JPH05255472A - Expanded insulator - Google Patents

Expanded insulator

Info

Publication number
JPH05255472A
JPH05255472A JP4054947A JP5494792A JPH05255472A JP H05255472 A JPH05255472 A JP H05255472A JP 4054947 A JP4054947 A JP 4054947A JP 5494792 A JP5494792 A JP 5494792A JP H05255472 A JPH05255472 A JP H05255472A
Authority
JP
Japan
Prior art keywords
foam
heat insulating
boiling point
foaming
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4054947A
Other languages
Japanese (ja)
Inventor
Hideo Nakamoto
英夫 中元
Tomonao Amayoshi
智尚 天良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP4054947A priority Critical patent/JPH05255472A/en
Publication of JPH05255472A publication Critical patent/JPH05255472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refrigerator Housings (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

PURPOSE:To contribute to settlement of the environmental problem of ozone layer destruction by improving each solubility of a low-boiling foaming agent composed of an HCFC or an HFC and a polyol component, as its result, e.g. reducing the thermal conductivity of a foam and securing the product quality in relation to an expanded insulator and an insulating box body of a refrigerator, a freezer, etc. CONSTITUTION:Addition polymerization between an organic polyisocyanate and ethylene oxide or propylene oxide is carried out in the presence of a diol or a triol as an initiator to synthesize a polyether polyol. A polyol component containing the resultant polyether polyol in an amount of at least 5 to 30wt.%, a foam stabilizer, a catalyst and an HCFC or an HFC having a low boiling point of >=-50 deg.C and <=0 deg.C are mixed and agitated so as to generate foam. Thereby, the objective expanded insulator is obtained. A heat-insulating box body in which the above-mentioned expanded insulator is packed between the inner box and the outer box can be obtained by carrying out the foaming process in the space between both the inner and outer boxes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷蔵庫、冷凍庫等に用
いる発泡断熱材および発泡断熱材を充填して成る断熱箱
体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foam insulation material used in refrigerators, freezers and the like and a heat insulation box body filled with the foam insulation material.

【0002】[0002]

【従来の技術】近年、クロロフルオロカ−ボン(以下C
FCと称する)の影響によるオゾン層破壊および地球温
暖化等の環境問題が注目されており、代表的な発泡断熱
材である硬質ウレタンフォ−ムの製造にあたっては、C
FCの使用量の削減を目的として、有機ポリイソシアネ
−トと水との反応によって得られる炭酸ガスを発泡剤の
一部として用いる方法や、CFCの代替物質であり、オ
ゾン破壊に対する影響の少ない2,2-ジクロロ-1,1,1-ト
リフルオロエタンおよび1,1-ジクロロ-1-フルオロエタ
ンによる発泡等、種々の改善取り組みが検討されてい
る。
2. Description of the Related Art In recent years, chlorofluorocarbons (hereinafter referred to as C
Environmental problems such as ozone layer depletion and global warming due to the influence of FC) have been attracting attention, and in manufacturing a rigid urethane foam, which is a typical foam insulation material, C
For the purpose of reducing the amount of FC used, a method of using carbon dioxide gas obtained by the reaction of organic polyisocyanate and water as a part of a foaming agent, or an alternative substance of CFC, which has little influence on ozone destruction 2, Various improvement measures such as foaming with 2-dichloro-1,1,1-trifluoroethane and 1,1-dichloro-1-fluoroethane are being studied.

【0003】従来、発泡体製造にあたっては、沸点が常
温付近のトリクロロフルオロエタン(以下CFC11と
称する)による発泡や低沸点の発泡剤であるジクロロジ
フルオロメタン(以下CFC12と称する)を使用した
フロス法などが用いられてきた。CFC12のような低
沸点化合物を発泡剤の一部に用いることにより、発泡原
料液が発泡機のノズルからクリ−ム状に吐出される。従
って、原料液の流れは小さいが、気泡形状が球形に近
く、また、気泡内に閉じ込められたガスの内圧が高くな
り、低温寸法安定性に優れた発泡体が得られるという特
徴を有する。
Conventionally, in the production of foams, foaming with trichlorofluoroethane (hereinafter referred to as CFC11) having a boiling point near room temperature or a floss method using dichlorodifluoromethane (hereinafter referred to as CFC12) which is a low boiling point foaming agent, etc. Has been used. By using a low boiling point compound such as CFC12 as a part of the foaming agent, the foaming raw material liquid is discharged in a cream shape from the nozzle of the foaming machine. Therefore, although the flow of the raw material liquid is small, the shape of the bubbles is close to a sphere, and the internal pressure of the gas trapped in the bubbles is high, so that a foam having excellent low-temperature dimensional stability can be obtained.

