JPH05255351A - Production of optically active silyl compound - Google Patents

Production of optically active silyl compound

Info

Publication number
JPH05255351A
JPH05255351A JP4051389A JP5138992A JPH05255351A JP H05255351 A JPH05255351 A JP H05255351A JP 4051389 A JP4051389 A JP 4051389A JP 5138992 A JP5138992 A JP 5138992A JP H05255351 A JPH05255351 A JP H05255351A
Authority
JP
Japan
Prior art keywords
optically active
compound
formula
group
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4051389A
Other languages
Japanese (ja)
Other versions
JP3279620B2 (en
Inventor
Tamio Hayashi
民生 林
Yasuhiro Uozumi
泰広 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP05138992A priority Critical patent/JP3279620B2/en
Publication of JPH05255351A publication Critical patent/JPH05255351A/en
Application granted granted Critical
Publication of JP3279620B2 publication Critical patent/JP3279620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To give the subject compounds of high optical purity in high isolation yield with high reproducibility by asymmetric hydrosilylation of an olefin with a silane in the copresence of a transition metal catalyst and an optically active phosphine. CONSTITUTION:The reaction of a compound of formula I (n is 1, 2; R<1>, R<2> are H, alkyl, aralkyl, aryl, alkoxycarbonyl, cyano, nitro; dotted line represents a single or double bond) with a silane of formula III (X, Y, Z are H, alkyl, alkoxy, halogen) is carried out in the copresence of a transition metal catalyst such as allyl-palladium chloride dimer and an optically active phosphine of formula II at -20 to 100 deg.C to give a compound of formula IV. The objective compound of formula IV can be converted into optically active alcohol derivatives, halides by exchange of silyl groups with functional groups. For example, optically active norborneol is useful as a synthetic intermediate of an antagonist of thromboxane A2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オレフィン化合物の不
斉ヒドロシリル化反応を利用した光学活性ビシクロ
[2.2.n]シリル化合物の製造法に関する。
FIELD OF THE INVENTION The present invention relates to optically active bicyclo [2.2. n] relates to a method for producing a silyl compound.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】光学
活性なシリル化合物はシリル基の官能基変換により容易
に光学活性なアルコール誘導体やハロゲン化合物に変換
することができ、さらに複雑な光学活性化合物への誘導
が可能である。たとえば、本発明の手法によりえられる
光学活性ノルボルネオールはトロンボキサンA2拮抗阻
害剤中間体として有用な物質であり、光学活性なシリル
化合物はその他医薬、農薬および強誘電性液晶材料など
様々な光学活性化合物の製造において有用な化合物であ
る。
2. Description of the Related Art Optically active silyl compounds can be easily converted into optically active alcohol derivatives and halogen compounds by converting functional groups of silyl groups into more complex optically active compounds. Can be induced. For example, the optically active norborneol obtained by the method of the present invention is a useful substance as a thromboxane A2 competitive inhibitor intermediate, and the optically active silyl compound is various optically active substances such as pharmaceuticals, agricultural chemicals and ferroelectric liquid crystal materials. It is a compound useful in the production of compounds.

【0003】光学活性なシリル化合物はオレフィンの不
斉ヒドロシリル化によりえられる。
Optically active silyl compounds are obtained by asymmetric hydrosilylation of olefins.

【0004】不斉ヒドロシリル化反応は、共役ジエンを
原料とし、トリクロロシランによる光学活性なフェロセ
ニルホスフィン(N,N−ジメチル−1−[2−(ジフ
ェニルホスフィノ)フェロセニル]エチルアミン)−パ
ラジウム錯体を不斉触媒とする反応が数例(ティー ハ
ヤシ(T. Hayashi)ら、テトラヘドロン アシメトリー(T
etrahedron Asymmetry) 、,151(1990) ほか)と、同
様の不斉触媒を用いノルボルネンおよびスチレンに対す
るトリクロロシランによる反応が1例(ティーハヤシ
ら、テトラヘドロン レターズ(Tetrahedron Lett.) 、
21, 1871(1980))知られているが、前者にはビシクロ
[2.2.n]系化合物に関するものはなく、後者の光
学収率は低く実用性に問題がある。
The asymmetric hydrosilylation reaction uses a conjugated diene as a raw material and an optically active ferrocenylphosphine (N, N-dimethyl-1- [2- (diphenylphosphino) ferrocenyl] ethylamine) -palladium complex with trichlorosilane. There are several examples of reactions using asymmetric catalysts (T. Hayashi et al., Tetrahedron asymmetry (T.
etrahedron Asymmetry), 1 , 151 (1990) et al.) and a reaction of trichlorosilane with norbornene and styrene using the same asymmetric catalyst (Tehrahedron Lett.)
21 , 1871 (1980)), but the former is bicyclo [2.2. There is no n] type compound, and the latter has a low optical yield and is problematic in practical use.

