure medium. When the liquid pressure medium comes into the valve chamber 9 through the fine hole 4, the pressure on the upper surface of the valve rod 3 becomes lower than that at the inlet of the fine hole 4 due to energy loss when passing through the fine hole 4. A differential pressure is generated above and below 3. This differential pressure causes the spring 8
Was compressed and the valve rod 3 was slid toward the exhaust port side, and the valve was opened and closed between the sealing surface 6 of the valve rod 3 and the sealing surface 7 of the valve body 10.
【0003】[0003]
【発明が解決しようとする課題】しかし前記従来技術に
よる自動空気抜弁には次のような問題点があった。即ち
弁棒3を作動させるためには細孔4が必要であり、該細
孔によって空気を排出しているとき細孔4につまりが生
じ、圧力容器内部に空気が残留するなどの誤動作を起し
やすかった。また圧力容器内の減圧は細管を介しての液
体圧媒の排出に依存しているが、管径が細いため流動に
対する抵抗が大きいので、減圧時に圧力容器内が完全に
大気開放されるまでに相当の時間を必要としていた。However, the above-mentioned conventional automatic air vent valve has the following problems. That is, the fine hole 4 is required to operate the valve rod 3, and the fine hole 4 is clogged when air is discharged by the fine hole, causing malfunction such as air remaining in the pressure vessel. It was easy. The decompression in the pressure vessel depends on the discharge of the liquid pressure medium through the thin tube, but since the tube diameter is small, the resistance to flow is large, so it is necessary to completely open the pressure vessel to the atmosphere during decompression. It took a considerable amount of time.
【0004】本発明の目的は前記の問題点を解消し、誤
動作をせず確実且つ迅速に容器内部から空気を抜き出す
液体圧力容器などにおける自動空気抜弁を提供すること
にある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide an automatic air bleeding valve in a liquid pressure container or the like that reliably and quickly withdraws air from the inside of the container without causing malfunction.
【0005】[0005]
【課題を解決するための手段】第1発明の自動空気抜弁
は、液体が供給される容器の蓋部に設けられ容器内部か
らの空気を抜き出す空気抜弁において、ばねを介して軸
方向に摺動可能に設けられた弁押え15と、該弁押え内
部に形成された円錐状のフロート室20と、該フロート
室に配設されオリフィスを形成するフロート14と、前
記弁押えの上部で支持された球状の弁16とを有してな
ることを特徴としている。又第2発明の自動空気抜弁
は、液体が供給される容器の蓋部に設けられ容器内部か
らの空気を抜き出す空気抜弁において、ばねを介して軸
方向に摺動可能に設けられた弁押え15と、該弁押え内
部に形成された円錐状のフロート室20と、該フロート
室に配設されオリフィスを形成するフロート14と、弁
押え上部の穴に嵌入され流体用流路を有し上部絞り部よ
り頭部が露出した球状の弁16とを有してなることを特
徴としている。The automatic air bleeding valve of the first invention is an air bleeding valve which is provided in a lid portion of a container to which a liquid is supplied and bleeds air from the inside of the container, and slides in an axial direction via a spring. A valve retainer 15 that is provided so as to be possible, a conical float chamber 20 that is formed inside the valve retainer, a float 14 that is disposed in the float chamber and that forms an orifice, and that is supported above the valve retainer. It is characterized by having a spherical valve 16. The automatic air bleeding valve of the second invention is an air bleeding valve which is provided in a lid portion of a container to which liquid is supplied and which bleeds air from the inside of the container. The valve retainer 15 is slidable in the axial direction via a spring. A conical float chamber 20 formed inside the valve retainer, a float 14 arranged in the float chamber to form an orifice, and an upper throttle having a fluid passage fitted in a hole in the upper portion of the valve retainer. It is characterized by having a spherical valve 16 whose head is exposed from the portion.
