JPH05255439A - Method for controlling reaction in polymerization reactor for olefin - Google Patents

Method for controlling reaction in polymerization reactor for olefin

Info

Publication number
JPH05255439A
JPH05255439A JP5542892A JP5542892A JPH05255439A JP H05255439 A JPH05255439 A JP H05255439A JP 5542892 A JP5542892 A JP 5542892A JP 5542892 A JP5542892 A JP 5542892A JP H05255439 A JPH05255439 A JP H05255439A
Authority
JP
Japan
Prior art keywords
pressure
olefin
comonomer
reactor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5542892A
Other languages
Japanese (ja)
Inventor
Fumio Goto
文夫 後藤
Masato Takeda
真人 武田
Yoshiyuki Yoneyama
宜志 米山
Iori Hashimoto
伊織 橋本
Masahiro Oshima
正裕 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP5542892A priority Critical patent/JPH05255439A/en
Publication of JPH05255439A publication Critical patent/JPH05255439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a method for controlling reaction so as to provide a polymer of desired quality without deteriorating the production efficiency in regard to the occurrence of disturbance or a change in polymerizing conditions in a polymerization reactor for an olefin. CONSTITUTION:The objective method for controlling reaction comprises regulating the feed of a monomer, a comonomer and a molecular weight modifier by the same controlling system so that the pressure and composition may be desired values in a polymerization reactor for an olefin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオレフィン重合反応器の
生産効率を高く維持しつつ安定的に制御する方法に関す
る。具体的には触媒を使用してオレフィンを重合するに
当り、重合条件特に反応器内の圧力と水素、コモノマー
の組成を安定化することにより、均質なポリオレフィン
を、また重合条件を迅速に変更することですみやかに所
望のポリオレフィンを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stably controlling production efficiency of an olefin polymerization reactor while maintaining high production efficiency. Specifically, when polymerizing olefins using a catalyst, by stabilizing the polymerization conditions, especially the pressure in the reactor and the composition of hydrogen and comonomer, a homogeneous polyolefin can be rapidly changed and the polymerization conditions can be rapidly changed. In particular, it relates to a method for promptly producing a desired polyolefin.

【0002】[0002]

【従来の技術】従来の制御方法は組成と圧力を各々独自
に調節しているため、外乱発生あるいは重合条件変更に
際し精密かつ安定に制御することができない。
2. Description of the Related Art In the conventional control method, since composition and pressure are independently adjusted, it is impossible to control precisely and stably when disturbance is generated or polymerization conditions are changed.

【0003】例えば、図1に示すように圧力をモノマー
供給量で水素濃度を水素供給量で、そしてコモノマー濃
度をコモノマー供給量で各々単独で制御して、圧力、水
素濃度、コモノマー濃度を所望の値に調節する場合にあ
っては、モノマー供給量の変化は水素濃度、コモノマー
濃度に変化をもたらす。その結果水素濃度、コモノマー
濃度を一定とするように、水素濃度調節計及びコモノマ
ー濃度調節計が働き、水素供給量、コモノマー供給量が
変化する。この供給量変化は、当然圧力の変化をもたら
すので圧力調節計が働き、モノマー供給量に変化をもた
らすことになる。そしてこのモノマー供給量変化は水素
濃度、コモノマー濃度に対し再び変化をもたらす。
For example, as shown in FIG. 1, the pressure, the hydrogen concentration, and the comonomer concentration are controlled by controlling the pressure, the hydrogen concentration, and the comonomer concentration, respectively. In the case of adjusting the value, the change in the monomer supply amount causes a change in the hydrogen concentration and the comonomer concentration. As a result, the hydrogen concentration controller and the comonomer concentration controller operate so that the hydrogen concentration and the comonomer concentration are constant, and the hydrogen supply amount and the comonomer supply amount change. This change in the amount of supply naturally causes a change in the pressure, so that the pressure regulator works and causes a change in the amount of monomer supply. Then, this change in the amount of supplied monomer causes a change in the hydrogen concentration and the comonomer concentration again.