【0005】また、光学活性アルコールの製造法という
観点からは、発酵法によるラセミ体脂肪族エステルの不
斉加水分解、ラセミ体アルコールをジアステレオマー混
合物に誘導し再結晶により望む光学活性体をえる方法な
どが考えられるが、いずれも光学分割法であり、望まな
い光学異性体を無駄にするため効率的といえない。ほか
に、ケトンの酵母による不斉還元や光学活性な遷移金属
錯体触媒による不斉接触水素化反応も光学活性アルコー
ル製造法として知られているが、ビシクロ[2.2.
n]系化合物においては原料となるケトンが既にキラリ
ティーを有するものであるため適用できない。
From the viewpoint of a method for producing an optically active alcohol, asymmetric hydrolysis of a racemic aliphatic ester by a fermentation method, induction of a racemic alcohol into a diastereomeric mixture, and recrystallization to obtain a desired optically active substance. Although there are conceivable methods, all of them are optical resolution methods and are not efficient because unwanted optical isomers are wasted. In addition, asymmetric reduction of ketones with yeast and asymmetric catalytic hydrogenation reaction with an optically active transition metal complex catalyst are also known as optically active alcohol production methods, but bicyclo [2.2.
It cannot be applied to the [n] -based compound because the starting material ketone already has chirality.

【0006】一方、ノルボルネンに対する光学活性ジイ
ソピノカンフェニルボランの不斉ヒドロホウ素化反応に
よる光学活性ノルボルネオール製造法が知られているが
(エイチ シー ブラウン(H. C. Brown) ら、ジャーナ
ル オブ オーガニック ケミストリー(J. Org. Che
m.) 、51, 4526(1986))、ここでは大量入手困難な不斉
源を原料1モルに対して2モル以上使用しており、工業
規模の使用には問題がある。
On the other hand, a method for producing an optically active norborneol by an asymmetric hydroboration reaction of an optically active diisopinocamphenylborane to norbornene is known (HC Brown et al., Journal of Organic Chemistry ( J. Org. Che
m.), 51 , 4526 (1986)), where 2 mol or more of the asymmetric source, which is difficult to obtain in large quantities, is used per 1 mol of the raw material, and there is a problem in use on an industrial scale.

【0007】[0007]

【課題を解決するための手段】本発明者らは、かかる実
状に鑑み鋭意研究を行なった結果、ビシクロ[2.2.
n]系オレフィン化合物を原料とし、微量の遷移金属触
媒と同じく微量の光学活性ホスフィン化合物の存在下に
シラン類を不斉ヒドロシリル化反応させ、再現性良く、
高い単離収率および光学純度で有用な光学活性シリル化
合物をえる方法を見出し、本発明に完成するにいたっ
た。
Means for Solving the Problems As a result of intensive studies in view of such circumstances, the present inventors have found that bicyclo [2.2.
n] -based olefin compound as a raw material, asymmetric hydrosilylation reaction of silanes in the presence of a trace amount of optically active phosphine compound as well as a trace amount of a transition metal catalyst, and good reproducibility,
The inventors have found a method for obtaining a useful optically active silyl compound with high isolation yield and optical purity, and completed the present invention.

【0008】本発明は一般式(I) で示されるビシクロ
[2.2.n]系オレフィン化合物を原料とし、遷移金
属触媒と構造式(II)で示される光学活性ホスフィン化合
物の共存下で、一般式(III) で示されるシラン類を反応
させることを特徴とする一般式(IV)で示されるビシクロ
[2.2.n]系光学活性シリル化合物の製造法であ
る。
The present invention is directed to bicyclo [2.2. [n] -based olefin compound as a raw material, a silane represented by the general formula (III) is reacted in the presence of a transition metal catalyst and an optically active phosphine compound represented by the structural formula (II). Bicyclo [2.2. n] -based optically active silyl compound.

【0009】本発明は一般式(I) :The present invention has the general formula (I):

【0010】[0010]

【化7】 [Chemical 7]

【0011】(式中、nは1または2、R1 およびR2
はそれぞれ独立に、水素原子、アルキル基、アラルキル
基、アリール基、アルコキシカルボニル基、シアノ基ま
たはニトロ基を表わし、線
Where n is 1 or 2, R 1 and R 2
Each independently represents a hydrogen atom, an alkyl group, an aralkyl group, an aryl group, an alkoxycarbonyl group, a cyano group or a nitro group, and a line

【0012】[0012]

【化8】 [Chemical 8]

【0013】は単結合または二重結合を意味する)で示
される化合物を遷移金属触媒と構造式(II):
Means a single bond or a double bond) with a transition metal catalyst and a structural formula (II):

【0014】[0014]

【化9】 [Chemical 9]

【0015】で示される光学活性ホスフィン化合物の共
存下で、一般式(III) :
In the presence of an optically active phosphine compound represented by the general formula (III):

【0016】[0016]

【化10】 [Chemical 10]

【0017】(式中、X、Y、Zはそれぞれ独立に、水
素原子、アルキル基、アルコキシル基、またはハロゲン
原子を表わす)で示されるシラン類を反応させることを
特徴とする一般式(IV):
(Wherein X, Y and Z each independently represent a hydrogen atom, an alkyl group, an alkoxyl group or a halogen atom) are reacted with silanes represented by the general formula (IV) :

【0018】[0018]

【化11】 [Chemical 11]

【0019】(式中、n、R1 、R2 および線(Where n, R 1 , R 2 and the line

【0020】[0020]

【化12】 [Chemical 12]

【0021】は前記と同じ)で示されるビシクロ[2、
2、n]系光学活性シリル化合物の製造法に関する。
Is the same as the above).
2, n] -based method for producing an optically active silyl compound.