【0006】[0006]
【作用】第1発明では前記のような構成としたので下記
のように作用する。圧力容器内に空気が存在している状
態のときは、容器内への液体圧媒の注入とともに容器内
の空気は空気通孔2からフィルタ19を経てフロート室
20に入り排気口11から排出される。空気の排出中は
フロート14と弁押え15はフィルタ19に接してい
て、フロート14の表面と弁押え15の内表面との間に
は十分な隙間があり、異物などの詰りは生じない。空気
の排出が終り液体圧媒がフロート室20に流入してくる
とフロート14は浮力によって浮び上りフロート14と
弁押え15の表面が接触するようになり、液体圧媒の流
路はフロート14の接触面に切られた微細な溝21(図
3参照)のみとなる。このため、液体圧媒の流通によっ
て微細な溝の出口側ではエネルギ損失によって圧力の低
下があり、入口側との間で圧力差を生じ、弁押え15の
下面およびフロート14の下面に上向きの圧力が作用す
るようになり、ばね8の力で反弁座17方向に押しつけ
られていた弁押え15はフロート14とともに弁座17
方向に押し上げられ、球状の弁16が弁座17に密着し
シールすると、液体圧媒の圧力が弁16の下面に作用す
るようになって完全に密封される。In the first aspect of the invention, since it has the above-mentioned structure, it operates as follows. When air is present in the pressure container, the liquid pressure medium is injected into the container, and the air in the container enters the float chamber 20 from the air passage 2 through the filter 19 and is discharged from the exhaust port 11. It While the air is being discharged, the float 14 and the valve retainer 15 are in contact with the filter 19, and there is a sufficient gap between the surface of the float 14 and the inner surface of the valve retainer 15, so that clogging of foreign matters does not occur. When the liquid pressure medium has flown into the float chamber 20 after the air has been discharged, the float 14 floats up due to the buoyancy and the surfaces of the float 14 and the valve retainer 15 come into contact with each other, and the flow path of the liquid pressure medium is Only the fine grooves 21 (see FIG. 3) cut on the contact surface are formed. Therefore, due to the flow of the liquid pressure medium, there is a pressure drop due to energy loss on the outlet side of the fine groove, and a pressure difference is generated between the minute pressure side and the inlet side, and the upward pressure is applied to the lower surface of the valve retainer 15 and the lower surface of the float 14. The valve retainer 15 that has been pressed in the direction opposite to the valve seat 17 by the force of the spring 8 moves together with the float 14 into the valve seat 17
When the spherical valve 16 is pushed up in the direction and comes into close contact with the valve seat 17 and seals, the pressure of the liquid pressure medium acts on the lower surface of the valve 16 and the valve 16 is completely sealed.
【0007】球状の弁16で密封状態となると液体圧媒
の流動もなくなるのでフロート14の微細な溝21のエ
ネルギ損失による差圧の発生がなくなるので、弁押え1
5はばね8の力によって押し下げられ、フロート14は
弁押え15と密着したままとなる。球状の弁16は弁押
え15による押えがなくなっても、液体圧媒と大気圧と
の圧力差で弁座17に押しつけられた状態を保持し、自
重で外れることはない。液体圧媒の排出により圧力容器
内が減圧され大気圧近くになると、球状の弁16に作用
していた差圧がなくなるので、弁16は自重で落下し、
空気が排気口11側から流入しフロート14下面まで入
ったところでフロート14が落下し、圧力容器内が完全
に大気開放される。When the spherical valve 16 is hermetically sealed, the flow of the liquid pressure medium also disappears, so that the differential pressure due to the energy loss in the fine groove 21 of the float 14 is eliminated.
5 is pushed down by the force of the spring 8, and the float 14 remains in close contact with the valve retainer 15. Even if the valve retainer 15 is no longer pressed, the spherical valve 16 retains the state of being pressed against the valve seat 17 due to the pressure difference between the liquid pressure medium and the atmospheric pressure, and does not come off due to its own weight. When the pressure vessel is decompressed by the discharge of the liquid pressure medium and becomes close to the atmospheric pressure, the differential pressure acting on the spherical valve 16 disappears, so the valve 16 falls by its own weight,
When the air flows in from the exhaust port 11 side and reaches the bottom surface of the float 14, the float 14 drops and the inside of the pressure vessel is completely opened to the atmosphere.