【0004】例えば、特開昭59−38240号公報
は、低沸点の発泡剤として、1-クロロ-2,2,2-トリフル
オロエタン、モノブロムモノクロロジフルオロメタン、
トランス-1-クロロ-2-フルオロエチレンのいずれか1種
以上の化合物を全発泡剤に対して2〜50重量%を混合
したものを使用し、発泡断熱材を生成することが特徴と
なっている。
For example, JP-A-59-38240 discloses low-boiling point blowing agents such as 1-chloro-2,2,2-trifluoroethane, monobrom monochlorodifluoromethane,
It is characterized by using a mixture of at least one compound of trans-1-chloro-2-fluoroethylene in an amount of 2 to 50% by weight with respect to the total foaming agent to produce a foam insulation material. There is.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開昭
59−38240号公報においても触れられているよう
に、上記低沸点発泡剤を単独あるいは50重量%を越え
て多量に用いた場合によるフロス発泡では、発泡体内部
に多数のフロスボイドが発生しやすく、気泡が不均一と
なると共に、独立気泡率が悪化し、発泡体の熱伝導率を
悪化させる欠点を有する。これらのフロスボイドや気泡
連通化の要因としては、低沸点発泡剤と一般に硬質ウレ
タンフォ−ムの原料として用いられるポリエ−テルポリ
オ−ルとの相溶性に限界があり、一定の水準を越えた場
合、原料に溶け込んだ低沸点発泡剤を保持することがで
きず、吐出された瞬間に突沸現象が起こり混合不良や気
泡の合一化などが発生するものと考えられている。
However, as mentioned in Japanese Patent Application Laid-Open No. 59-38240, the foaming of froth caused by using the low boiling point foaming agent alone or in a large amount exceeding 50% by weight. In the above, there are drawbacks that a large number of froth voids are likely to occur inside the foam, the cells become non-uniform, the closed cell ratio deteriorates, and the thermal conductivity of the foam deteriorates. As a factor of these froth voids and cell communication, there is a limit to the compatibility between the low boiling point blowing agent and the polyetherpolyol generally used as a raw material for a rigid urethane foam, and when the amount exceeds a certain level, It is considered that the low boiling point foaming agent dissolved in the raw material cannot be retained and a bumping phenomenon occurs at the moment of discharge, resulting in poor mixing and coalescence of bubbles.

【0006】このため、フロスボイドや気泡連通化を防
ぐための手段としては、特開昭59−38240号公報
に示すように、沸点が常温近辺の発泡剤であるCFC1
1との混合や水とイソシアネ−トとの反応により発生す
る炭酸ガスなどを用いて補助的に発泡する方法がある
が、地球環境問題の解決、省エネルギ−化の観点から、
オゾン層破壊、地球温暖化に対して影響の少ない低沸点
のハイドロクロロフルオロカ−ボン(以下、HCFCと
称する)やハイドロフルオロカ−ボン(以下、HFCと
称する)などの発泡剤を従来の高圧発泡機設備を大幅に
変更することなく適用でき、フロスボイド等の問題もな
い高性能の発泡断熱材を製造することが課題であった。
For this reason, as a means for preventing froth voids and communication of bubbles, as shown in JP-A-59-38240, CFC1, which is a foaming agent having a boiling point near room temperature, is used.
There is a method of auxiliary foaming using carbon dioxide gas generated by mixing with 1 or reaction of water and isocyanate, but from the viewpoint of solving global environmental problems and saving energy,
Low boiling point hydrochlorofluorocarbons (hereinafter referred to as HCFCs) and hydrofluorocarbons (hereinafter referred to as HFCs), which have little effect on ozone layer depletion and global warming, are added to conventional high-pressure blowing agents. The problem was to manufacture a high-performance foam insulation material that can be applied without major changes to the foaming machine equipment and that does not have the problem of froth voids.

【0007】本発明は、上記課題を鑑み、地球環境問題
に対して影響の少ない低沸点のHCFCやHFCなど発
泡剤を用いた場合においてもフロスボイドや気泡連通化
といった問題のない優れた発泡断熱材を提供することを
目的とするものである。
In view of the above-mentioned problems, the present invention is an excellent foam insulation material which does not have the problem of froth voids or cell communication even when a foaming agent such as HCFC or HFC having a low boiling point which has little influence on global environmental problems is used. It is intended to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するために、有機ポリイソシアネ−トと、ジオ−ルま
たはトリオ−ルを開始剤としてエチレンオキサイドまた
はプロピレンオキサイドを付加重合してなる水酸基価5
00〜1000mgKOH/gのポリエ−テルポリオ−ルを少
なくとも5〜25%含有するポリオ−ル成分と、整泡剤
と、触媒と、沸点が−50℃以上0℃以下のHCFCを
少なくとも一成分とする発泡剤とを混合撹拌し、発泡断
熱材を得るものである。
In order to solve the above-mentioned problems, the present invention provides a hydroxyl group obtained by addition-polymerizing an organic polyisocyanate and ethylene oxide or propylene oxide by using diol or triol as an initiator. Value 5
At least one component is a polyol component containing at least 5 to 25% of polyether polyol of 0 to 1000 mg KOH / g, a foam stabilizer, a catalyst, and HCFC having a boiling point of -50 ° C or higher and 0 ° C or lower. A foaming agent is obtained by mixing and stirring with a foaming agent.

【0009】さらに本発明は、有機ポリイソシアネ−ト
と、ジオ−ルまたはトリオ−ルを開始剤としてエチレン
オキサイドまたはプロピレンオキサイドを付加重合して
なる水酸基価500〜1000mgKOH/gのポリエ−テル
ポリオ−ルを少なくとも5〜30%含有するポリオ−ル
成分と、整泡剤と、触媒と、沸点が−50℃以上0℃以
下のHFCを少なくとも一成分とする発泡剤とを混合撹
拌し、発泡断熱材を得るものである。
Further, the present invention provides an organic polyisocyanate and a polyether polyol having a hydroxyl value of 500 to 1000 mgKOH / g, which is obtained by addition-polymerizing ethylene oxide or propylene oxide using diol or triol as an initiator. A foam component containing at least 5 to 30% of a polyol component, a foam stabilizer, a catalyst, and a foaming agent containing HFC having a boiling point of -50 ° C or higher and 0 ° C or lower as at least one component are mixed and stirred to form a foamed heat insulating material. I will get it.

【0010】また、前記発泡断熱材を内箱と、外箱とに
よって構成される空間部に発泡充填し、断熱箱体を得る
のである。
Further, the foamed heat insulating material is foamed and filled in a space portion constituted by an inner box and an outer box to obtain a heat insulating box body.

【0011】[0011]

【作用】上記構成によって、ジオ−ルまたはトリオ−ル
を開始剤としてエチレンオキサイドまたはプロピレンオ
キサイドを付加重合してなるポリエ−テルポリオ−ルと
HCFCまたはHFCから成る低沸点発泡剤との相溶性
が極めて良好であるため、低沸点発泡剤との溶解性が著
しく悪い一般的な硬質ウレタンフォ−ム用ポリエ−テル
ポリオ−ルに対してもジオ−ルまたはトリオ−ルを開始
剤するポリオ−ルをブレンドすることによりポリオ−ル
成分全体としてHCFCまたはHFCからなる低沸点発
泡剤との溶解性が向上し、均一な発泡挙動により均質微
細な気泡構造を生成し、フロスボイドや気泡連通化のな
い優れた発泡断熱材を生成することができるものであ
る。
With the above structure, the compatibility of the polyether polyol obtained by addition polymerization of ethylene oxide or propylene oxide with diol or triol as an initiator and the low boiling point blowing agent of HCFC or HFC is extremely high. Since it is good, it is blended with a polyol starting with a diol or a triol even for a general hard polyether foam polyether polyol for which the solubility with a low boiling point foaming agent is remarkably poor. By doing so, the solubility of the entire polyol component with a low boiling point blowing agent composed of HCFC or HFC is improved, a uniform fine bubble structure is generated due to uniform foaming behavior, and excellent foaming without froth voids or bubble communication. It is capable of producing a heat insulating material.

【0012】さらに、HFCはオゾン破壊係数が0であ
り、単独ではオゾン破壊に対して全く影響がないだけで
なく、若干のオゾン破壊に対して影響のあるHCFCと
の混合系においてもオゾン破壊に対して有効な発泡断熱
材を生成することができるものである。
Furthermore, HFC has an ozone depletion coefficient of 0, and not only does it have no effect on ozone depletion alone, but it also causes ozone depletion even in a mixed system with HCFC, which has some effect on ozone depletion. On the other hand, it is possible to produce an effective foam insulation material.

【0013】また、前記発泡断熱材を充填し、断熱箱体
を形成することにより、ボイド発生部分での発汗、断熱
性能の悪化などの問題もなく、優れた断熱箱体としての
品質を確保できるものである。
Further, by filling the foamed heat insulating material to form a heat insulating box, it is possible to secure excellent quality as a heat insulating box without problems such as sweating at a void generation portion and deterioration of heat insulating performance. It is a thing.

【0014】なお、HCFC発泡剤としては、クロロジ
フルオロメタン(以下、HCFC22と称する)、モノ
クロロ-1,1,1,2-テトラフルオロエタン、1-クロロ-1,1-
ジフルオロエタンなどが使用できる。また、HFC発泡
剤としては、1,1,1,2-ペンタフルオロエタン(以下、H
FC134aと称する)、1,1,1,2,2,-ペンタフルオロ
エタン、1,1-ジフルオロエタンなどが使用できる。
As the HCFC foaming agent, chlorodifluoromethane (hereinafter referred to as HCFC22), monochloro-1,1,1,2-tetrafluoroethane, 1-chloro-1,1-
Difluoroethane or the like can be used. Further, as the HFC foaming agent, 1,1,1,2-pentafluoroethane (hereinafter referred to as HFC
FC134a), 1,1,1,2,2, -pentafluoroethane, 1,1-difluoroethane and the like can be used.

【0015】[0015]

【実施例】以下、実施例を挙げて本発明の発泡断熱材を
説明する。
EXAMPLES Hereinafter, the foamed heat insulating material of the present invention will be described with reference to examples.

【0016】ポリオ−ルAは、芳香族アミン系ポリエ−
テルポリオ−ルで水酸基価460mgKOH/g、ポリオ−ル
Bは、グリセリンを開始剤としてプロピレンオキサイド
を付加重合してなる水酸基価800mgKOH/gのポリエ−
テルポリオ−ル、触媒は、花王(株)製カオライザ−No.
1、整泡剤は、信越化学(株)製シリコ−ン系界面活性剤
F−335、発泡剤は、水、HCFC22およびHFC
134aであり、各原料を所定の配合部数で混合し、プ
レミックス成分として構成する。一方、イソシアネ−ト
成分は、アミン当量135のクル−ドMDIから成る有
機ポリイソシアネ−トである。
Polyol A is an aromatic amine-based polyester.
Terpolyol has a hydroxyl value of 460 mgKOH / g, and Polyol B is a polyester having a hydroxyl value of 800 mgKOH / g formed by addition-polymerizing propylene oxide with glycerin as an initiator.
Terpolyol and catalyst are Kaolyzer No. manufactured by Kao Corporation.
1. The foam stabilizer is a silicone surfactant F-335 manufactured by Shin-Etsu Chemical Co., Ltd., and the foaming agents are water, HCFC22 and HFC.
134a, each raw material is mixed in a predetermined mixing number to form a premix component. On the other hand, the isocyanate component is an organic polyisocyanate composed of a crude MDI having an amine equivalent of 135.

【0017】このように調合したプレミックス成分とイ
ソシアネ−ト成分とを所定の配合部数で混合し、高圧発
泡機にて発泡、内箱と外箱からなる箱体内部に充填し、
断熱箱体を得た。このときの発泡剤の溶解性を評価する
ためにプレミックスを充填したタンクの圧力、フロスボ
イド発生の有無、独立気泡率、熱伝導率、平均気泡径を
(表1)に示した。
The premix component thus prepared and the isocyanate component are mixed in a predetermined mixing number, foamed by a high-pressure foaming machine, and filled inside a box consisting of an inner box and an outer box,
An insulated box was obtained. In order to evaluate the solubility of the foaming agent at this time, the pressure of the tank filled with the premix, the presence or absence of froth voids, the closed cell rate, the thermal conductivity, and the average cell diameter are shown in (Table 1).

【0018】なお、同時に比較例としてグリセリンを開
始剤としてプロピレンオキサイドを付加重合してなる水
酸基価800mgKOH/gのポリオ−ルBを添加しない場合
(比較例A)とポリオ−ルBをポリオ−ル成分全体に対
して35%含む場合(比較例B)を同時に(表1)に示
した。
At the same time, as a comparative example, a case where a polyol B having a hydroxyl value of 800 mgKOH / g formed by addition polymerization of propylene oxide with glycerin as an initiator was not added (Comparative example A) and a polyol B was used as a polyol. The case of containing 35% of all the components (Comparative Example B) is shown at the same time (Table 1).

【0019】[0019]

【表1】 [Table 1]

【0020】このように本発明の発泡断熱材は、オゾン
破壊に対して問題の少ない低沸点発泡剤であるHCFC
22およびHFC134aを用いた場合においても、プ
レミックスに対して安定的に溶解し、従来の高圧発泡機
においても容易に発泡可能な原料システムが得られると
共に、均一な発泡挙動によって微細均質な気泡構造が得
られ、独立気泡率も高く優れた発泡断熱材が得られるこ
とが判った。このメカニズムの詳細については不明であ
るが、グリセリンを開始剤とするポリエ−テルポリオ−
ルの分子構造中のエ−テル結合がHCFCあるいはHF
Cに対して強い親和性を有するため、優れた溶解性を示
し、これをポリオ−ル成分の一部として用いることでポ
リオ−ル成分全体の溶解性を改良するものと考えられ
る。この結果、ポリオ−ルに溶解したHCFCあるいは
HFCは均一に発泡し、低沸点発泡剤の突沸が原因とな
るフロスボイドや破泡現象もなく断熱性においても優れ
た物性の発泡断熱材が得られるものである。
As described above, the foamed heat insulating material of the present invention is HCFC which is a low boiling point foaming agent with less problems against ozone destruction.
No. 22 and HFC134a are used, a raw material system that can be stably dissolved in a premix and can be easily foamed even in a conventional high-pressure foaming machine, and a uniform foaming behavior gives a fine and homogeneous cell structure. It was found that an excellent foamed heat insulating material having a high closed cell ratio was obtained. Although the details of this mechanism are unknown, it is possible to use glycerol-initiated polyester
The ether bond in the molecular structure of the polymer is HCFC or HF.
Since it has a strong affinity for C, it exhibits excellent solubility, and it is considered that the solubility of the entire polyol component is improved by using this as a part of the polyol component. As a result, the HCFC or HFC dissolved in the polyol is uniformly foamed, and there is no froth void or bubble breaking phenomenon caused by the bumping of the low boiling point foaming agent, and a foamed heat insulating material having excellent heat insulating properties can be obtained. Is.

【0021】このように本発明の発泡断熱材は、オゾン
破壊係数が小さい低沸点のHCFCあるいはHFCを発
泡剤として用いることで、オゾン層破壊等の環境問題の
解決に寄与すると共に、ジオ−ルまたはトリオ−ルを開
始剤とするポリエ−テルポリオ−ルをポリオ−ル成分の
一部として用いることにより原料溶解性改善が図れ、従
来発泡剤の溶解性が著しく悪いため適用できなかった種
々の高断熱原料の選択が可能となり優れた断熱性能によ
る省エネルギ−化による品質向上などに貢献できるもの
である。
As described above, the foamed heat insulating material of the present invention uses low boiling point HCFC or HFC having a small ozone depletion coefficient as a foaming agent, thereby contributing to solving environmental problems such as ozone layer depletion and diole. Alternatively, by using a polyether polyol having a triol as an initiator as a part of the polyol component, it is possible to improve the solubility of the raw material, and the solubility of the conventional foaming agent is remarkably poor. It is possible to select a heat insulating material, which contributes to quality improvement by energy saving due to excellent heat insulating performance.

【0022】さらに、オゾン破壊係数が0であるHFC
を用いることで地球環境問題に対して有効な発泡断熱材
を生成することができるものである。
Furthermore, an HFC having an ozone depletion potential of 0
By using, it is possible to produce an effective foam insulation material against global environmental problems.

【0023】また、前記発泡断熱材を充填した断熱箱体
は、ボイド発生部分での発汗や断熱性能の悪化などの問
題もなく、優れた断熱箱体としての品質を確保できるも
のである。
The heat-insulating box body filled with the foamed heat-insulating material can ensure excellent quality as a heat-insulating box body without problems such as perspiration at the void generation portion and deterioration of heat insulation performance.

【0024】なお、比較例においてグリセリンを開始剤
とするポリエ−テルポリオ−ルを添加しない場合(比較
例A)では、低沸点発泡剤を十分に溶解させることがで
きず、混合したポリオ−ル成分の圧力が上昇し、吐出時
に突沸が生じ、不均一な混合となりフロスボイドの発生
や破泡等により発泡体を形成することができなかった。
In the comparative example, when the polyether polyol having glycerin as an initiator was not added (Comparative Example A), the low-boiling foaming agent could not be sufficiently dissolved, and the mixed polyol component was used. The pressure increased, and bumping occurred at the time of discharge, resulting in non-uniform mixing, and it was not possible to form a foam due to the generation of froth voids, bubble breakage, and the like.

【0025】また、ポリオ−ル成分全体に対してグリセ
リンを開始剤とするポリエ−テルポリオ−ルを35%添
加した場合(比較例B)では、低沸点発泡剤を十分に溶
解させることができるが、ポリオ−ル成分の組成上の特
徴から独立気泡率が低下し、断熱性能が著しく悪化する
結果となった。
Further, when 35% of polyetherpolyol having glycerin as an initiator is added to the whole polyol component (Comparative Example B), the low boiling point blowing agent can be sufficiently dissolved. However, due to the compositional characteristics of the polyol component, the closed cell ratio was lowered, and the heat insulating performance was significantly deteriorated.

【0026】[0026]

【発明の効果】以上のように本発明は、有機ポリイソシ
アネ−トと、ジオ−ルまたはトリオ−ルを開始剤として
エチレンオキサイドまたはプロピレンオキサイドを付加
重合してなる水酸基価500〜1000mgKOH/gのポリ
エ−テルポリオ−ルを少なくとも5〜25%含有するポ
リオ−ル成分と、整泡剤と、触媒と、沸点が−50℃以
上0℃以下のHCFCまたはHFCを少なくとも一成分
とする発泡剤とを混合撹拌し、発泡断熱材を生成してい
るため、HCFCあるいはHFCから成る低沸点発泡剤
とポリオ−ル成分との相溶性を改善することができ、均
一な発泡挙動により均質微細な気泡構造が生成でき熱伝
導率においても優れた物性を有する発泡断熱材が提供で
きるものである。特に、熱伝導率低減に対して有効であ
るが低沸点発泡剤との溶解性が著しく悪い一般的な硬質
ウレタンフォ−ム用ポリエ−テルポリオ−ルを使用する
ことができ、物性改良は著しく効果を発揮することがで
きるものである。
INDUSTRIAL APPLICABILITY As described above, the present invention provides a polymer having a hydroxyl value of 500 to 1000 mgKOH / g, which is obtained by addition-polymerizing an organic polyisocyanate with ethylene oxide or propylene oxide using diol or triol as an initiator. -A polyol component containing at least 5 to 25% of terpolyol, a foam stabilizer, a catalyst, and a blowing agent containing HCFC or HFC having a boiling point of -50 ° C or higher and 0 ° C or lower as at least one component. Since the foam insulation material is generated by stirring, it is possible to improve the compatibility between the low boiling point foaming agent composed of HCFC or HFC and the polyol component, and a uniform fine cell structure is generated by the uniform foaming behavior. It is possible to provide a foamed heat insulating material having excellent physical properties in terms of thermal conductivity. In particular, it is possible to use a general hard polyurethane foam polyether polyol which is effective in reducing the thermal conductivity but has a significantly poor solubility with a low boiling point foaming agent, and the physical properties are remarkably improved. Is something that can be demonstrated.

【0027】さらに、HFCはオゾン破壊係数が0であ
り、単独ではオゾン破壊に対して全く影響がないだけで
なく、若干のオゾン破壊に対して影響のあるHCFCと
の混合系においてもオゾン破壊に対して有効な発泡断熱
材を生成することができるものである。
Furthermore, HFC has an ozone depletion coefficient of 0, and not only does it have no effect on ozone depletion alone, but it also causes ozone depletion in a mixed system with HCFC, which has some effect on ozone depletion. On the other hand, it is possible to produce an effective foam insulation material.

【0028】また、前記発泡断熱材を充填し、断熱箱体
を形成することにより、ボイド部分での発汗や断熱性能
の悪化などの問題もなく、優れた断熱箱体としての品質
が確保できるものであり、これによって、CFCによる
オゾン層破壊などの地球環境問題の解決に対しても寄与
することができるものである。
Further, by filling the foamed heat insulating material to form a heat-insulating box, there is no problem of sweating in the void portion or deterioration of heat-insulating performance, and the quality as an excellent heat-insulating box can be secured. This also contributes to the solution of global environmental problems such as ozone layer depletion due to CFC.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 75:00 105:04 B29L 22:00 4F 31:18 4F C08L 75:04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // B29K 75:00 105: 04 B29L 22:00 4F 31:18 4F C08L 75:04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機ポリイソシアネ−トと、ジオ−ルま
たはトリオ−ルを開始剤としてエチレンオキサイドまた
はプロピレンオキサイドを付加重合してなる水酸基価5
00〜1000mgKOH/gのポリエ−テルポリオ−ルを少
なくとも5〜25%含有するポリオ−ル成分と、整泡剤
と、触媒と、沸点が−50℃以上0℃以下のハイドロク
ロロフルオロカ−ボンを少なくとも一成分とする発泡剤
とを混合撹拌し、発泡生成した発泡断熱材。
1. A hydroxyl value of 5 formed by addition-polymerizing an organic polyisocyanate with ethylene oxide or propylene oxide using diol or triol as an initiator.
A polyol component containing at least 5 to 25% of polyether polyol of 0 to 1000 mg KOH / g, a foam stabilizer, a catalyst, and hydrochlorofluorocarbon having a boiling point of -50 ° C to 0 ° C. A foamed heat insulating material produced by foaming by mixing and stirring at least one foaming agent.
【請求項2】 有機ポリイソシアネ−トと、ジオ−ルま
たはトリオ−ルを開始剤としてエチレンオキサイドまた
はプロピレンオキサイドを付加重合してなる水酸基価5
00〜1000mgKOH/gのポリエ−テルポリオ−ルを少
なくとも5〜30%含有するポリオ−ル成分と、整泡剤
と、触媒と、沸点が−50℃以上0℃以下のハイドロフ
ルオロカ−ボンを少なくとも一成分とする発泡剤とを混
合撹拌し、発泡生成した発泡断熱材。
2. A hydroxyl value of 5 obtained by addition-polymerizing an organic polyisocyanate with ethylene oxide or propylene oxide using diol or triol as an initiator.
At least a polyol component containing at least 5 to 30% of polyether polyol of 0 to 1000 mg KOH / g, a foam stabilizer, a catalyst, and hydrofluorocarbon having a boiling point of -50 ° C to 0 ° C. A foamed heat insulating material produced by foaming by mixing and stirring a foaming agent as one component.
【請求項3】 外箱と、内箱と、前記外箱および内箱に
よって形成される空間部に発泡充填した請求項1記載の
発泡断熱材とから成る断熱箱体。
3. A heat insulation box body comprising an outer box, an inner box, and the foamed heat insulating material according to claim 1, which is foam-filled in a space formed by the outer box and the inner box.
【請求項4】 外箱と、内箱と、前記外箱および内箱に
よって形成される空間部に発泡充填した請求項2記載の
発泡断熱材とから成る断熱箱体。
4. A heat insulating box body comprising an outer box, an inner box, and the foamed heat insulating material according to claim 2, wherein a space formed by the outer box and the inner box is foam-filled.
JP4054947A 1992-03-13 1992-03-13 Expanded insulator Pending JPH05255472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4054947A JPH05255472A (en) 1992-03-13 1992-03-13 Expanded insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4054947A JPH05255472A (en) 1992-03-13 1992-03-13 Expanded insulator