【0022】原料のオレフィン化合物は一般式(I) :The starting olefin compound has the general formula (I):

【0023】[0023]

【化13】 [Chemical 13]

【0024】(式中、nは1または2、R1 およびR2
はそれぞれ独立に水素原子、アルキル基、アラルキル
基、アリール基、アルコキシカルボニル基、シアノ基ま
たはニトロ基を表わし、線
Where n is 1 or 2, R 1 and R 2
Are each independently a hydrogen atom, an alkyl group, an aralkyl group, an aryl group, an alkoxycarbonyl group, a cyano group or a nitro group, and

【0025】[0025]

【化14】 [Chemical 14]

【0026】は単結合または二重結合を意味する)で示
される化合物である。ここでアルキル基としては好まし
くは炭素数1から5のものがあげられ、アラルキル基と
しては、たとえばベンジル、α−メチルベンジル、β−
フェネチル、アリール基としてはたとえばフェニル、ナ
フチル、アルコキシカルボニル基としてはたとえばメト
キシカルボニル、エトキシカルボニルがあげられる。一
般式(I) のオレフィンの具体例としては、ノルボルネ
ン、ビシクロ[2.2.2]オクテン、ノルボルナジエ
ン、その他ディールズ=アルダー反応により容易に合成
できる5,6−ビス(メトキシカルボニル)ノルボルネ
ン、5,6−ジシアノノルボルネンなどが用いられる。
Represents a single bond or a double bond). Here, the alkyl group is preferably one having 1 to 5 carbon atoms, and the aralkyl group is, for example, benzyl, α-methylbenzyl or β-.
Examples of phenethyl and aryl groups include phenyl and naphthyl, and examples of alkoxycarbonyl groups include methoxycarbonyl and ethoxycarbonyl. Specific examples of the olefin of the general formula (I) include norbornene, bicyclo [2.2.2] octene, norbornadiene, and 5,6-bis (methoxycarbonyl) norbornene, which can be easily synthesized by the Diels-Alder reaction, and 5, 6-dicyanonorbornene or the like is used.

【0027】本発明に使用できる遷移金属触媒として
は、パラジウム化合物や白金化合物など炭素−炭素二重
結合とホスフィン化合物に配位し、シラン類に酸化的付
加をおこすものを有する化合物が用いられうる。たとえ
ばアリルパラジウム塩化物二量体、酢酸パラジウム、塩
化パラジウム、パラジウムアセチルアセトナート錯体、
アリル(シクロペンタジエニル)パラジウム、ジクロロ
ビス(アセトニトリル)パラジウム、ジクロロビス(ベ
ンゾニトリル)パラジウム、トリス(μ−ジベンジリデ
ンアセトン)ジパラジウム、トリクロロ(エチレン)白
金酸カリウムおよびテトラクロロ白金酸カリウムなどが
あげられる。とくに、パラジウム化合物を触媒として用
いると高い光学純度が、また白金化合物を触媒として用
いると高い単離収率のもとに生成物がえられる。
As the transition metal catalyst that can be used in the present invention, a compound having a carbon-carbon double bond, such as a palladium compound or a platinum compound, which coordinates with a phosphine compound and causes an oxidative addition to silanes can be used. . For example, allyl palladium chloride dimer, palladium acetate, palladium chloride, palladium acetylacetonate complex,
Allyl (cyclopentadienyl) palladium, dichlorobis (acetonitrile) palladium, dichlorobis (benzonitrile) palladium, tris (μ-dibenzylideneacetone) dipalladium, potassium trichloro (ethylene) platinate and potassium tetrachloroplatinate . In particular, when a palladium compound is used as a catalyst, a high optical purity is obtained, and when a platinum compound is used as a catalyst, a product is obtained with a high isolation yield.

【0028】遷移金属触媒の使用量は基質のオレフィン
に対して0.001 〜1.0 モル%好ましくは0.01〜0.1 モル
%が適当である。
The amount of the transition metal catalyst used is 0.001 to 1.0 mol%, preferably 0.01 to 0.1 mol%, based on the olefin as a substrate.

【0029】また、本発明に使用できるシラン類は、一
般式(III) :
The silanes usable in the present invention are represented by the general formula (III):

【0030】[0030]

【化15】 [Chemical 15]

【0031】(式中、X、Y、Zはそれぞれ独立にアル
キル基、アルコキシル基、ハロゲン原子を表わす)で示
される化合物である。ここでアルキル基としては、炭素
数1〜3のものが好ましく、アルコキシル基としては、
炭素数1〜3のものが好ましく、ハロゲン原子として
は、塩素原子が好ましい。一般式(III) で示される化合
物の具体例としては、たとえばトリクロロシラン、メチ
ルジクロロシラン、トリメトキシシラン、トリエトキシ
シランなどがあげられる。とくに、トリクロロシランを
使用すると、単離収率および光学純度の面からすぐれた
結果がえられる。シラン類は基質のオレフィンに対して
過剰量用いることができるが、1当量のみの使用でも高
い収率で反応が進行する傾向にある。
(In the formula, X, Y and Z each independently represent an alkyl group, an alkoxyl group or a halogen atom). Here, as the alkyl group, those having 1 to 3 carbon atoms are preferable, and as the alkoxyl group,
A halogen atom having 1 to 3 carbon atoms is preferable, and a chlorine atom is preferable as the halogen atom. Specific examples of the compound represented by the general formula (III) include trichlorosilane, methyldichlorosilane, trimethoxysilane, triethoxysilane and the like. In particular, the use of trichlorosilane gives excellent results in terms of isolation yield and optical purity. Silanes can be used in excess with respect to the substrate olefin, but the reaction tends to proceed in a high yield even if only 1 equivalent is used.