【0004】従来の制御系ではこのように相互干渉を有
するので、3つの変数を同時に精密かつ安定に調節する
ことができない。
Since the conventional control system has such mutual interference, it is not possible to precisely and stably adjust the three variables at the same time.

【0005】このような相互干渉の影響を小さくするに
は、図2に示すようにモノマー供給量を1定量供給し、
圧力は排出量で調節する方法がある。この場合、水素濃
度、コモノマー濃度の調節は上記の方法に比較し安定性
が向上するものの、常に反応器内のガスを排出するため
生産効率がその分劣ることになる。
In order to reduce the influence of such mutual interference, a constant amount of monomer is supplied as shown in FIG.
There is a method of adjusting the pressure by the discharge amount. In this case, the adjustment of the hydrogen concentration and the comonomer concentration improves the stability as compared with the above method, but since the gas in the reactor is constantly discharged, the production efficiency is deteriorated accordingly.

【0006】[0006]

【発明が解決しようとする課題】従来、水素その他の存
在下オレフィンを重合するには重合反応器に原料である
モノマー、コモノマー、分子量調節剤である水素、及び
触媒を供給し、反応温度数十度、反応圧力10〜50kg
/cm2下で連続的に生産が行なわれている。
Conventionally, in order to polymerize an olefin in the presence of hydrogen and other substances, a monomer, a comonomer as a raw material, hydrogen as a molecular weight regulator, and a catalyst are supplied to a polymerization reactor, and a reaction temperature of several tens of tens. Degree, reaction pressure 10-50kg
Continuous production is performed under / cm 2 .

【0007】上述のようなオレフィンの重合に当って
は、重合圧力、反応器内の組成等を一定にしないと、得
られるポリオレフィンのメルトインデックス等の品質が
変化し均一な品質のポリオレフィンが得られない。
In the polymerization of olefins as described above, unless the polymerization pressure, the composition in the reactor, etc. are made constant, the quality of the obtained polyolefin, such as the melt index, changes, and a polyolefin of uniform quality is obtained. Absent.

【0008】このため従来の重合反応制御においては反
応圧力を監視し、この圧力の変化に応じて、反応圧力を
規定する供給物質すなわちモノマーの供給量を調節する
方法、モノマーを反応する量より余分に供給し、反応器
圧力の変化に応じて反応器のガス排出量を調節する方法
等により、重合反応圧力を一定に保つべく制御するよう
にされている。
Therefore, in the conventional polymerization reaction control, the reaction pressure is monitored, and in accordance with the change in the pressure, the amount of the feed material, that is, the monomer, that regulates the reaction pressure is adjusted. The polymerization reaction pressure is controlled to be kept constant by a method of adjusting the gas discharge amount of the reactor according to the change of the reactor pressure.

【0009】また組成については、オンライン分析計で
その値を監視し、その組成を規定する供給物質すなわち
水素、コモノマー等の供給量を調節することにより制御
されている。
The composition is controlled by monitoring the value with an on-line analyzer and adjusting the supply amount of the feed material that defines the composition, that is, hydrogen, comonomer and the like.

【0010】そして従来の重合反応器においては、反応
器圧力の測定周期と組成の測定周期が異なるために、多
変数制御系が設計できず重合反応圧力と組成は異なる制
御系で制御されていた。
In the conventional polymerization reactor, a multivariable control system cannot be designed because the reactor pressure measurement period and the composition measurement period are different, and the polymerization reaction pressure and composition are controlled by different control systems. ..

【0011】重合反応器への供給量の変化は、圧力及び
組成の両変数に影響を与える。そのためこのような従来
の制御系では、圧力を調節する調節ループと組成を調節
する調節ループ間の相互で干渉を及ぼし合い、反応圧力
をモノマー供給量で調節する方法では組成変動が長く続
き安定迄長時間を要する。
Changes in the feed to the polymerization reactor affect both pressure and composition variables. Therefore, in such a conventional control system, the control loop for controlling the pressure and the control loop for controlling the composition interfere with each other, and in the method of controlling the reaction pressure by the monomer supply amount, the composition fluctuation is long and stable. It takes a long time.