【0008】第2発明では前記のような構成により次の
ように作用する。液体圧力容器22(図5(a)参照)
内への液体圧媒の注入に伴い、空気は空気通孔2からフ
ィルタ19を経てフロート室20に入り排気口11から
排出される。圧力容器22内からの空気の排出が進み、
液体圧媒がフロート室20に流入してくるとフロート1
4は浮び上り弁押え15と接触し、弁押え15及びフロ
ート14の下面に上向きの力が作用するようになる。こ
のため弁押え15はフロート14と共に弁座17の方向
に押し上げられ、球状の弁16が弁座17を密封し、容
器内の液圧が昇圧する。According to the second aspect of the invention, the above-described structure operates as follows. Liquid pressure container 22 (see FIG. 5 (a))
Along with the injection of the liquid pressure medium into the inside, the air enters the float chamber 20 through the air passage hole 2 and the filter 19 and is discharged from the exhaust port 11. The discharge of air from the pressure vessel 22 progresses,
When the liquid pressure medium flows into the float chamber 20, the float 1
4 floats up and comes into contact with the valve retainer 15, and an upward force acts on the lower faces of the valve retainer 15 and the float 14. Therefore, the valve retainer 15 is pushed up in the direction of the valve seat 17 together with the float 14, the spherical valve 16 seals the valve seat 17, and the liquid pressure in the container increases.
【0009】液体圧媒の排出により圧力容器22内が減
圧され容器内圧力が大気圧近くまで低下すると、球状弁
16に作用していた差圧が小さくなる。すると弁押え1
5は球状弁16を伴ってばね8の力によって降下し、微
量の液体圧媒の排出を自動的に行って、圧力容器22内
を大気圧に減圧していく。圧力容器22の内圧が大気圧
と同レベルまで低下すると、フロート14は自重によっ
てフィルタ19の上面に落下し、外気が排気口11から
流入して圧力容器22内が完全に大気開放される。When the pressure vessel 22 is depressurized by the discharge of the liquid pressure medium and the pressure inside the vessel is lowered to near atmospheric pressure, the differential pressure acting on the spherical valve 16 becomes small. Then the valve retainer 1
5 moves down by the force of the spring 8 together with the spherical valve 16, automatically discharges a small amount of liquid pressure medium, and reduces the pressure in the pressure container 22 to atmospheric pressure. When the internal pressure of the pressure container 22 drops to the same level as the atmospheric pressure, the float 14 falls on the upper surface of the filter 19 by its own weight, and the outside air flows in from the exhaust port 11 to completely open the inside of the pressure container 22 to the atmosphere.
【0010】[0010]
【実施例】第1発明による自動空気抜弁をCIP装置に
おける圧力容器の上蓋に装着した第1実施例について、
自動空気抜弁が連通状態にあるときの縦断面を示す図
1、閉止状態にあるときの縦断面を示す図2及び図2に
おけるフロート部を拡大して示す図3を参照して説明す
る。図1に示すように、上蓋1の上面から下面まで連通
した空気通孔2が設けられ、それと同軸の弁座17、弁
座押え13によって弁室9が形成されている。弁室9の
内部には、ばね8を介して軸方向へ摺動可能な状態で弁
押え15が収められており、圧力容器側から弁室9への
入口部にはフィルタ19が設けられている。前記弁押え
15の下方には漏斗を伏せた形状の空間部のフロート室
20が形成され、上方の弁座17側は、弁押え15と弁
座17に穿孔されている空気排出の孔を開閉する球状の
弁16の支持部となっている。前記したフロート室20
の内部には、フロート室の内側の傾斜面と連合する表面
形状であり、且つ接触面に図3に示すような微細な溝2
1を有する円錐台形状のフロート14が配設されてい
る。[First Embodiment] A first embodiment in which the automatic air vent valve according to the first invention is mounted on the upper lid of a pressure vessel in a CIP device,
The description will be made with reference to FIG. 1 showing a vertical section when the automatic air bleeding valve is in a communication state, FIG. 2 showing a vertical section when the automatic air bleeding valve is in a closed state, and FIG. 3 showing an enlarged float portion in FIG. As shown in FIG. 1, an air passage 2 communicating from the upper surface to the lower surface of the upper lid 1 is provided, and a valve seat 17 and a valve seat retainer 13 which are coaxial with the air passage hole 2 form a valve chamber 9. A valve retainer 15 is housed inside the valve chamber 9 in a state of being slidable in the axial direction via a spring 8, and a filter 19 is provided at an inlet portion from the pressure container side to the valve chamber 9. There is. A float chamber 20 is formed below the valve retainer 15 in the shape of a hollow funnel, and an upper valve seat 17 side opens and closes an air discharge hole formed in the valve retainer 15 and the valve seat 17. It serves as a support portion for the spherical valve 16 that operates. The float chamber 20 described above
Has a surface shape associated with the inclined surface inside the float chamber, and the contact surface has fine grooves 2 as shown in FIG.