【0032】光学活性ホスフィン化合物(2−ジフェニ
ルホスフィノ−2´−メトキシ−1,1´−ビナフチ
ル:構造式(II))は、(R)−(+)−体と(S)−
(−)−体のいずれの立体配置のものも反応に使用でき
るが、(R)−(+)−体を使用して反応を行なった際
の生成物と(S)−(−)−体を使用してえられる生成
物とは鏡像異性体の関係になる。したがって目的とする
シリル化合物の立体配置に合わせて、ホスフィン化合物
の光学異性体いずれを使用するか選択すればよい。
The optically active phosphine compound (2-diphenylphosphino-2'-methoxy-1,1'-binaphthyl: structural formula (II)) has an (R)-(+)-form and a (S) -form.
Although any configuration of the (-)-form can be used in the reaction, the product and the (S)-(-)-form when the reaction is carried out using the (R)-(+)-form With the product obtained using Therefore, which of the optical isomers of the phosphine compound is to be used may be selected according to the desired configuration of the silyl compound.

【0033】なお、ホスフィン化合物は、遷移金属触媒
に対して1〜3当量、好ましくは2当量使用するのが適
当である。
The phosphine compound is used in an amount of 1 to 3 equivalents, preferably 2 equivalents, based on the transition metal catalyst.

【0034】反応溶媒は使用しなくてよいが、必要があ
れば原料およびシラン類に対して不活性な溶媒(たとえ
ばベンゼン、トルエン、キシレンもしくはn−へキサン
などの炭化水素溶媒や、ジエチルエーテル、1,4−ジ
オキサンもしくはテトラヒドロフラン(以下、THFと
よぶ)などのエーテル系溶媒または塩化メチレン、クロ
ロホルム、1,1もしくは1−トリクロロエタンなどの
ハロゲン系溶媒など)を使用することができる。
A reaction solvent may not be used, but if necessary, a solvent inert to the starting materials and silanes (for example, a hydrocarbon solvent such as benzene, toluene, xylene or n-hexane, diethyl ether, An ether solvent such as 1,4-dioxane or tetrahydrofuran (hereinafter referred to as THF) or a halogen solvent such as methylene chloride, chloroform, 1,1 or 1-trichloroethane, etc. can be used.

【0035】たとえば本発明の製造法は以下のようにし
て行うことができるが、これに限定されるものではな
い。原料のオレフィン化合物と遷移金属触媒、ホスフィ
ン化合物の混合物に、シラン化合物を加え、数時間撹拌
する。あるいは遷移金属触媒とホスフィン化合物を適当
な溶媒中で混合し、あらかじめ錯体を調製したのちにオ
レフィン化合物とシラン化合物を加えて反応させてもよ
い。ほとんどのばあいシリル化生成物は比較的低沸点な
ので、反応混合物の減圧蒸留によって、純粋な生成物を
単離できる。またあらゆる反応温度で反応は進行する
が、好ましくは−20℃〜100 ℃、より好ましくは−20℃
から5℃の範囲で反応をさせると、より高い光学純度を
有する生成物がえられる。
For example, the production method of the present invention can be carried out as follows, but is not limited to this. A silane compound is added to a mixture of a raw material olefin compound, a transition metal catalyst, and a phosphine compound, and the mixture is stirred for several hours. Alternatively, the transition metal catalyst and the phosphine compound may be mixed in a suitable solvent to prepare a complex in advance, and then the olefin compound and the silane compound may be added and reacted. In most cases the silylated products have relatively low boiling points so that pure products can be isolated by vacuum distillation of the reaction mixture. The reaction proceeds at any reaction temperature, but is preferably -20 ° C to 100 ° C, more preferably -20 ° C.
When the reaction is carried out in the range of 5 to 5 ° C, a product having higher optical purity is obtained.

【0036】一方、このようにしてえられる光学活性シ
リル化合物は立体配置を維持したまま容易にアルコール
誘導体へと変換されうる。たとえばトリクロロシリル化
合物であれば、ジエチルエーテル中トリエチルアミンの
存在下にエタノールと反応させトリエトキシシリル化合
物とし、テトラヒドロフランとメタノールの混合溶媒
中、重炭酸カリウム存在下に過酸化水素を作用させると
シリル基は水酸基に変換できる。
On the other hand, the thus obtained optically active silyl compound can be easily converted into an alcohol derivative while maintaining the configuration. For example, in the case of a trichlorosilyl compound, it is reacted with ethanol in diethyl ether in the presence of triethylamine to give a triethoxysilyl compound, and when hydrogen peroxide is allowed to act in the presence of potassium bicarbonate in a mixed solvent of tetrahydrofuran and methanol, the silyl group becomes Can be converted to hydroxyl group.

【0037】[0037]

【化16】 [Chemical 16]

【0038】[0038]

【実施例】つぎに本発明の製造法を実施例により具体的
に説明するが、これらの実施例は本発明を限定するもの
ではない。
EXAMPLES Next, the production method of the present invention will be specifically described by way of examples, but these examples do not limit the present invention.