【0012】また反応圧力を反応器のガス排出量で調節
する場合では、上記方法に較べその制御性は若干向上す
るが、常時反応器内のガスを排出しているのでその分経
済的な損失がある。
Further, when the reaction pressure is adjusted by the gas discharge amount of the reactor, the controllability thereof is slightly improved as compared with the above method, but since the gas in the reactor is constantly discharged, the economical loss is correspondingly increased. There is.

【0013】このように従来のポリオレフィン製造方法
では、安定的かつ経済的に所望の品質を得ることに限界
があった。
As described above, the conventional polyolefin production methods have a limit in obtaining desired quality in a stable and economical manner.

【0014】従って本発明が解決しようとする課題は外
乱発生や重合条件変更に対し生産効率を下げることな
く、圧力と組成を精度良く迅速かつ安定的に行うことの
できる制御方法及び装置を提供することで、重合条件変
更時には迅速に所望の品質を有する重合体の製造をまた
種々の外乱発生が想定される定常運転では、バラツキの
少ない所望の品質を有する重合体の製造を可能とするこ
とである。
Therefore, the problem to be solved by the present invention is to provide a control method and apparatus capable of performing pressure and composition accurately and quickly and stably without lowering the production efficiency against the occurrence of disturbance and change of polymerization conditions. Therefore, when changing the polymerization conditions, it is possible to rapidly produce a polymer having a desired quality, and in steady operation where various disturbances are expected to occur, it is possible to produce a polymer having a desired quality with little variation. is there.

【0015】[0015]

【課題を解決するための手段】本発明に従えばこれらの
課題は、オレフィン重合反応器において、オレフィンを
重合してポリオレフィンを連続的に製造するにあたり、
測定周期の異なる圧力と組成が所望の値となるように多
周期多変数制御方式を用いてモノマー、コモノマー、分
子量調節剤の供給を同じ制御系で調節して、所望の品質
を有するポリオレフィンを製造することを特徴とする反
応制御方法によって解決できる。
According to the present invention, these problems are solved in the continuous production of polyolefin by polymerizing olefin in an olefin polymerization reactor.
A multi-cycle multi-variable control system is used to control the supply of monomers, comonomers, and molecular weight regulators with the same control system so that the pressure and composition at different measurement cycles are the desired values, and a polyolefin with the desired quality is produced. This can be solved by a reaction control method characterized by

【0016】本発明の特徴は、測定周期の異なる圧力と
組成を制御モデルに基づき、多周期多変数制御するもの
で、外乱発生あるいは重合条件の変更に対し、排出ガス
量の調節ループを有せずとも安定に、圧力と組成を所望
の値に制御できることである。
A feature of the present invention is that multi-cycle multi-variable control is performed based on a control model for pressure and composition with different measurement cycles, and an exhaust gas amount adjustment loop should be provided in response to disturbance occurrence or changes in polymerization conditions. It is possible to control the pressure and composition to desired values in a stable manner.

【0017】これにより重合条件の変更を迅速に行なう
ことができ、かつバラツキの少ない品質を有する重合体
を効率的に得ることができる。
As a result, the polymerization conditions can be changed rapidly, and a polymer having a quality with little variation can be efficiently obtained.

【0018】以下本発明の方法につき、図を用いて更に
詳細に説明する。図3は、本発明の方法に適用する制御
装置系のブロック図を示したものであり、一定の温度に
保持された重合反応器1には、水素ガスを供給する水素
供給ライン2、オレフィンを供給するオレフィン供給ラ
イン3、コモノマーを供給するコモノマー供給ライン
4、前段の反応器からのポリオレフィン流入ライン5、
リサイクルガスラインの入り口6、出口7及びポリオレ
フィン排出ライン8がそれぞれ設けられている。
The method of the present invention will be described in more detail below with reference to the drawings. FIG. 3 is a block diagram of a control device system applied to the method of the present invention. A hydrogen supply line 2 for supplying hydrogen gas and an olefin are supplied to the polymerization reactor 1 kept at a constant temperature. An olefin supply line 3 for supplying, a comonomer supply line 4 for supplying a comonomer, a polyolefin inflow line 5 from the reactor in the preceding stage,
An inlet 6, an outlet 7, and a polyolefin discharge line 8 of the recycle gas line are provided respectively.