A frustoconical float 14 having a number 1 is disposed.
【0011】次に前記した第1実施例の作用について説
明する。図1は圧力容器内に空気が存在している状態
で、容器内への液体圧媒の注入とともに容器内の空気は
矢印で示すように空気通孔2からフィルタ19を経てフ
ロート室20へ入り排気口11から排出される。空気排
出中フロート14は弁押え15と共にフィルタ19に接
していて、フロート14の側表面と弁押え15の内表面
との間には十分な隙間があるので、空気は流通しやす
く、つまりが生じない。空気の排出が完了して液体圧媒
がフロート室20に流入するようになると、その液面高
さに応じてフロート14が浮力によって浮び上りフロー
ト14の側表面が弁押え15の内表面に内接するように
なる。Next, the operation of the above-described first embodiment will be described. FIG. 1 shows a state in which air is present in the pressure vessel, and when the liquid pressure medium is injected into the vessel, the air in the vessel enters the float chamber 20 through the air passage hole 2 and the filter 19 as shown by the arrow. It is discharged from the exhaust port 11. During the air discharge, the float 14 is in contact with the filter 19 together with the valve retainer 15, and there is a sufficient gap between the side surface of the float 14 and the inner surface of the valve retainer 15, so that the air can easily flow therethrough, causing clogging. Absent. When the discharge of air is completed and the liquid pressure medium begins to flow into the float chamber 20, the float 14 floats up due to the buoyancy according to the height of the liquid surface, and the side surface of the float 14 comes inside the inner surface of the valve retainer 15. Come into contact.
【0012】図3はフロート14の側表面が弁押え15
の内表面に内接した際の状態の拡大説明図で、このよう
な状態になると、液体圧媒の通路はフロート14の接触
面に切られた微細な溝21のみとなりオリフィス機構を
持つようになる。このため液体圧媒の流通により生ずる
エネルギ損失によって溝21の入口側と出口側に圧力差
が生じ、弁押え15の下面及びフロート14の下面に圧
力が作用し、ばね8の力によって反弁座17方向(図で
は下方)に押しつけられていた弁押え15はフロート1
4とともに弁座17方向(図では上方)へ押し上げら
れ、球状の弁16が弁座17に接しシールされると液体
圧媒の圧力が弁16の下面に作用するようになり完全に
密封される。In FIG. 3, the side surface of the float 14 is a valve retainer 15.
FIG. 6 is an enlarged explanatory view of a state when inscribed on the inner surface of the liquid. In such a state, the passage of the liquid pressure medium is only the fine groove 21 cut on the contact surface of the float 14 and has the orifice mechanism. Become. Therefore, a pressure difference is generated between the inlet side and the outlet side of the groove 21 due to energy loss caused by the flow of the liquid pressure medium, pressure is applied to the lower surface of the valve retainer 15 and the lower surface of the float 14, and the force of the spring 8 causes the anti-valve seat. The valve retainer 15 pressed in the 17 direction (downward in the figure) is the float 1
4 is pushed up in the direction of the valve seat 17 (upward in the figure), and when the spherical valve 16 contacts the valve seat 17 and is sealed, the pressure of the liquid pressure medium acts on the lower surface of the valve 16 and is completely sealed. ..