【0039】実施例1 アリルパラジウム塩化物二量体0.46mg(1.24μmo
l、パラジウムとして2.5 μmol)、(R)−(+)
−2−ジフェニルホスフィノ−2´−メトキシ−1,1
´−ビナフチル2.34mg(5μmol)、ノルボルネン
2.354 g(25mmol)およびトリクロロシラン2.5 m
l(25mmol)を氷冷下混合し、そのまま12時間撹拌
した。引き続き反応混合物を減圧蒸留し、1.0 Tor
r、100℃に加熱した際の留分を集めることにより5.48
gの(1S、2S、4R)−2−トリクロロシリルノル
ボルナンをえた。単離収率は95.5%であった。
Example 1 0.46 mg (1.24 μmo) of allyl palladium chloride dimer
l, 2.5 μmol as palladium), (R)-(+)
-2-diphenylphosphino-2'-methoxy-1,1
′ -Binaphtyl 2.34 mg (5 μmol), norbornene
2.354 g (25 mmol) and trichlorosilane 2.5 m
1 (25 mmol) was mixed under ice cooling and the mixture was stirred for 12 hours as it was. Then, the reaction mixture was distilled under reduced pressure to 1.0 Torr.
r, 5.48 by collecting the fraction when heated to 100 ℃
g of (1S, 2S, 4R) -2-trichlorosilylnorbornane was obtained. The isolation yield was 95.5%.

【0040】生成物の光学純度は、以下の方法により立
体配置を維持したままシリル基を水酸基に変換し3,5
−ジニトロフェニルカルバメートとして、光学異性体分
離用カラムにてHPLC分析を行なうことによって求め
た。
The optical purity of the product was determined by converting the silyl group into a hydroxyl group while maintaining the configuration by the following method.
As dinitrophenyl carbamate, it was determined by performing HPLC analysis on a column for separating optical isomers.

【0041】蒸留によりえられた5.48gの(1S、2
S、4R)−2−トリクロロシリルノルボルナンをエタ
ノール5ml、トリエチルアミン10mlのジエチルエー
テル溶液(400 ml)に室温にて滴下し5時間撹拌し
た。反応液をセライト濾過し、濾液を減圧下濃縮したの
ち、残渣を減圧蒸留により単離精製して(1S、2S、
4R)−2−トリエトキシシリルノルボルナン5.56g
(ノルボルネンからの収率86%)をえた。このもの516
mg(2.0 mmol)を重炭酸カリウム400 mg(2.0
mmol)のTHF8mlおよびメタノール8ml混液
への懸濁撹拌液に室温で加え、さらに1.5 mlの30%過
酸化水素水を加えて50℃にて一晩撹拌した。反応液を室
温まで放冷し、ジエチルエーテル30mlで希釈、無水流
酸マグネシウムにて乾燥の後減圧濃縮した。粗生成物を
クーゲルロール蒸留装置にて蒸留精製し162 mgのex
o−ノルボルネオールをえた(収率72%)。
5.48 g of (1S, 2 obtained by distillation
S, 4R) -2-Trichlorosilylnorbornane was added dropwise to a diethyl ether solution (400 ml) of 5 ml of ethanol and 10 ml of triethylamine at room temperature, and the mixture was stirred for 5 hours. The reaction solution was filtered through Celite, the filtrate was concentrated under reduced pressure, and the residue was isolated and purified by distillation under reduced pressure (1S, 2S,
4R) -2-Triethoxysilylnorbornane 5.56 g
(86% yield from norbornene) was obtained. This thing 516
mg (2.0 mmol) to potassium bicarbonate 400 mg (2.0
(mmol) in a mixed solution of 8 ml of THF and 8 ml of methanol at room temperature, 1.5 ml of 30% aqueous hydrogen peroxide was further added, and the mixture was stirred at 50 ° C. overnight. The reaction mixture was allowed to cool to room temperature, diluted with 30 ml of diethyl ether, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The crude product was purified by distillation with a Kugelrohr distillation apparatus to obtain 162 mg of ex
O-norborneol was obtained (yield 72%).

【0042】[0042]

【化17】 [Chemical 17]

【0043】1H-NMR(CDCl3 中、δ値(ppm)) 0.9〜1.7
(m,9H) ,2.1(d,J=4.4Hz,1H) ,2.3(s,1H),3.8(d,J=6.
8Hz,1H) こうしてえられたexo−ノルボルネオールをベンゼン
中ピリジン存在下、3,5−ジニトロフェニルイソシア
ネートとともに50℃に加熱してジニトロフェニルカルバ
メートとし、光学異性体分離用カラム(住友化学OA−
4500、溶出液:ヘキサン/ジクロロエタン/エタノ
ール=50/15/1)にてHPLC分析を行ない光学純度
を求めたところ93%eeであった。
1 H-NMR (δ value (ppm) in CDCl 3 ) 0.9 to 1.7
(m, 9H), 2.1 (d, J = 4.4Hz, 1H), 2.3 (s, 1H), 3.8 (d, J = 6.
(8 Hz, 1H) The exo-norborneol thus obtained was heated to 50 ° C. with 3,5-dinitrophenylisocyanate in benzene in the presence of pyridine to give dinitrophenylcarbamate, which was used as a column for separating optical isomers (Sumitomo Chemical OA-
4500, eluent: hexane / dichloroethane / ethanol = 50/15/1) and HPLC analysis was carried out to find an optical purity of 93% ee.