【0019】そして水素供給ライン2には水素供給弁2
aが、オレフィン供給ライン3にはオレフィン供給弁3
aが、コモノマー供給ライン4にはコモノマー供給弁4
aが、ポリオレフィン流入ライン5にはポリオレフィン
供給弁5aが、ポリオレフィン排出ライン8にはポリオ
レフィン排出弁8aがそれぞれ設けられており、このう
ち水素供給弁2a、オレフィン供給弁3a、コモノマー
供給弁4aは後述する制御装置からの制御信号により、
その弁開度が制御される。
The hydrogen supply valve 2 is connected to the hydrogen supply line 2.
a is an olefin supply valve 3 in the olefin supply line 3.
a is a comonomer supply valve 4 in the comonomer supply line 4.
a, a polyolefin supply valve 5a is provided in the polyolefin inflow line 5, and a polyolefin discharge valve 8a is provided in the polyolefin discharge line 8, of which the hydrogen supply valve 2a, the olefin supply valve 3a, and the comonomer supply valve 4a will be described later. By the control signal from the control device
The valve opening is controlled.

【0020】重合反応器1には、ガスサンプリングライ
ン9が設けられており、反応器内のガスは開閉弁9aを
へてプロセスガスクロマトグラフィ10に導かれ、プロ
セスガスクロマトグラフィ10により反応器の水素ガス
濃度及びコモノマー濃度を測定する。
A gas sampling line 9 is provided in the polymerization reactor 1, and the gas in the reactor is guided to the process gas chromatography 10 through the opening / closing valve 9a, and the process gas chromatography 10 causes the hydrogen gas in the reactor to flow. Measure the concentration and comonomer concentration.

【0021】さらに重合反応器1には、反応器圧力を測
定する圧力検出器11が設けられている。
Further, the polymerization reactor 1 is provided with a pressure detector 11 for measuring the reactor pressure.

【0022】プロセスガスクロマトグラフ10で測定し
た水素ガス濃度及びコモノマー濃度、さらに圧力検出器
11で測定した測定信号が、制御装置12に入力され
る。
The hydrogen gas concentration and comonomer concentration measured by the process gas chromatograph 10 and the measurement signal measured by the pressure detector 11 are input to the controller 12.

【0023】制御装置では、これらの入力信号に基づき
操作量を算出する。
The control device calculates the manipulated variable based on these input signals.

【0024】さて、本制御系にあっては反応器圧力は、
1秒の周期でほぼ連続的に測定されるが、反応器内の組
成はプロセスガスクロマトグラフィで6分毎にしか測定
されない。
In this control system, the reactor pressure is
The composition in the reactor is measured only every 6 minutes by process gas chromatography, although it is measured almost continuously with a period of 1 second.

【0025】制御周期は、該プロセスの応答特性を考慮
して十分な制御精度が得られるように、1分に設定され
ている。
The control cycle is set to 1 minute so that sufficient control accuracy can be obtained in consideration of the response characteristic of the process.

【0026】プロセスガスクロマトグラフィの測定周期
が、制御周期より長いので制御周期毎に観測されない組
成は、プロセスモデルを使って各制御時点の値を推定す
る。
Since the measurement cycle of the process gas chromatography is longer than the control cycle, the composition which is not observed in each control cycle is estimated by using the process model at each control time point.

【0027】反応器のプロセスモデルは、物質収支より
求まるがその入力と出力との関係は、1次遅れとむだ時
間によって近似される。
The process model of the reactor is obtained from the mass balance, but the relationship between the input and output is approximated by the first-order lag and the dead time.

【0028】制御方式は、モデル予測制御を用い上述で
得られたプロセスモデルに基づき、本制御方式を制御装
置にプログラミングしてあるが、そのアルゴリズムは次
のようになる。
As the control method, the present control method is programmed in the control device based on the process model obtained above by using model predictive control, and the algorithm is as follows.