Publications (1)

Publication Number Publication Date
JPH05255472A true JPH05255472A (en) 1993-10-05

Family

ID=12984855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4054947A Pending JPH05255472A (en) 1992-03-13 1992-03-13 Expanded insulator

Country Status (1)

Country Link
JP (1) JPH05255472A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464879A (en) * 1992-12-31 1995-11-07 Basf Corporation 1,1,1,2-tetrafluoroethane as a blowing agent in integral skin polyurethane shoe soles
US5506275A (en) * 1995-05-15 1996-04-09 Basf Corporation 1,1,1,2-tetrafluoroethane as a blowing agent in integral skin polyurethane shoe soles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464879A (en) * 1992-12-31 1995-11-07 Basf Corporation 1,1,1,2-tetrafluoroethane as a blowing agent in integral skin polyurethane shoe soles
US5661190A (en) * 1992-12-31 1997-08-26 Basf Corporation 1,1,1,2-tetrafluoroethane as a blowing agent in integral skin polyurethane shoe soles
US5506275A (en) * 1995-05-15 1996-04-09 Basf Corporation 1,1,1,2-tetrafluoroethane as a blowing agent in integral skin polyurethane shoe soles

Similar Documents

Publication Publication Date Title
EP2129713B1 (en) Blowing agent composition of hydrochlorofluoroolefin and hydrofluoroolefin, and process of forming thermosetting foam
JP6033273B2 (en) Foam-forming composition containing an azeotropic or azeotrope-like mixture containing Z-1,1,1,4,4,4-hexafluoro-2-butene and its use in the production of polyisocyanate-based foams
KR101519772B1 (en) Methods for making foams using blowing agents comprising unsaturated fluorocarbons
JP2015071780A (en) Compositions and use of cis-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in preparation of polyisocyanate-based foams
JPH08509512A (en) Method for producing rigid polyurethane foam
JP2011530646A (en) Foam-forming composition containing a mixture of 2-chloro-3,3,3-trifluoropropene and hydrocarbon and its use in the production of polyisocyanate based foam
CA1323138C (en) Closed-cell polyurethane foam compositions
MXPA97007792A (en) Rigid foams with better insulation properties and a procedure for the production of these espu
JPH05279653A (en) Application of (rerfluoroalkyl) ethylene as blowing agent and/or heat insulation gas for polymer foam
JPH05255472A (en) Expanded insulator
JPH02123119A (en) Formed heat insulating material
JPH0687972A (en) Expanded heat insulating material and heat insulating box body
JPH06145405A (en) Expanded thermal insulating material and thermal insulating box
JPH05125212A (en) Foamed thermal insulator and thermal insulation box obtained by packing foamed thermal insulator
JPH05186628A (en) Foamed insulation material and insulation box filled therewith
KR0185151B1 (en) Method of preparing polyurethane foam
JPH11349659A (en) Production of rigid foamed synthetic resin
JPH07309925A (en) Thermal insulation foam and thermally insulated box
JPH07292149A (en) Foamed heat-insulating material and heat-insulating box body
JPH09302130A (en) Foamed heat-insulation material and heat-insulation box filled with the foamed heat-insulation material
JPH0790101A (en) Thermally insulating foam and thermally insulated box
JPH0797422A (en) Expanded heat-insulation material and heat-insulation box
JP2004359891A (en) Production method for rigid polyurethane foam
JPH0517614A (en) Rigid polyurethane foam
JP3350150B2 (en) Foam insulation and insulation box