【0044】実施例2 アリルパラジウム塩化物二量体0.92mg(2.5 μmo
l、パラジウムとして5μmol)、(R)−(+)−
2−ジフェニルホスフィノ−2´−メトキシ−1,1´
−ビナフチル4.68mg(10μmol)、ビシクロ[2.
2.2]オクテン270 mg(2.5 mmol)およびトリ
クロロシラン0.25ml(2.5 mmol)を氷冷下混合
し、そのまま12時間撹拌した。反応混合物を減圧蒸留
し、514 mgの2−トリクロロシリルビシクロ[2.
2.2]オクテンがえられた。単離収率は84.4%、光学
純度は91%eeであった(光学純度の測定は実施例1と
同様の化学変換によりビシクロ[2.2.2]オクタン
−2−オールを経てジニトロフェニルカルバメートと
し、HPLC分析により決定した)。
Example 2 0.92 mg (2.5 μmo) of allyl palladium chloride dimer
l, 5 μmol as palladium), (R)-(+)-
2-diphenylphosphino-2'-methoxy-1,1 '
-Binaphtyl 4.68 mg (10 μmol), bicyclo [2.
2.2] Octene 270 mg (2.5 mmol) and trichlorosilane 0.25 ml (2.5 mmol) were mixed under ice cooling, and the mixture was stirred for 12 hours as it was. The reaction mixture was distilled under reduced pressure to give 514 mg of 2-trichlorosilylbicyclo [2.
2.2] Octene was obtained. The isolation yield was 84.4%, and the optical purity was 91% ee. (The optical purity was measured by the same chemical conversion as in Example 1 through bicyclo [2.2.2] octane-2-ol and dinitrophenylcarbamate. And determined by HPLC analysis).

【0045】ビシクロ[2.2.2]オクタン−2−オ
ール
Bicyclo [2.2.2] octane-2-ol

【0046】[0046]

【化18】 [Chemical 18]

【0047】1H-NMR(CDCl3 中、δ値(ppm)) 1.3〜1.7
(m,11H)、1.8 〜2.1(m,2H) 、3.9〜4.0(dm,J=11Hz,1H) 実施例3 アリルパラジウム塩化物二量体0.92mg(2.5 μmo
l、パラジウムとして5μmol)、(R)−(+)−
2−ジフェニルホスフィノ−2´−メトキシ−1,1´
−ビナフチル4.68mg(10μmol)、ノルボルナジエ
ン230 mg(2.5mmol)およびトリクロロシラン0.2
5ml(2.5 mmol)を氷冷下混合し、そのまま12時
間撹拌した。反応混合物を減圧蒸留し、512 mgの5−
トリクロロシリルノルボルネンがえられた。単離収率は
90%、光学純度は94.7%eeであった(光学純度の測定
は実施例1と同様の化学変換により5−exo−ヒドロ
キシノルボルネンを経てジニトロフェニルカルバメート
とし、HPLC分析により行なった)。
1 H-NMR (δ value (ppm) in CDCl 3 ) 1.3 to 1.7
(m, 11H), 1.8 to 2.1 (m, 2H), 3.9 to 4.0 (dm, J = 11Hz, 1H) Example 3 Allyl palladium chloride dimer 0.92 mg (2.5 μmo
l, 5 μmol as palladium), (R)-(+)-
2-diphenylphosphino-2'-methoxy-1,1 '
-Binaphthyl 4.68 mg (10 μmol), norbornadiene 230 mg (2.5 mmol) and trichlorosilane 0.2
5 ml (2.5 mmol) was mixed under ice cooling, and the mixture was stirred for 12 hours as it was. The reaction mixture was distilled under reduced pressure to give 512 mg of 5-
Trichlorosilyl norbornene was obtained. Isolation yield
The optical purity was 90% and 94.7% ee (the optical purity was measured by HPLC analysis using 5-exo-hydroxynorbornene as dinitrophenylcarbamate by the same chemical conversion as in Example 1).

【0048】ジニトロフェニルカルバメート誘導体1 H-NMR(CDCl3 中、δ値(ppm)) 1.3〜1.87(m,4H)、2.9(b
rs,1H) 、3.0(brs,1H)、4.8(d,J=6.8Hz,1H) 、6.0(m,1
H)、6.3(m,1H) 、7.2(brs,1H) 、8.7(brs,3H) 実施例4 アリルパラジウム塩化物二量体0.92mg(2.5 μmo
l、パラジウムとして5μmol)、(R)−(+)−
2−ジフェニルホスフィノ−2´−メトキシ−1,1´
−ビナフチル4.68mg(10μmol)、ノルボルネン23
5 mg(2.5 mmol)およびメチルジクロロシラン0.
31ml(3.0 mmol)を氷冷下混合し、0〜20℃で24
時間撹拌した。反応混合物を減圧蒸留し、320 mgのe
xo−2−メチルジクロロシリルノルボルナンがえられ
た。単離収率は62%、光学純度は42%eeであった(光
学純度の測定は実施例1と同様の化学変換によりジニト
ロフェニルカルバメートとしてHPLC分析により行な
った)。
Dinitrophenyl carbamate derivative 1 H-NMR (δ value (ppm) in CDCl 3 ) 1.3 to 1.87 (m, 4H), 2.9 (b
rs, 1H), 3.0 (brs, 1H), 4.8 (d, J = 6.8Hz, 1H), 6.0 (m, 1
H), 6.3 (m, 1H), 7.2 (brs, 1H), 8.7 (brs, 3H) Example 4 0.92 mg (2.5 μmo) of allyl palladium chloride dimer
l, 5 μmol as palladium), (R)-(+)-
2-diphenylphosphino-2'-methoxy-1,1 '
-Binaphtyl 4.68 mg (10 μmol), norbornene 23
5 mg (2.5 mmol) and methyldichlorosilane 0.
Mix 31 ml (3.0 mmol) under ice cooling and mix at 0-20 ℃ for 24 hours.
Stir for hours. The reaction mixture was distilled under reduced pressure to give 320 mg of e.
Xo-2-methyldichlorosilyl norbornane was obtained. The isolation yield was 62% and the optical purity was 42% ee (the optical purity was measured by the same chemical conversion as in Example 1 as dinitrophenylcarbamate by HPLC analysis).