【0029】[モデル]ARXモデルを用いて、次式で
与える。 Ym=Ymo+GF・ΔUn+Go・ΔUo+Qo・Δ
Ymo [予測式]出力の予測値は、モデルによって計算される
出力の値を補正して与える。 Yp=Ym+Y−Ymo =Y+GF・ΔUn+Go・ΔUo+Qo・ΔYmo [目標軌跡]出力を一気に設定値に到達させるのではな
く、現在の出力値からある程度の時間をかけて、滑らか
な軌道を描いて設定値に到達させることを考えて目標軌
跡を次式で与える。 YR =α・Y+(1−α)・R [操作量の決定]予測値が目標値にできるだけ近づくよ
うに、将来の操作量を決める。操作量は、次式で表され
る最適化問題を解いて各時刻毎に決められる。 評価関数; |Yp−YR |2 → min 評価関数を最小にする操作量 ΔUn は最小2乗法で
[Model] Using the ARX model, it is given by the following equation. Ym = Ymo + GF ・ ΔUn + Go ・ ΔUo + Qo ・ Δ
Ymo [Prediction Formula] The predicted value of the output is given by correcting the value of the output calculated by the model. Yp = Ym + Y−Ymo = Y + GF ・ ΔUn + Go ・ ΔUo + Qo ・ ΔYmo [Target locus] Rather than letting the output reach the set value all at once, draw a smooth orbit from the current output value to reach the set value. The target locus is given by the following formula in consideration of reaching it. YR = α · Y + (1−α) · R [Determination of manipulated variable] The future manipulated variable is determined so that the predicted value is as close to the target value as possible. The operation amount is determined for each time by solving the optimization problem represented by the following equation. Evaluation function; | Yp-YR | 2 → min The manipulated variable ΔUn that minimizes the evaluation function is the least squares method.

【数1】 ここで R :目標値 YR :目標値軌跡 Yp:制御量の予測値 Ym:モデルによる予測値 Y :現在の被制御量 α :目標値軌跡時定数 Uo:過去の操作量 Un:将来の操作量 GF ,Go,Qo:モデルパラメータ[Equation 1] Where R: Target value YR: Target value locus Yp: Predicted value of controlled variable Ym: Predicted value by model Y: Current controlled variable α: Target value locus time constant Uo: Past manipulated variable Un: Future manipulated variable GF, Go, Qo: Model parameters

【0030】計算された操作量は、水素供給弁、モノマ
ー供給弁、コモノマー供給弁に対する出力信号に変換さ
れ、各供給弁が操作される。
The calculated manipulated variable is converted into output signals for the hydrogen supply valve, the monomer supply valve and the comonomer supply valve, and each supply valve is operated.

【0031】この制御方法により、目標値一定の定常運
転において外乱により測定値と目標値に偏差が生ずれ
ば、本制御装置内でその偏差を徐々になくするよう測定
値を目標値に近づける目標軌跡が計算され、これに沿っ
て測定値を調節するように操作量が出力される。
According to this control method, when a deviation occurs between the measured value and the target value due to disturbance in the steady operation with a constant target value, the measured value approaches the target value so as to gradually eliminate the deviation in the control device. The trajectory is calculated and the manipulated variable is output along with which the measured value is adjusted.

【0032】また、重合条件を変更する場合すなわち目
標値を変更する場合においても上記同様測定値が追従す
べき目標軌跡が計算され、これに沿うよう調節される。
Also, when the polymerization conditions are changed, that is, when the target value is changed, the target locus to be followed by the measured value is calculated in the same manner as above, and the target locus is adjusted to follow it.

【0033】[0033]

【実施例】図4に、モノマーをプロピレン、コモノマー
をエチレンとした気相重合反応器に本発明を適用した実
施例を示す。本図において制御開始から45分までが水
素濃度、エチレン濃度及び圧力の設定値を一定とした定
値制御の結果で、制御開始から45分後に重合条件の内
圧力のみ変更した場合の制御結果を示す。なお水素濃度
の設定値は3.2mol%、組成2の設定値は25mol%、
圧力については18KGから15KGへの設定値変更を行な
った。また、本図の縦軸の目盛りは流量、組成、圧力そ
れぞれを0〜100%に規定化して示す。
EXAMPLE FIG. 4 shows an example in which the present invention is applied to a gas phase polymerization reactor using propylene as a monomer and ethylene as a comonomer. In this figure, the result of constant value control in which the set values of hydrogen concentration, ethylene concentration and pressure are constant from the start of control to 45 minutes, and the control result when only the internal pressure of the polymerization conditions is changed 45 minutes after the start of control is shown. .. The set value of hydrogen concentration is 3.2 mol%, the set value of composition 2 is 25 mol%,
Regarding the pressure, the set value was changed from 18KG to 15KG. Further, the scale on the vertical axis of the figure shows the flow rate, composition, and pressure normalized to 0 to 100%.