【0013】図2は閉止状態を表している。球状の弁1
6で弁座17がシールされると液体圧媒の流れがなくな
り、フロート14の微細な溝21のエネルギ損失による
差圧の発生もなくなるので、ばね8の力で弁押え15は
反弁座17方向(図では下方)に押し下げられ、フロー
ト14は弁押え15に密着したままとなる。球状の弁1
6は弁押え15による押えがなくなっても、液体圧媒の
圧力と大気圧との差により弁座17に押しつけられた状
態を保持し、自重で外れることはない。液体圧媒の排出
により圧力容器内が減圧され大気圧近くになると、球状
の弁16に作用していた差圧がなくなるので、弁16は
自重によって落下し、空気が排気口11側から流入して
フロート14下面まで入ったところでフロート14が落
下し圧力容器内は完全に大気開放され昇圧以前の連通状
態にもどる。FIG. 2 shows the closed state. Spherical valve 1
When the valve seat 17 is sealed at 6, the flow of the liquid pressure medium is stopped, and the pressure difference due to the energy loss in the fine groove 21 of the float 14 is also eliminated. The float 14 is pushed down in the direction (downward in the drawing), and the float 14 remains in close contact with the valve retainer 15. Spherical valve 1
Even when the valve retainer 15 is no longer retained by the valve retainer 6, the retainer retains the state in which it is pressed against the valve seat 17 due to the difference between the pressure of the liquid pressure medium and the atmospheric pressure, and does not come off due to its own weight. When the pressure inside the pressure vessel is reduced to near atmospheric pressure by discharging the liquid pressure medium, the differential pressure acting on the spherical valve 16 disappears, so the valve 16 falls by its own weight, and air flows in from the exhaust port 11 side. The float 14 drops when it reaches the bottom surface of the float 14, the inside of the pressure vessel is completely opened to the atmosphere, and the communication state before the pressurization is restored.
【0014】また弁座蓋12は、ねじなどにより上蓋1
に固定する構造であり、フロート14、弁押え15等の
部品交換や点検、調整などは弁室蓋12を取外せば容易
に行うことができる。弁座押え13及び弁押え15の外
周面にはそれぞれシール5が配設され、空気または液体
圧媒の漏洩を防止している。Further, the valve seat lid 12 has an upper lid 1 such as a screw.
Since the valve chamber lid 12 is removed, the parts such as the float 14 and the valve retainer 15 can be easily replaced and inspected and adjusted. Seals 5 are respectively provided on the outer peripheral surfaces of the valve seat retainer 13 and the valve retainer 15 to prevent air or liquid pressure medium from leaking.
【0015】次に第2発明による自動空気抜弁をCIP
装置における圧力容器22の上蓋1に装着した第2実施
例について、自動空気抜弁が連通状態にあるときの縦断
面を示す図5(b)、閉止状態にあるときの縦断面を示
す図6及び図6におけるフロート部を拡大して示す図3
を参照して説明する。図5(b)に示すように上蓋1の
上面から下面まで連通した空気通孔2が設けられ、それ
と同軸の弁座17、弁座押え13によって弁室9が形成
されている。弁室9の内部には、ばね8を介して軸方向
(図で下方向)へ摺動可能で、且つその上部には頭部の
一部が露出して嵌入された球状の弁16の保持部となる
流体用の流路を有し上部に絞りが形成された弁押え15
が収められている。又圧力容器22側から弁室9への入
口部にはフィルタ8が設けられている。前記弁押え15
の下方には漏斗を伏せた形状の空間部のフロート室20
が形成され、上方弁座17側に形成された上部に絞りを
つけた凹部には、弁押え15と弁座17に穿孔されてい
る流体排出の孔を開閉する球状の弁16が保持部されて
いる。前記フロート室20の内部には、該フロート室の
内側の傾斜面と適合する表面形状で、且つ接触面に図3
に示すような微細な溝21を有する円錐台形状のフロー
ト14が配設されている。Next, the automatic air bleeding valve according to the second invention is CIP
FIG. 5 (b) showing a vertical section when the automatic air vent valve is in the communicating state, and FIG. 6 showing a vertical section in the closed state regarding the second embodiment mounted on the upper lid 1 of the pressure vessel 22 in the apparatus. FIG. 3 is an enlarged view of the float portion in FIG.
Will be described. As shown in FIG. 5B, the upper lid 1 is provided with an air passage 2 communicating from the upper surface to the lower surface, and a valve seat 17 and a valve seat retainer 13 coaxial with the air passage 2 form a valve chamber 9. Holding of a spherical valve 16 that is slidable in the valve chamber 9 in the axial direction (downward in the figure) via a spring 8 and has a head exposed at an upper part thereof. Valve retainer 15 having a flow path for a fluid serving as a part and having a throttle formed on the upper portion thereof
Is stored. A filter 8 is provided at the inlet of the valve chamber 9 from the pressure container 22 side. The valve retainer 15
Below the bottom is a float chamber 20 with a funnel-shaped space.
And a spherical valve 16 that opens and closes a valve discharge hole formed in the valve retainer 15 and the valve seat 17 is held in a recessed portion formed on the upper valve seat 17 side. ing. The inside of the float chamber 20 has a surface shape that matches the inclined surface inside the float chamber, and the contact surface has a shape as shown in FIG.
A frustoconical float 14 having fine grooves 21 as shown in FIG.
【0016】次に前記第2実施例の作用について説明す
る。図5(b)は圧力容器22内に空気が存在する状態
で圧力容器22内への液体圧媒の注入とともに、空気は
矢印で示すように空気通孔2からフィルタ19をへてフ
ロート室20へ入り排気口11から排出される。圧力容
器22内の空気が排出され液体圧媒がフロート室20に
流入するようになると、その液面高さに応じてフロート
14が浮力によって浮び上り弁押え15の内面に密着す
る。Next, the operation of the second embodiment will be described. In FIG. 5 (b), when the liquid pressure medium is injected into the pressure vessel 22 in a state where air is present in the pressure vessel 22, the air flows from the air passage 2 to the filter 19 as shown by the arrow, and flows into the float chamber 20. Enters into and is discharged from the exhaust port 11. When the air inside the pressure vessel 22 is discharged and the liquid pressure medium flows into the float chamber 20, the float 14 floats up due to the buoyancy according to the height of the liquid surface and comes into close contact with the inner surface of the valve retainer 15.
【0017】図3はフロート14が弁押え15の内面に
密着した状態の拡大説明図である。この様な状態になる
と、フロート14の接触面に切られた微細な溝21によ
るオリフィス機構によりオリフィス前後に圧力差が生
じ、ばね8の力によって反弁座17方向(図では下方)
に押しつけられていた弁押え15及び球状の弁16はフ
ロート14とともに弁座方向(図では上方)へ押し上げ
られ、球形の弁16が弁座17に接しシールされると液
体圧媒の圧力が弁16の下面に作用するようになり完全
に密封される。FIG. 3 is an enlarged explanatory view of the state where the float 14 is in close contact with the inner surface of the valve retainer 15. In such a state, a pressure difference is generated across the orifice due to the orifice mechanism formed by the fine groove 21 cut on the contact surface of the float 14, and the force of the spring 8 causes the valve seat 17 to move in the direction opposite to the valve seat 17 (downward in the figure).
The valve retainer 15 and the spherical valve 16 pressed against the valve 14 are pushed up in the valve seat direction (upward in the figure) together with the float 14, and when the spherical valve 16 contacts the valve seat 17 and is sealed, the pressure of the liquid pressure medium is increased. It will act on the underside of 16 and will be completely sealed.
【0018】図6は閉止状態を示している。弁16は液
体圧媒の圧力と大気との差圧により弁座17に押しつけ
られた状態を保持する。液体圧媒の使用により圧力容器
22内が減圧され大気圧近くになると、弁16に作用し
ていた差圧が小さくなるので、弁16及び弁押え15は
ばね8の力によって同時に落下し、微量の排液を伴い容
器内は大気圧に減圧する。空気が排気口11側から流入
してフロート14の下面まで入ったところでフロート1
4は自重によってフィルタ19の上面に落下し、圧力容
器内は昇圧以前の大気圧との連通状態にもどる。FIG. 6 shows the closed state. The valve 16 keeps being pressed against the valve seat 17 by the pressure difference between the liquid pressure medium and the atmosphere. When the pressure container 22 is depressurized to near atmospheric pressure by using the liquid pressure medium, the differential pressure acting on the valve 16 decreases, so that the valve 16 and the valve retainer 15 are simultaneously dropped by the force of the spring 8 and a small amount. The inside of the container is depressurized to atmospheric pressure with the drainage of. When the air flows in from the exhaust port 11 side and reaches the bottom surface of the float 14, the float 1
4 falls on the upper surface of the filter 19 due to its own weight, and the inside of the pressure vessel returns to the state of communication with the atmospheric pressure before pressurization.
【0019】また弁室蓋12はねじなどにより上蓋1に
固定する構造であり、フロート14、弁押え15等の部
品交換や点検、調整などは弁室蓋12を取外せば容易に
行なうことができる。弁座押え13及び弁押え15の外
周面にはそれぞれシール5が配設され、空気または液体
圧媒の漏洩を防止している。Further, the valve chamber cover 12 is structured to be fixed to the upper cover 1 with screws or the like, and replacement, inspection and adjustment of parts such as the float 14 and the valve retainer 15 can be easily performed by removing the valve chamber cover 12. it can. Seals 5 are respectively provided on the outer peripheral surfaces of the valve seat retainer 13 and the valve retainer 15 to prevent air or liquid pressure medium from leaking.
【0020】[0020]
【発明の効果】第1発明では、フロート14により形成
されるオリフィス機構によりオリフィスを通過する液体
圧媒に入口側と出口側で圧力差を生じさせ、その差圧に
より弁押え15と共に球状の弁16を駆動して弁孔を塞
止する構成とし、空気に対しては十分な流路面積が確保
されているので、空気残留などの誤動作のない確実で迅
速な自動空気抜きが可能になる。第2発明では第1発明
の効果に加え弁押え15と球状の弁16を連動させるこ
とにより液体圧力容器の減圧を自動的且つ急速に行うこ
とが可能となった。According to the first aspect of the present invention, the orifice mechanism formed by the float 14 causes a pressure difference between the inlet side and the outlet side of the liquid pressure medium passing through the orifice, and the pressure difference causes the valve retainer 15 and the spherical valve. Since the valve hole is closed by driving 16 and a sufficient flow passage area for air is secured, reliable and quick automatic air bleeding without malfunction such as residual air becomes possible. In addition to the effects of the first invention, the second invention makes it possible to automatically and rapidly depressurize the liquid pressure container by interlocking the valve retainer 15 and the spherical valve 16.
【図1】第1発明による第1実施例に係る自動空気抜弁
の連通状態の縦断面図。FIG. 1 is a vertical cross-sectional view of a communication state of an automatic air bleeding valve according to a first embodiment of the first invention.
【図2】図1における閉止状態の縦断面図。FIG. 2 is a vertical cross-sectional view in a closed state in FIG.
【図3】図2におけるフロート部の拡大説明図。FIG. 3 is an enlarged explanatory view of a float portion in FIG.
【図4】従来の自動空気抜弁の連通状態の縦断面図。FIG. 4 is a vertical cross-sectional view of a communication state of a conventional automatic air vent valve.
【図5】本発明を利用する液体圧力容器の縦断面略図及
び第2発明による第2実施例に係る自動空気抜弁の連通
状態の縦断面図。FIG. 5 is a schematic vertical cross-sectional view of a liquid pressure container utilizing the present invention and a vertical cross-sectional view of a communicating state of an automatic air bleeding valve according to a second embodiment of the second invention.
【図6】図5における閉止状態の縦断面図。6 is a vertical cross-sectional view of FIG. 5 in a closed state.
1…上蓋、2…空気通孔、8…ばね、9…弁室、11…
排気口、12…弁室蓋、13…弁座押え、14…フロー
ト、15…弁押え、16…弁、17…弁座、19…フィ
ルタ、20…フロート室、21…溝、22…圧力容器。DESCRIPTION OF SYMBOLS 1 ... Upper lid, 2 ... Air passage hole, 8 ... Spring, 9 ... Valve chamber, 11 ...
Exhaust port, 12 ... Valve chamber lid, 13 ... Valve seat retainer, 14 ... Float, 15 ... Valve retainer, 16 ... Valve, 17 ... Valve seat, 19 ... Filter, 20 ... Float chamber, 21 ... Groove, 22 ... Pressure vessel ..
Claims (2)
容器内部からの空気を抜き出す空気抜弁において、ばね
(8)を介して軸方向に摺動可能に設けられた弁押え
(15)と、該弁押え内部に形成された円錐状のフロー
ト室(20)と、該フロート室に嵌合されてオリフィス
を形成するフロート(14)と、前記弁押えの上部で支
持された球状の弁(16)とを有してなる自動空気抜
弁。1. A valve retainer (15), which is provided in a lid portion of a container to which a liquid is supplied and which extracts air from the inside of the container, is provided slidably in an axial direction via a spring (8). A conical float chamber (20) formed inside the valve retainer, a float (14) fitted into the float chamber to form an orifice, and a spherical valve supported above the valve retainer. (16) An automatic air vent valve comprising:
容器内部からの空気を抜き出す空気抜弁において、ばね
(8)を介して軸方向に摺動可能に設けられた弁押え
(15)と、該弁押え内部に形成された円錐状のフロー
ト室(20)と、該フロート室に嵌合されてオリフィス
を形成するフロート(14)と、前記弁押え上部の穴に
嵌入され流体用流路を有し上部絞り部より頭部が露出し
た球状の弁(16)とを有してなる自動空気抜弁。2. A valve retainer (15) provided axially slidably via a spring (8) in an air vent valve provided in a lid portion of a container to which liquid is supplied to extract air from the inside of the container. A conical float chamber (20) formed inside the valve retainer, a float (14) fitted into the float chamber to form an orifice, and a fluid flow port fitted into a hole in the upper portion of the valve retainer. An automatic air bleeding valve having a spherical valve (16) having a passage and a head exposed from the upper throttle portion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2565392 | 1992-01-16 | ||
JP4-25653 | 1992-01-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05256372A true JPH05256372A (en) | 1993-10-05 |
JP2934560B2 JP2934560B2 (en) | 1999-08-16 |
Family
ID=12171781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33800892A Expired - Lifetime JP2934560B2 (en) | 1992-01-16 | 1992-11-25 | Automatic air vent valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2934560B2 (en) |
-
1992
- 1992-11-25 JP JP33800892A patent/JP2934560B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2934560B2 (en) | 1999-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10508631B2 (en) | Automated water drain system | |
CA1049885A (en) | Fast acting two-way valve | |
US5983919A (en) | Automatic drain valve | |
US9791104B2 (en) | Float type drain trap | |
KR101824456B1 (en) | Liquid Automatic drain | |
EP0300910B1 (en) | Device for filtering and gas-bleeding a supply fuel for an internal-combustion engine | |
US5626163A (en) | Auto-drain unit | |
JPH05256372A (en) | Automatic air vent valve | |
US3168105A (en) | Level control valve | |
US5014735A (en) | Automatic drain valve | |
US4163456A (en) | Air release valve | |
EP1130308A2 (en) | Improvements in or relating to pneumatic systems | |
JPH04370478A (en) | Air valve | |
JP2704973B2 (en) | Air valve | |
JP2554182Y2 (en) | Auto drain device in air filter | |
JP2624587B2 (en) | Drain discharge device | |
AU645795B2 (en) | An automatic drain valve | |
JP2700733B2 (en) | Air valve with cleaning device | |
US2944630A (en) | Air line filter and automatic drain valve | |
JPS5813800B2 (en) | automatic drainer | |
JPS6218790B2 (en) | ||
JP2533205B2 (en) | Air valve | |
JPH0828789A (en) | Autodrainage | |
JPH02240468A (en) | Exhaust valve | |
JPH04253685A (en) | Method and device for controlling discharge from flowable material tank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990511 |