【0049】実施例5 ツァイゼ(Zeise) の塩(K[PtCl3 (CH2 =CH
2 )])と(R)−(+)−2−ジフェニルホスフィノ
−2´−メトキシ−1,1´−ビナフチルより調製した
ジクロロ白金エチレン錯体1.9 mg(2.5 μmol)、
ノルボルネン235 mg(2.5 mmol)およびメチルジ
クロロシラン0.31ml(3.0 mmol)を氷冷下混合
し、0〜20℃で24時間撹拌した。反応混合物を減圧蒸留
し、441mgのexo−2−メチルジクロロシリルノ
ルボルナンがえらえた。単離収率は85%、光学純度は
13%eeであった(光学純度の測定は実施例1と同様の
化学変換によりジニトロフェニルカルバメートとしてH
PLC分析により行なった)。
Example 5 Zeise salt (K [PtCl 3 (CH 2 ═CH
2 )]) and (R)-(+)-2-diphenylphosphino-2'-methoxy-1,1'-binaphthyl prepared dichloroplatinum ethylene complex 1.9 mg (2.5 μmol),
235 mg (2.5 mmol) of norbornene and 0.31 ml (3.0 mmol) of methyldichlorosilane were mixed under ice cooling and stirred at 0 to 20 ° C for 24 hours. The reaction mixture was distilled under reduced pressure to give 441 mg of exo-2-methyldichlorosilyl norbornane. Isolation yield 85%, optical purity
It was 13% ee (the optical purity was measured by the same chemical conversion as in Example 1 to obtain H as dinitrophenyl carbamate.
This was done by PLC analysis).

【0050】[0050]

【発明の効果】本発明はビシクロ[2.2.n]系オレ
フィン化合物の不斉ヒドロシリル化反応により、様々な
光学活性化合物に変換容易な光学活性ビシクロ[2.
2.n]系シリル化合物を効率的に製造することのでき
る工業的にすぐれた方法である。
INDUSTRIAL APPLICABILITY The present invention relates to bicyclo [2.2. n] -based olefin compound by asymmetric hydrosilylation reaction, which can be easily converted into various optically active compounds.
2. It is an industrially excellent method capable of efficiently producing an [n] type silyl compound.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07F 7/18 B 8018−4H C 8018−4H E 8018−4H L 8018−4H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location C07F 7/18 B 8018-4H C 8018-4H E 8018-4H L 8018-4H

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I) : 【化1】 (式中、nは1または2、R1 およびR2 はそれぞれ独
立に、水素原子、アルキル基、アラルキル基、アリール
基、アルコキシカルボニル基、シアノ基またはニトロ基
を表わし、線 【化2】 は単結合または二重結合を意味する)で示される化合物
を遷移金属触媒と構造式(II): 【化3】 で示される光学活性ホスフィン化合物の共存下で、一般
式(III) : 【化4】 (式中、X、Y、Zはそれぞれ独立に、水素原子、アル
キル基、アルコキシル基、またはハロゲン原子を表わ
す)で示されるシラン類を反応させることを特徴とする
一般式(IV): 【化5】 (式中、n、R1 、R2 および線 【化6】 は前記と同じ)で示されるビシクロ[2.2.n]系光
学活性シリル化合物の製造法。
1. A compound represented by the general formula (I): (In the formula, n represents 1 or 2, R 1 and R 2 each independently represents a hydrogen atom, an alkyl group, an aralkyl group, an aryl group, an alkoxycarbonyl group, a cyano group or a nitro group, and Represents a single bond or a double bond) with a transition metal catalyst and a structural formula (II): In the presence of an optically active phosphine compound represented by the general formula (III): (In the formula, X, Y and Z each independently represent a hydrogen atom, an alkyl group, an alkoxyl group or a halogen atom), a silane represented by the general formula (IV): 5] Where n, R 1 , R 2 and the line Are the same as above). n] A method for producing an optically active silyl compound.
【請求項2】 遷移金属触媒としてパラジウム化合物ま
たは白金化合物を用いる請求項1記載の製造法。
2. The production method according to claim 1, wherein a palladium compound or a platinum compound is used as the transition metal catalyst.
【請求項3】 シラン類としてトリクロロシランを用い
る請求項1または2記載の製造法。
3. The method according to claim 1, wherein trichlorosilane is used as the silane.
【請求項4】 遷移金属触媒としてアリルパラジウム塩
化物二量体を用いる請求項1、2または3記載の製造
法。
4. The method according to claim 1, 2 or 3, wherein allyl palladium chloride dimer is used as the transition metal catalyst.
【請求項5】 構造式(I) で示される化合物としてノル
ボルネンを用いて光学活性なシリルノルボルナンを製造
する請求項1、2、3または4記載の製造法。
5. The method according to claim 1, 2, 3 or 4, wherein an optically active silylnorbornane is produced by using norbornene as the compound represented by the structural formula (I).
JP05138992A 1992-03-10 1992-03-10 Method for producing optically active silyl compound Expired - Fee Related JP3279620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05138992A JP3279620B2 (en) 1992-03-10 1992-03-10 Method for producing optically active silyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05138992A JP3279620B2 (en) 1992-03-10 1992-03-10 Method for producing optically active silyl compound