【0034】本図に示されるように3つの原料の流量を
バランスよく操作され、反応器内の各組成をほぼ一定の
まま圧力を所望の速さで安定に変更することができてい
る。
As shown in the figure, the flow rates of the three raw materials were operated in a well-balanced manner, and the pressure could be stably changed at a desired speed while keeping the respective compositions in the reactor substantially constant.

【0035】[0035]

【発明の効果】本発明によれば、ポリオレフィンを流動
床重合反応器で連続重合するに当り、定常運転時の外乱
抑制あるいは重合条件変更時の目標値変更に対し、安定
化のための反応器内のガス排出は不要で極めて安定かつ
精度の高い制御が実現でき、品質のバラツキが少ないポ
リオレフィンを効率よく製造できるので、実用上極めて
有用なものである。
According to the present invention, in continuous polymerization of a polyolefin in a fluidized bed polymerization reactor, a reactor for stabilizing against disturbance during steady operation or changing target values when changing polymerization conditions. It is extremely useful in practice because it is possible to realize extremely stable and highly accurate control without the need to discharge the gas inside, and to efficiently produce a polyolefin with little variation in quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来制御方式を示したブロック図である。FIG. 1 is a block diagram showing a conventional control method.

【図2】従来制御方式を示したブロック図である。FIG. 2 is a block diagram showing a conventional control method.

【図3】本発明方法を実施したブロック図である。FIG. 3 is a block diagram for implementing the method of the present invention.

【図4】本発明の実施例を示し、水素濃度、エチレン濃
度及び圧力について定値制御及び重合条件変更の1つと
しての圧力の目標値変更を行った時の運転状況を示すグ
ラフである。
FIG. 4 is a graph showing an example of the present invention and showing an operating condition when a target value of pressure is changed as one of constant value control and change of polymerization conditions for hydrogen concentration, ethylene concentration and pressure.

【符号の説明】[Explanation of symbols]

1 重合反応器 2 水素供給ライン 2a 水素供給弁 3 オレフィン供給ライン 3a オレフィン供給弁 4 コモノマー供給ライン 4a コモノマー供給弁 5 ポリオレフィン供給ライン 5a ポリオレフィン供給弁 6 リサイクルガスライン入口 7 リサイクルガスライン出口 8 ポリオレフィン排出ライン 8a ポリオレフィン排出弁 9 ガスサンプルライン 9a プロセスガスクロマトグラフィのサンプリングラ
イン開閉弁 10 プロセスガスクロマトグラフィ 11 圧力検出器 12 制御装置
1 Polymerization Reactor 2 Hydrogen Supply Line 2a Hydrogen Supply Valve 3 Olefin Supply Line 3a Olefin Supply Valve 4 Comonomer Supply Line 4a Comonomer Supply Valve 5 Polyolefin Supply Line 5a Polyolefin Supply Valve 6 Recycle Gas Line Outlet 7 Recycle Gas Line Outlet 8 Polyolefin Discharge Line 8a Polyolefin discharge valve 9 Gas sample line 9a Sampling line opening / closing valve for process gas chromatography 10 Process gas chromatography 11 Pressure detector 12 Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 伊織 京都府京都市左京区高野蓼原町1−3 ル ネ下鴨東S14 (72)発明者 大嶋 正裕 京都府京都市左京区岩倉忠在地町286−2 サンハイツ岩倉B−201 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Iori Hashimoto Iori 1-3 Takano Tatehara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture Rene Shimogamo East S14 (72) Inventor Masahiro Oshima 286 Iwakura Tadachi-cho, Sakyo-ku, Kyoto Prefecture -2 Sun Heights Iwakura B-201

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 オレフィン重合反応器において、オレフ
ィンを重合してポリオレフィンを連続的に製造するにあ
たり、測定周期の異なる圧力と組成が所望の値となるよ
うに多周期多変数制御方式を用いてモノマー、コモノマ
ー、分子量調節剤の供給を同じ制御系で調節して、所望
の品質を有するポリオレフィンを製造することを特徴と
する反応制御方法。
1. In an olefin polymerization reactor, when a polyolefin is continuously produced by polymerizing an olefin, a monomer is prepared by using a multi-cycle multi-variable control method so that a pressure and a composition having different measurement cycles have desired values. , A comonomer and a molecular weight regulator are controlled by the same control system to produce a polyolefin having a desired quality.
JP5542892A 1992-03-13 1992-03-13 Method for controlling reaction in polymerization reactor for olefin Pending JPH05255439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5542892A JPH05255439A (en) 1992-03-13 1992-03-13 Method for controlling reaction in polymerization reactor for olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5542892A JPH05255439A (en) 1992-03-13 1992-03-13 Method for controlling reaction in polymerization reactor for olefin

Publications (1)

Publication Number Publication Date
JPH05255439A true JPH05255439A (en) 1993-10-05

Family

ID=12998314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5542892A Pending JPH05255439A (en) 1992-03-13 1992-03-13 Method for controlling reaction in polymerization reactor for olefin

Country Status (1)

Country Link
JP (1) JPH05255439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100874028B1 (en) * 2006-02-15 2008-12-17 주식회사 엘지화학 Parameter Control Method of Olefin Polymerization in Solution Polymerization Process Using Catalyst Composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100874028B1 (en) * 2006-02-15 2008-12-17 주식회사 엘지화학 Parameter Control Method of Olefin Polymerization in Solution Polymerization Process Using Catalyst Composition

Similar Documents

Publication Publication Date Title
US6263355B1 (en) Non-linear model predictive control method for controlling a gas-phase reactor including a rapid noise filter and method therefor
AU704563B2 (en) Control method for processes of synthesis of chemical products
WO1980002288A1 (en) Process for producing polyolefin
US4852053A (en) Material and energy balance reconciliation
JPH05148307A (en) Preparation of ethylene/vinyl acetate copolymer
KR20090104031A (en) Semibatch copolymerization process for compositionally uniform copolymers
JPH05255439A (en) Method for controlling reaction in polymerization reactor for olefin
JPH05105703A (en) Method for carrying out reaction control of olefin polymerization reactor and apparatus therefor
EP2089705B1 (en) Method of rapidly determining the mfr in the high-pressure polymerization of ethylene
EP0318609B1 (en) Polypropylene impact copolymer reactor control system
SU1249025A1 (en) Method for controlling process of polymerization or copolymerization of alpha-olefins in gaseous medium
JP3189332B2 (en) Polymerization reaction operation support equipment for polyolefin production
SU651006A1 (en) Method of automatic control of process of propylene polymerization
Han‐Adebekun et al. Polymerization of olefins through heterogeneous catalysis. XVI. Design and control of a laboratory stirred bed copolymerization reactor
SU1627540A1 (en) Process for controlling of butadiene solution polymerization
JPS6028285B2 (en) Polyolefin manufacturing method
SU1312083A1 (en) Method for controlling process of polymerization of ethylene or copolymerization of ethylene with alpha-olefins in gaseous phase
CN114545997B (en) Polyolefin kettle type reaction constant temperature control method and device
Joseph Schork Design and Operation of Polymerization Reactors
JPS62278618A (en) Control method for exit temperature of cracker
CA1277744C (en) Material and energy balance reconciliation process control method and apparatus
SU1016303A1 (en) Method for automatically controlling polymerization of ethylene in tubular reactor
SU929649A1 (en) Method for controlling polymerization of olefins
JPH05140229A (en) Production of polyolefin
FI93462C (en) A control method for controlling the concentrations of a reactor used in the polymerization of olefins