Publications (2)

Publication Number Publication Date
JPH05255351A true JPH05255351A (en) 1993-10-05
JP3279620B2 JP3279620B2 (en) 2002-04-30

Family

ID=12885588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05138992A Expired - Fee Related JP3279620B2 (en) 1992-03-10 1992-03-10 Method for producing optically active silyl compound

Country Status (1)

Country Link
JP (1) JP3279620B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081646A (en) * 2006-09-28 2008-04-10 Shin Etsu Chem Co Ltd Silsesquioxane-based compound mixture, hydrolyzable silane compound, method for producing the same and resist composition using the same and patterning method, and processing method of substrate
JP2014009110A (en) * 2012-06-28 2014-01-20 Shin Etsu Chem Co Ltd Method for producing 2-(trichlorosilyl)norbornane
JP2014101352A (en) * 2012-10-25 2014-06-05 Shin Etsu Chem Co Ltd [3-(2-norbornyl)-2-norbornyl]silane compound, and production method thereof
JP2021075552A (en) * 2014-08-06 2021-05-20 カリフォルニア インスティチュート オブ テクノロジー Silylation of aromatic heterocycle by transition-metal-free catalyst abundant on earth

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081646A (en) * 2006-09-28 2008-04-10 Shin Etsu Chem Co Ltd Silsesquioxane-based compound mixture, hydrolyzable silane compound, method for producing the same and resist composition using the same and patterning method, and processing method of substrate
JP4509080B2 (en) * 2006-09-28 2010-07-21 信越化学工業株式会社 Silsesquioxane compound mixture, hydrolyzable silane compound, production method thereof, resist composition using the same, pattern formation method, and substrate processing method
US8153836B2 (en) 2006-09-28 2012-04-10 Shin-Etsu Chemical Co., Ltd. Silsesquioxane compound mixture, hydrolyzable silane compound, making methods, resist composition, patterning process, and substrate processing
JP2014009110A (en) * 2012-06-28 2014-01-20 Shin Etsu Chem Co Ltd Method for producing 2-(trichlorosilyl)norbornane
JP2014101352A (en) * 2012-10-25 2014-06-05 Shin Etsu Chem Co Ltd [3-(2-norbornyl)-2-norbornyl]silane compound, and production method thereof
JP2021075552A (en) * 2014-08-06 2021-05-20 カリフォルニア インスティチュート オブ テクノロジー Silylation of aromatic heterocycle by transition-metal-free catalyst abundant on earth
US11753421B2 (en) 2014-08-06 2023-09-12 California Institute Of Technology Silylated derivatives of aromatic heterocycles

Also Published As

Publication number Publication date
JP3279620B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
HU217368B (en) Chiral 2,5-dialkyl phospholanes, preparation thereof and enantioselective hydrogenating catalysts containing said compounds as ligands
JP3279620B2 (en) Method for producing optically active silyl compound
DE69617496T2 (en) Optically active tertiary phosphine compounds, transition metal complexes containing them as ligands and processes for producing optically active silicon compounds by means of such transition metal complexes
Hayashi Hydrosilylation of carbon-carbon double bonds
JP2001187795A (en) Method for producing halogenated 1,2-disilaethane
JP3430775B2 (en) Tertiary phosphine compound, transition metal complex having the same as a ligand, and use thereof
Szymoniak et al. A New Selective Allyl Transfer Reagent: Facile Entry to β-Hydroxy Enol Silyl Ethers Bearing Two Contiguous Stereogenic Centers
JP3463450B2 (en) Method for producing optically active organosilicon compound
Iovel et al. Hydrosilylation of unsaturated (hetero) aromatic aldehydes and related compounds catalyzed by transition metal complexes
JPH0959290A (en) Ferroceny diphenylphosphine derivative and hydrosilylation method using the ligand metal complex
JP2908919B2 (en) Method for producing optically active organosilicon compound
JPS63152342A (en) Production of fluorine-containing carboxylic acid ester
JP3489152B2 (en) Phosphine compounds and transition metal complexes using them as ligands
JP2869521B2 (en) Cyclic silyl enol ethers and production method thereof
JP3489176B2 (en) Method for producing optically active organosilicon compound
JP2838193B2 (en) Preparation of cyclic silyl enol ether
JPH0778027B2 (en) Manufacturing method of conjugated olefin
JPS63188687A (en) Production of organosilicon compound
JP2863838B2 (en) (4-stannyl-2-alkene-1-yl) borane compound and method for producing the same
JP2855221B2 (en) Optically active 3,4-bisphosphinopyrrolidine compound
JP3257393B2 (en) Method for producing (E) -allylsilane
JPH09241277A (en) New 1-substituted-2-diphenylphosphinonaphthalene and transition metal complex containing the same as ligand
JP3590880B2 (en) New iridium complex
JP3180128B2 (en) 2-boryl-3-silylalkene compound and method for producing the same
JPH05255353A (en) Optically active allyl@(3754/24)fluoro)silane and its production

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees